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THE INTRINSIC THEORY OF THIN SHELLS AND PLATES
PART II—APPLICATION TO THIN PLATES*

BY

WEI-ZANG CHIEN
Department of Applied Mathematics, University of Toronto

7. The general equations for a thin plate. We shall now investigate the equations
of equilibrium and compatibility for a thin plate, not necessarily of constant thick-
ness. First, we shall introduce the condition that the system is a plate, i.e., its middle
surface in the unstrained state is plane. We have therefore

bafi = 0, Raf) „ = 0. (7.1)

Furthermore, in order to simplify the problem, we assume in the following sections
that the body force forms a parallel vector field, and therefore (3.38), (3.39) are
satisfied; this is true for most practical problems.

Substituting (7.1) and the conditions on body force into (6.34) and (6.35), we have
three equations of equilibrium for a thin plate

- 2+ WJ)X(q*h')]py + A"^qTaquqpyh^ + P°
a

1 - 2<r
+ 2X%,h + (Q'h) i, +   arXqlr\Q°h = 0°m, (7. 2a)

a 1 — (J

2A^(p*h)]f - ^rX(<?™<?^3)lP + la»*qTyAJ$\qxth*)lf + P«
a a a

+ 2X[0]h + a">(Q°h) h + (a*sa°y + 2 a"sa^)Qyqrih = Ofo, (7. 2b)
1 — 0" a

where the 0-symbols have the following magnitudes,

0(42,; X0ph,X0Qhtp*qh,Q*qh,Qqph,Pqh\X0h\Qh3,qPh', qph\qXh\qh\ (7.3a)

0^)1 P2A, Qph, Xph, XQh, Q*h, Pqh\ Qh\ Xh\ph\ qh*. (7.3b)
We recall that

= j (ja"',a'rX + (1 — cr)aaTaflx j, (7.3c)
1 — a2

2{2<j — 1)
AfU = — r (7.3d)3(1 — a)

Similarly, substituting (7.1) into (6.43) and (6.44), we have three equations of com-
patibility for a thin plate

2nfo]<7am(l + 2nf,Jn^,pjxPxp + 2axXprt)
a

— 2n{o]<?/3x(a'rX + 2nf0'n^]ppj)(pax|7 + P?x|a ~ P«t|x) = 0. (7.4a)

* Received June 12, 1943. Part I of this paper appeared in this Quarterly, 1, 297-327 (1944).



44 WEI-ZANG CHIEN [Vol. II, No. 1

(2n^nf0]pp7|ojs + nMnfoWpT<?a/s)(l + 2nJr0,Jn[J0{jpxjpT„ + 2al{p,j)
a

+ "Mnfo)(2nMn[0]PXS + aT")(pr(,\y + Pyr |p ~ Pyp | x) (polt ||S + PHu,\a ~ PojS |o>) = 0. (7.4b)
a a a a a a

The macroscopic tensors in (6.29), (6.30), (6.31) can be written as

T* = 2AffxprXh - A^qrfqxth3 + —a»*Q°h + 0&, (7. 5a)
1 — a

L<* = ?<aIpA?r,X3qx^ + 0&, (7. 5b)

T° o = 2A^(9x,h')|, + + a"P*)qTyh* + 0$», (7.5c)
a

where

0$, = 0$,(p2A, Q2/!, QpA, pA', Qh\ Xh\ q2hs), (7.6a)

0$, = 0tf5)(qph\ X°h\ Qh\ q*tf, Xqh5), (7. 6b)

0^, = Of&^Qph, Q*h, QXh\ Qqh\ Pph\ PQh\ qph\ X°h\ Qh\Xqh*, <?2h6). (7. 6c)
Equations (7.2a, b) and (7.4a, b) are the six differential equations of a thin plate
in the six unknowns pa$ and qalj. The next step is to introduce certain systematic
approximations based upon the thinness of the plate, so as to obtain a set of differ-
ential equations in simpler form.

8. Classification of all thin plate problems. We consider a family of »1 thin plates
of the same material, having an identical middle surface SJ in the unstrained state,
but different thicknesses; each is subject to the action of (i) external force systems
applied at the edges, (ii) surface loadings on its two boundary surfaces, and (iii) uni-
form body force throughout the plate. (This includes gravity, but excludes a centrif-
ugal field.) We attach to the middle surface of each plate the same system of
coordinates xa, so that the fundamental tensor aaj3 is the same for all plates in this
family. We assign to each plate a value of a parameter e, so that the thickness of all
the plates can be represented by

2/i = 2th(xl, x2), (8.1)

where 0<e<«i and the function h is the same for all the plates; for thin plates, €1 is
supposed to be small, but the basic idea of the method is that we seek solutions valid
for all € in the range 0<€<ei.

Equation (8.1) implies that the derivatives of the thickness at any point are of
the same order of magnitude as the thickness itself. We shall call these plates "regular
plates." On the other hand, if the thickness and its derivatives are of different orders
of magnitude, we have an "irregular plate." The following theory is limited to regular
plates only.

We may suppose € chosen equal to the ratio of the average thickness to a selected
lateral dimension (usually the smallest lateral dimension) of the plate. For a circular
plate, e is the ratio of the average thickness to the diameter of the plate. For a rec-
tangular plate, it may be chosen equal to the ratio of the average thickness to the
length of the shorter side.

It is important to observe that e is the only parameter involved. Except the funda-
mental tensor aaj3 and Poisson's ratio <r, all the other quantities occurring are func-



1944] INTRINSIC THEORY OF SHELLS AND PLATES 45

tions of e, and no quantity is "small" unless it tends to zero with e. (Young's modulus
does not appear, on account of the use of reduced stresses and body forces.) Thus for
any "small quantity" Sf', we must have

lim & = 0. (8.2)
*-♦0

In order that a problem may belong to the theory of small strain, etJ- must be a small
quantity, and therefore

lim en = 0. (8.3)
«-K)

It follows that pap must also be a "small quantity," depending on e like 1if in (8.2).
But this is not necessarily true for qaS.

It is understood that all conditions (such as reduced edge forces, reduced surface
loadings, and reduced body forces) depend on e in such a way that (8.3) holds. We
shall assume that Q\ P\ vanish at least as fast as e, and are in fact power series
in 6. This assumption implies that the derivatives of any of these quantities with
respect to xa are of the same order of magnitude as (or higher order of magnitude
than) the quantity itself. Hence we write

C°=Z <?(.)«', (8.4a)
00 00

p° = E Pa = Z (8.4b)
«=ri0 a=n

00 00

*101 = £ ' *To] = £ Xw[0]€\ (8.4c)
*=?o *=;'

where k, ko, n, n0,j, jo are integers greater than zero, and P\s), Q[s^, -X(S)[0] are functions
of x", independent of e.

Similarly we assume that the traction, shearing force and bending moment ap-
plied on the edge curve can be represented by

T" = £ f£e*, (8.5a) £> = £ L&-, (8.5b) ^=1^', (8.5c)
8=t 8=U 8=1

where t, u, I are positive integers, and LTfJ) are functions of position on the
edge curve, independent of e.

Now the problem is to find the behaviour of the family of oo1 thin plates under
the action of a given family of external force systems (8.4), (8.5). Given an external
force system defined by (8.4), (8.5), we seek solutions of the equations of equilibrium
(7.2) and the equations of compatibility (7.4) of the form

oo oo

PaP = ^ > P (a) aBt* t (8.63.) Qafi ^ > Q (8.6b)
8=p s=q

where p and q are zero or positive integers, and poo«/3 and <?(«)«/* are functions of xa,
independent of e. Only those problems admitting solutions with £>0 belong to the
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theory of small strain. On the other hand, q may be zero; then we are dealing with a
finite deflection problem.

The usual discussion of plate theory is based on the deflection, i.e. the normal
displacement of a particle on the middle surface. The present method is intrinsic, and
the general equations contain no explicit reference to the displacement. However,
since qag corresponds to change of curvature (i.e. curvature of the middle surface
after strain), it is clear that finite values of q„s correspond to finite deflection and small
values of qap to small deflection. Similar remarks apply in the case of shells. Hence,
in classification, we may use the familiar word "deflection" when referring to the order
of magnitude of qag.

The assumed forms (8.6a, b) imply that the derivatives of pap, qap with respect
to xa are of the same order of magnitude as the quantities themselves, or of higher
order. In fact, pap and qap expressed by (8.6a, b) represent the behaviour of the
family of °o1 thin plates under the action of the given family of P\ Q\ X'0],
TaP, Ta0, LaS defined by the equations (8.4), (8.5). It is understood that if P\ Q\ X[o],
TaP, Ta0, L0"3 are identically equal to zero (i.e., k, ko,n, n0, j, jo, t, u, 1= <x>), then
pag and qap vanish (i.e., p, q = <*>) everywhere; this corresponds to the unstrained state
of the plate. This means that self-strained plates are not discussed.

In a thin plate problem, we are to regard the numbers k, ko, n, no, j, jo, t, u, I as
given; the initial step towards solution would appear to be the determination of p
and q, for then we could simplify the equations of equilibrium and compatibility in
the first approximation by picking out the principal terms in e from equations
(7.2a, b), (7.4a, b). But owing to the partial indeterminacy of p and q, this method
is not successful.

It is much simpler to solve the problem in the reverse order. First we assign in-
tegral values to p and q. The values of k, k0, n, n0,j,jo are fixed by the conditions that
X°wl0], Xym, P°(m), P"n), <2ot.)» Qqt) should contribute to the principal parts of
(7.2a, b), without dominating these equations to the exclusion of pa» and qap. The
equations of equilibrium and compatibility in the first approximation are then ob-
tained by picking out the principal terms in e from equations (7.2a, b), (7.4a, b). Then
the values of t, u, I are automatically fixed through the expressions (7.5).

We shall now discuss the classification of thin plate problems based on assigned
values of p and q, so that the principal parts of (7.2a, b), (7.4a, b) in the first approxi-
mation are different for different "Types." The classification is shown graphically in
Fig. 3, where permissible pairs of (p, g)-values are represented by circles. As indicated
in (8.6a, b), we consider only non-negative integral values of p and q. Since, however,
p = 0 corresponds to finite extension of the middle surface, we must omit the (p, q)-
points on the g-axis.

It is found that the points in the (p, g)-plane break up into twelve groups depend-
ing on their positions relative to the division lines AD, AB, OC and the p-axis. For
any point (except q = 0) on the line AD, it is easily seen from inspection of (7.2a)
that the first and second terms are of the same order of magnitude and prevail over
all the other terms, with possible exception of those involving X[0], Pi, Q\ For any
(p, g)-point (except 2 = 0) above AD, the second term in (7.2a) dominates, and for
any (p, g)-point below AD, the first term dominates. For the point A, the first three
terms in (7.2a) are of the same order of magnitude and prevail over the right hand
side. For any point on the £-axis above A, the second and third terms in (7.2a) are
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of the same order of magnitude and prevail over the other terms. Thus the principal
part of (7.2a) takes five different forms depending on the position of the (p, g)-point
relative to the line AD and the p-axis.

Similarly, the form of the dominant part of (7.2b) depends on the position of the
(P> g)-point relative to the line AB and the p-axis. Finally,-the form of the dominant
part of (7.4b) depends on the position of the (p, g)-point relative to the line OC and
the />-axis. The equation (7.4a) has no division line, since the term nfojQa/si-r dominates
for any position of the (p, g)-point.

^-values

Fig. 3. Classification of thin plate problems.
p = order of extension of middle surface, q — order of change of curvature of middle surface.

(Type P12 is not indicated in the diagram, since for these problems, q = oo, and consequently the corre-
sponding points lie at infinity to the right hand side.)

It follows that the {p, g)-plane is divided into twelve regions, so far as permissible
non-negative integral values of p and q are concerned, and so the complete classifica-
tion of all thin plate problems involves consideration of twelve types (Types P1-P12).
Type P12 is not indicated in the diagram, since for these problems, g= oo, and con-
sequently the corresponding points lie at infinity to the right hand side.

Although the classification gives twelve types, four of these (Types P3, P6, P7,
P8) are less important than the others. They represent overdetermined problems, in
which the number of equations exceed the number of unknowns. Such cases can occur
only when very special relations connect the body forces and surface forces.

These twelve types may be described as follows:
(1) Problems of finite deflection (q = 0), Types P1-P3.
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(2) Problems of small deflection (g^l, p = 1; g=l, p = 2; g^l, p>2q), Types
P4-P8.

(3) Problems of very small deflection (5 Si 2, 2q^p^2), Types P9-P11.
(4) Problems of zero deflection (g= w), Type P12.
In order to save space, we shall not discuss all the twelve types in detail. The

discussion of Types PI, P2, P3 will serve as an example. The results for all types
are summarized in the tables in the Appendices at the end of this paper. The prin-
cipal parts of the equations of equilibrium and compatibility are shown in Table I,
and the orders of magnitude of the external forces and the principal parts of the
macroscopic tensors in Table II.

It should be noted that the theory of generalized plane stress [l, 2], the Lagrange-
Kirchhoff theory of small deflection [3, 4, 5], and the von Karman theory of "large"
deflection [6] can be derived respectively from the Types P12, Pll, P5.

We shall devote the next section to discussing the problems of finite deflection
(P1-P3). All results for these types are new, and may prove particularly interesting.

9. Problems of finite deflection (q = 0), types PI —P3.

(a) Type PI: g = 0, p= 1. Finite deflection with dominant extension in
THE MIDDLE SURFACE

General equations. By the condition that, in the first approximation, (7.2a, b) re-
ceive significant contributions from P(„t), P^n), Xq,)[0], -Xyjio], Q(tt), Ofa, we must have

tio — n = 2, i o = j = 1, k0 = k = 1. (9.1)

Therefore, we obtain from (6.23)

kM = he + 0(«2), *(_, = he + 0(a2); (9.2)

consequently, the common assumption that the middle surface of the unstrained
plate is deformed into the middle surface of the strained state is justified in the first
approximation.

We now substitute (8.1), (8.4)-(8.6) into (7.2), (7.4). The lowest power of e oc-
curring is c2 in (7.2), and e° in (7.4). The corresponding coefficients give rise to equa-
tions of equilibrium and compatibility in the first approximation as follows:

1-2 <j
— 2j4"JrXq(o)prp(i))r\^ + P°2) + 2X(1)[0]A + {Qxi)h)\„ + — aTXqmr\Qa{l)h = 0, (9.3a)

a 1 — ff

2A^x(p(1).xA),p + P?2) + 2r{imh + -^-a«'(e°)A) „
a 1 — <7 a

+ (a*xa"? + 2a«xa^)<Z(0)xx(?(i)7A = 0,n(9.3b)

«IO]9(0)aTl3 = 0, (9.3c)
a

nMnM9(t)rf9(o)«i = 0- (9.3d)

We may remark that all quantities in the above equations are finite, i.e. independent
of €. The macroscopic tensors in (7.5) can be written as
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T«t> = (2A"^Pnuxh + ~—— a-'QlfiW + 0(e3), (9.4a)
1 — a

L°» = fn^aIu^r,MQ(0)x^"V + 0(e*), (9.4b)

T°° = Q^itS + 0(e3) if eji, * 0,

T"° = {er«A + ^(gto)^3)^}^ + o(^) if = o. (9.4c)
a

Equations (9.3a, b, c, d) form a set of six equations for the six unknowns g«»<r0 and
p(i)a/j. From (9.3d), we see that the total curvature of the middle surface does not
change for the first approximation. Consequently the strained middle surface in this
type of problem is to be regarded as a developable surface.

Equations (9.3a, b, c, d) can be further simplified. Since for a plate, Rpapy = 0, the
order of the operations of covariant differentiation is immaterial; consequently, from
(9.3c), we have

Q (o)aff = W(o)j,«3. (9.5)

Here is an unknown function of x°, which satisfies, in consequence of (9.3d),

nMnfo]w' (0) Ipsw (o) | = 0. (9.6)
a a

The existence of w(n, satisfying (9.5), is easily proved by temporary use of special
coordinates (rectangular Cartesians). The last equation is, in fact, the famous differ-
ential equation [7 ] of a developable surface in the curvilinear coordinate system, and
W(o) may be called the deflection function. If (9.6) is satisfied, <7(o)ty is given by (9.5).
There still remain the three equations (9.3a, b) for the three unknowns p( 1)l7. We
can handle the problem indirectly by means of Tjgy This is the coefficient of the lowest
power, «2, in the series for Tafi, and by (9.4a)

Tt) = 2 <'xp(.),xA + ——— a«W. (9.7)
1 — 0"

We note that this is a symmetrical tensor, so that it has only three independent com-
ponents. Substituting (9.5), (9.7) into (9.3a, b), we have

— Tww (0) I + -P(2) + 2Z(i)[0]A + | r + a"*w'(o)|xx(?(,1)A = 0, (9.8a)
a a

7'(2" It + P(2) + 2 X"w[0]h + (a"xa"* + 2a"xa")w(o,|irx(?(i>,* = 0. (9.8b)
a a

To sum up, for problems of type PI, we have a set of four equations (9.6), (9.8a, b)
in the four unknowns, w(0) and PgJ.

Special case. The following special case is interesting. If

P(*2) = -^a;[o] = Q(i) = 0, (9.9)

then by (9.8b) there exists an Airy function xm< so that

Tt) — n[oin^iX<2)|TX- (9.10)
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This is easily proved by temporary use of special coordinates (rectangular Cartesians
[2]). Consequently, (9.8a) can be reduced to the form

~ nMnlo]X<!!)|xJw'(0)i(>x + P(2) + 2^i)[0]^ + = 0. (9.11)
a a a

The problem is now to find xm and w(0) as functions of x" satisfying the two non-
linear partial differential equations (9.6) and (9.11). In rectangular Cartesian co-
ordinates, the equations (9.6) and (9.11) may be written as

W(0),12W(0),12 — f(0),nW(o),22 = 0, (9.12a)

2x (2), 12^(0), 12 — X(2),llW(0),22 — X(2) ,22W(0) ,H + Q(1)MW(0) + jP(2) + 2-X*(l) [0] h = 0, (9. 12b)

where the comma indicates partial differentiation with respect to x", and A is the two-
dimensional Laplace operator. The macroscopic tensors are given by

(9.13a)
T11 = X(2),22e2 + 0(€3), T22 = X(2),ne2 + 0(e3), 1

T» = T21 = - X(2).i2e2 + 0(e3), I

Ln = _ L22 = _ £(1 _ a)Wm ue^ + 0(£*),n

L12 = D(w( 0).u + <™«».22>3 + 0(e4), > (9.13b)

Ln = — D(w (o) ,22 + <nV(0),n)e3 + 0(e4), /

T10 = { (1 — <r)(£>W(o),i2),2 + (Dw(o),n + cZ?W(0),22),i} f3 + 0(«4)i)

T20 = {(1 — <r)(£Hv(o),i2),i + (Dwm.n + ff.Dw(o),ii).2} e3 + 0(e4).

Here the symbol D is defined by

!:}
(9.13c)

2 h3
D =  (9.14)

3(1 - <r2)

This is a finite quantity; the ordinary flexual rigidity is D&E (where E is Young's
modulus). An example of this type of problem is given below.

Example. A long rectangular plate is subjected to a uniform tension T^e2 on the
two long edges, and a normal load on one face; this normal load does not vary
along the length of the plate. Find the form of the plate in the strained state.

In this example, we can neglect the edge effect near the end of the plate by con-
sidering the plate infinitely long. We assume that the middle surface in the strained
state is cylindrical, with the generators of the cylinder parallel to the length of the
plate, that is

<3(0)11 = W(0),H = ^(x1), <J(0)22 = <?(0)12 = 0. (9.15)

Here x" are rectangular Cartesian coordinates, such that the x2-axis is parallel to the
long edges, and the x*-axis perpendicular to them; ft is an unknown function. Further-
more, in this example,

PI) = *?1)[01 = Q°w = Qx0 = *(1>[0] = 0; (9.16)
Then from (9.8b) and the condition that 7^ are functions of x1 only, we have, in
consequence of the boundary conditions on the two long edges,

r(U = r(!), (9.17a) 7^=7^ = 0, (9.17b) T% = 0. (9.17c)
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Substituting (9.15)—(9.17) into (9.8a), we obtain

jP°
Q(x»)=-~ (9.18)

T (2)

Therefore the curvature at any point of the cylindrical surface is proportional to the
normal pressure at the point. For uniformly distributed pressure, the strained middle
surface is circular cylindrical. It should be noted that the above conclusion holds in
general for plates of non-uniform thickness, with the limitation that h is independent
of x2.

(b) Type P2 : q = 0, p = 2. Finite deflection with small extension in the
MIDDLE SURFACE

General equations. As in Type PI, we have

«o = n = 3, jo = j = 2, ko = k = 2. (9.19)

By substituting the e series from (8.1), (8.4)-(8.6) into (7.2a, b), (7.4a, b), it is found
that the lowest power of e occurring in (7.2a, b) is e3, and in (7.4a, b) is e°. The corre-
sponding coefficients give rise to the equations of equilibrium and compatibility in
the first approximation as follows:

— 2AK)Xgm„ypmT\h + fA"'x(g(o),xA3)|PT + P(°3) + 2X%mh.
1 - 2a

+ (o)T41q (0)xsQ(0)p7^3 + (Ql2)h)\* + — aTX<7(0)*xQ(2)A = 0, (9.20a)
a 1 — <7

2A^(pm^h)h + A^(g( + fa"<?(o)*^(S(0)X«£% + *S>
a a a

+ 2X(2)[o)h + (a^a"11 + 2aaXaTy)qmr\Q(.i)yh +   *"^($2)%) \p = 0, (9.20b)
1 — IT a

nM9( o>a-H0 = 0. (9.20c); nMn{o]<?(o)p0<?(o)ay = 0- (9.20d)
a

The macroscopic tensors in (7.5a, b, c) can be written as

T°« = |2<)'XP(2)xx/i + -a°f>Q0(2)h - <'^g<o)xU9(o)xaA3|e3 + 0(e*), (9.21a)

L* = Sn$axM^Q(0)xSAV + <?(««), (9. 21b)

T°a = {tf2)h + K^tecojx^3),,}^ + 0(«*)- (9.21c)
a

Here Aft*, are given as in (6.33a, b). Equations (9.20a, b, c, d) form a set
of six fundamental equations for the six unknowns p<2>a0 and <j(o)a<3. We see that from
(9.20d) that the middle surface in the strained state is a developable surface.

As in Type PI, the problem can be further simplified by introducing w«u, such
that

Q(0)o|S = W(0)|«|3. (9.22)

We have also

7$ = 2Aff*pmrXh - A^QWr.gmuh' + ——— aafiQl)h. (9.23)
1 — a
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We note that is the coefficient of the lowest power of € in Ta*. It is a symmetric
tensor, and consequently it has only three independent components. Substituting
(9.22) and (9.23) into (9.20a, b, c, d), we find that (9.20c) is identically satisfied, while
the other three equations become

— 7T3>C0,IPY + + P°(3) + 2X?2)l0]h
a a a

+ (Qmh) I * + alXw(o)|rx0f2^ = 0, (9.24a)
a a

^(3)Ip + \&aTw (0) | w„A$*(w (0) ixjA3) |P + 1%) + 2X(2)[o)h
a a a a

+ (aTXaay + 2aa)'aT'>)w W\T\QWyh = 0, (9.24b)
a

nMnMw'(0)irfw'(0)|af = 0. (9.24c)
a a

To sum up, we have for problems of Type P2 a set of four equations (9.24a, b, c),
in the four unknowns, w(0) and T$.

The special case of uniform thickness will now be treated. Since h is constant,
(9.24a, b) may be written in the form

— T[^w jo)+ Z)AAw(O) + P(3) + 2Z(2)[o]A + Q*2)\*h + QId^Aw (0) = 0, (9.25a)
a a

{rf3° + Da"Ta^wm|nAw(0) — ^Da^(Aw(0))2} \S + P°3) + 2X'2mh
a a

+ (a^Aw(o) + 2aaXaeTwm\r\)Qd)ffh = 0, (9.25b)
a

and (9.24c) remains unchanged. Here A is the two-dimensional Laplace operator, and
D is the reduced flexual rigidity as in (9.14).

Furthermore, when
-P(3) = ^(2)[0] = Q(2) — 0, (9.26)

the equation (9.25b) will be satisfied by putting (<£<3) is an arbitrary function of x")

^3) = — Da (o > | t\Aw (0) + §Da°^(Aw(o))2. (9.27)
a a

And consequently, (9.25a) can be reduced to the form

— n{oin[ol<£(3)Uaw'<o)|P7 + Z?AAw(o> + %D(Aw(o))s + -P®
a a

+ 2X(,2)[o\h + Q\2)Mw(o) = 0. (9.28)

Therefore for a plate of uniform thickness under the condition (9.26), we have in
this type of problem a set of two equations, (9.24c) and (9.28), with two unknowns
W(o) and 0(3). In rectangular Cartesians, these two equations may be written as

w (0),i2W(0),i2 — W(0),nW(0),22 = 0, (9.29a)

2w (0) ,12$ (3) ,12 — W(0),ll$(3),22 — W(0) ,22$ (3) ,11 + -DAAW(O)

+ %D(Aw( o))3 + P%) + 2X°(2)[o ]h + Q%)hAw i^o) = 0. (9.29b)

The macroscopic tensors are given by
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? 11 = { </> (3) .22 + 5-D(W(0),22 — W'(0)1ll)AW(0) } e3 + 0(e4),

T» = r" = - {0(3).21 + Dwm.nAwm}(* + 0(e4), (9.30a)

T22 = {<#>(3), ii + ^/?(w(o),n — W(o),22)Aw(o>}«3 + 0(e4),

I" = -£«=- £,(! _ «r)w<0).i«€* + 0(e4),

Z,12 = Z)(W(0),U + <7W(0),22)e3 + 0(t4), (9.30b)

L21 = — D{w( 0) ,22 + ow(0),ii)f3 + 0(e4),

Tw = D(Aw(0)).it3 + T20 = Z>(Aw(o)),2e3 + 0(«4). (9.30c)

An interesting example of this type of problem is given below.
Example: A long rectangular plate of uniform thickness is deformed under the

actions of (a) uniform tensions )Ae3, T^bc3 and uniform bending moments L(3)a«3,
L(3)Be3 on the two long edges, (b) a normal load P(3)e3 on one face (this load does not
vary along the length of the plate). Assuming that p = 2, g = 0, find the form of the
middle surface in the strained state.

In this example, we can neglect the edge effect at the two ends by considering
the plate infinitely long. Since the given external force system does not vary along
the length of the plate, we shall assume that strain and stress are constant along
this direction. Hence in the first place, the deformed surface is cylindrical, with the
generators of the cylinder parallel to the length of the plate:

9(0)11 = W(0),11 =£2(x1), <7(0)12 = W(0),12 = Q(0)22 = W(0),22 = 0. (9.31)

Here xa are rectangular Cartesians, so that x2-axis is parallel to the long sides and
x'-axis is perpendicular to them. U is a function of x1, to be determined.

In the second place, Ta? is a function of x1 only. Since the ends of the plate are
free from tractions, it follows that Tn and T22 vanish everywhere to the third order:

= 2$ = 0. (9.32)

The component T11 can be written as

Tn = T&e3 + 0(e4), (9.33)

where T^} is a function of x1, to be determined.
The problem is to determine two unknowns and as functions of x1 through

Eqs. (9.25a, b) under the conditions

i?3) = *?2)[0, = *?2)[0] = Q(2> = 0x2) = 0. (9.34)

Substituting (9.31)-(9.34) into (9.25a, b), we have

- oz$ + flu,,, + p\3) = 0, (9.35) (7$ + W),x = o. (9.36)
Integration of (9.36) gives

7?3> + = C. (9.37)
Here C is a constant to be determined by the conditions on the long edges. Substitut-
ing W(0),a/} from (9.31) into (9.30b, c), we get

Ln = - Ln = 0(e4), Ln = DCit* + 0(e4), X21 = - <rZ?Qe3 + 0(e4), (9.38)

T1" = DS1, i«3 + 0(e4), J20 = 0(e4). (9.39)
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Then (9.37) becomes

Tl(i) = C —' (9"0)

where, by definition, Z,(f,=.DO. This equation is satisfied everywhere throughout the
plate. Therefore it is also satisfied at the two long edges, and consequently T^a,
T(3)b, L(z)a, L(3)b must satisfy the following relation:

TWA + = TWB + = C. (9.41)

Therefore we conclude that among T$)a, T(3)b, L(3)a, L^)b only three quantities are
independent; when any three are given, the fourth can be calculated through (9.41).

Substituting 7$ from (9.37) into (9.35), we obtain

iD£l3 - C£i + D£l,n = - ?(%■ (9.42)

This is a non-linear differential equation of the second order and third degree in fl.
When the boundary values of are given (or L(3)a, Lq)b are given), the solution is
uniquely determined.

If P°3) = 0, the problem is identical with the problem of the elastica [8]. For then,
if we introduce the new variable 0, so that

Q =0,i, (9.43)

equation (9.42) can be written as

iz?(0,i)8 - co.i + L»e,ul = o. (9.44)

The second integral of this equation is

iZ?(0,i)2 — C = F cos 6. (9.45)

Equation (9.45) is in the same form as the well known equation for the elastica. The
constant F can be determined by the boundary conditions on the long edges; 0 is a
physical quantity which denotes the direction of the tangent to the middle surface
in the strained state.

The bending of a rectangular sheet of paper into a cylindrical surface by forces
and couples applied to two opposite edges may be considered as a problem of the
above type. There is, however, an edge effect in the neighborhood of the free edges.

(c) Type P3: q = 0, p>2. Finite deflection with negligible extension in
THE MIDDLE SURFACE

General equations. As in type PI, P2, we have

wo = n = 3, jo = j = 2, ko = k = 2. (9.46)

By substituting the e series from (8.1), (8.4)-(8.6) into (7.2a, b), (7.4a, b), we find
that the lowest power in (7.2a, b) is e3, and in (7.4a, b) is e°. The corresponding coeffi-
cients give rise to the equations of equilibrium and compatibility in the first approxi-
mation as follows:
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f-4(i')'rX(,3(0)TX^3)|pr + + -Pf0)
a

+ (GS>*)i« + 2X°i2mh + —— a^qmrxQ^h = 0, (9.47a)
a I — a

— A^"sx(qWrlJ>q(())Sxh3) lp + §a"Tq(0)ryAJ1f(q(0)\ik3)+ •?(") + 2X£mh
a a

+ aa"(Q^h)u + (a*xa°? + 2aaya^)qm^QWyh = 0, (9.47b)
1 — (J a

nM<?(o)aTt0 = o, (9.47c) nM'*M<3fco)*>0<?(o)',7 = (9.47d)
a

The macroscopic tensors in (7.5a, b, c) can be written as

T"* = ~ <rXi<7(o)^Q(o>x8A3|e3 + 0(e<), (9.48a)

L<* = |n^aIw^')Xi9(0)x^3e3 + 0(e*), (9.48b)

T°° = + Q?2)h}t* + <>(<*). (9.48c)
a

Equations (9.46a, b, c, d) form a set of six equations involving only three unknowns
<2(0)a/s, so the problem is overdetermined. Let us suppose that q«,)ap can be eliminated
from these six equations; we get a set of three conditions, which may be written in
the form

*(/) = *'<«(*, Q'm, P&), Km) = 0, (j = 1, 2, 3). (9.49)
Equations (9.49) represent the three necessary conditions on the external force sys-
tem in order that a plate may undergo finite deflection with negligible extension in
the middle surface. A special example will be considered as follows.

Example. Under what circumstances can a portion of a plate of uniform thick-
ness be bent by normal pressure into a cylindrical surface of finite curvature with
negligible extension in the middle surface? The normal pressure is assumed to be con-
stant along the generators of the cylinder.

In this case,
^(2)[0] = Q(2) — P(3) — 0. (9.50)

Let us choose the x2-axis in the direction of the generators of the assumed cylindrical
surface, and the x'-axjs in the perpendicular direction. Then we have as in the ex-
ample of Types PI, P2

<2( o)ii =£2(x1), qr( 0)12 = 0)22 = 0, (9.51)

and the equations (9.47a, b) become

DL2,11 + ^ D& + P°m + ^—OQ°mh = 0, (9.52a)
2(1 — a) l — o-

- Z^ft2),! + ahQm.i = 0. (9.52b)
Integration of (9.52b) gives

ah
"2 = Z? (Cl + Qw)' (9'53)



56 WEI-ZANG CHIEN [Vol. II, No. 1

where C\ is an integration constant. Substituting fl2 from (9.53) into (9.52a), we get

. . (3 — <r)(ah)312 „
(ahD)ll2{ (Ci + e°C2))"2} ,n + - (C, + <2(2,)3/2

2(1 - <t)D1/2

n 1 — 2(J / (7 \ 1/2_ .
+ P% + — -(-) h3l2Qm = 0. (9.54)

1 — a \D /

This is the required condition to be satisfied by Qm, P(3).
Let us assume that Q° and P° are of the same order of magnitude; then, since

P(») =0, we have
Qgo = 0. (9.55)

Then the condition (9.54) becomes

(3 - a)(ah)3'2
P, 3) = C?/2 = constant. (9.56)

2(1 - <x)D112 1

Furthermore, since the right hand side of (9.53) is constant, the plate is bent into a
circular cylindrical surface; its curvature is given by

I (3 - *)D f
When i^3) = 0, we get from (9.57) 12 = 0. Therefore we conclude that it is impossible
to bend any portion of a plate of uniform thickness into a cylindrical surface of finite
curvature with negligible extension in the middle surface, if on that portion of the
plate the surface force is of the fourth order, and the body force of the third order,
with respect to the thickness of the plate.

CONCLUSIONS

A systematic method of approximation based upon the thinness of the plate has
been developed in this paper. It is found that thin plate problems may be classified
into twelve types (P1-P12) according to the relative orders of magnitude of p«g,
qap and h. In each case, the problem reduces to the solution of a set of partial differ-
ential equations, different for different types. These differential equations are given
in Table I. Furthermore, the principal parts of the macroscopic tensors and the orders
of magnitude of the external forces for each case are given in Table II. Among these
twelve types, P1-P3 represent the problems of finite deflection, P4-P8 the problems
of small deflection, P9-P11 the problems of very small deflection and PI2 the prob-
lems of zero deflection. The problems of finite deflection are discussed in section 9;
these are new problems, and a simple example for each of these types is solved. The
problems of small deflections, very small deflection, and zero deflection are familiar;
the detailed discussion of these types is therefore not necessary. However, we may
note that the theory of generalized plane stress, the Lagrange-Kirchhoff theory of
"small" deflection, the von Karman theory of "large" deflection and the membrane
problem can be derived respectively from Types PI2, Pll, P5, P4.
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APPENDICES

(i) Table I.—Table of the equations of equilibrium and compatibility of thin plate problems.

Types
(7.2a)

7? 1°, 1° 11 1[

(7.2b)

ra ra ra ra
I 12 J3 -*4

(7.4b)

J°. J°.

(7.4a)

PI
P2
P3*

Pi
P5
P6*
PI*
P8*

P9
P10
P\\

P\2

0
0
0

£1
1

gl
£1
£1

2
£2
§2

1
2

>2

1
2

2g+l
2g+2

>29+2

>1
2 <p<2q

2 q

S: 1

x x
X X X X

X X X X

X XX
XX XX

X X

X X

X X

XX XX

X X
X X

X XX

X X X X

XXX

X X

X X

X X

X X X X
XXX

X X
X X

X X

X
X X

X

X

X

X

X

X X

In this table, the following notation is used:
The terms occurring in the first equation of equilibrium (7.2a) are

7? = - 2Aftxq„ptxh, A = !^)'X(Qxxh')|p71 7° = A%r"qnq,wqxlh*
a

n = P"+ 2X?0]h + (Q'h) /J = ———- arWQ'h.
A 1 — (T

The terms occurring in the second and third equations of equilibrium (7.2b) are

a

II = ia»*q*yAlfs(qxsh>)lp - A$rM(q,uq»h»)
a a

7," = 7"" + 2Zf0]h + a-'(Q°h) 74° = (a'Vxa" + 2a"q^h.
I — a a

The terms occurring in the first equation of compatibility (7.4b) are

•^1 2ll[ojtljo]Pp7|a/5» J2 ~ n[0]nl0]9p79a/3*
a

The term occurring in the second and third equations of compatibility (7.4a) is

J a i = 2nf^go0|T.
a

On account of the conditions which hold in the various types of problem, some of
these terms may be negligible in comparison with others. The table shows by the
symbol 'x' those terms which, are to be retained in the first approximation for the
various types. (The overdetermined problems are denoted by '*'.) Thus for example,
for problems of Type PI, we having the following equations of equilibrium and com-
patibility in the first approximation:
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/? + A + = 0, /? + 1% + II = 0, A = 0, Jai = 0.
These equations are written in terms of the small principal parts instead of in terms
of the finite coefficients of the lowest power in e (see (9.3a, b, c, d)).

(ii) Table II.—Table of the external force system and the macroscopic tensors for
various types of thin plate problems.

Types n0 Jo ko
T°V

I J-O0 j'of

jof

L?

■pao

i r?

pi
P2
P3

Pi

PS
P6
PI
PS

P9
P10
Pll

P12

2
1
3
3

3+2
2+2

4
2+3
2+3
2+3

2+3
2+3
2+3

2
2
3
3

2
2
3

22+2
22+3
22+3

3
P+1

22+1

P +1

1
1
2
2

2 + 1
2 + 1

3
2+2

2g+2
22+2

2+2
2+2
2+2

1
1
2
2

1
1
2

22 + 1
2+2
2+2

2
P

22

1
1
2
2

1
1
2

22 + 1
2+2
2+2

2
P

2q

. 1
, 2

2
2

2 + 1
2+2

3
2+2

22+2
22+2

2+2
2+2
2+2

2
2
3
3

2
2
3

22+2
22+3
22+3

3
/>+!

22 + 1

P +1

x x
x x
XXX

X X

X X

X X

X X

X X

XXX

x x

X X

X X

X X

3
3
3
3

2+3
2+3

4
2+3
2+3
2+3

2+3
2+3
2+3

2
3
3
3

2+2
2+3

4
2+3
2+3
2+3

2+3
2+3
2+3

x x
x x
X X

X X

X
X X

X X

X X
X X

X X

X X

X X

X X

In this table, the following notation is used:
The terms occurring in the expression (7.5a) for the membrane stress tensor Taf

are denoted by

Tf = 2A^pwXh, Tf = - A$ruquqTUh\ T? = —— a^h.
1 — er

The term occurring in the expression (7.5b) for the bending moment tensor L"f
is denoted by

Lf =
The terms occurring in the expression (7.5c) for the shearing stress tensor T"9 are

denoted by
TT = Q"h, T? = §Afi»(qXih>) lr.

a

Furthermore,
n0 =? order of sum of the normal forces acting on the upper and lower boundary

surfaces, or order of P°,
n = order of sum of the tangential forces acting on the upper and lower boundary

surfaces, or order of P",
jo = order of normal component of body force, or order of X°0],
; = order of tangential component of body force, or order of ZJj,
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^o = order of difference of normal forces acting on the upper and lower surfaces,
or order of <2°,

k = order of difference of tangential components of forces acting on the upper and
lower boundary surfaces, or order of Qa,

t = order of membrane stress tensor TaP,
u = order of bending moment tensor L"p,
I = order of shearing stress tensor Ta0.
This table gives (a) the values of w0, n,j0,j, k0, k, t, u, I, (b) the principal terms

in the expressions for T"", La&, Ta0 (denoted by 'x'). The terms not marked with 'x'
are negligible in comparison with those principal terms. It will be noted that there are
two lines in the table for PI and also for P4. This is because, in each case, k may have
two values.

For example, in the case of Type PI, we have for Taff, La?,

T"» = Tf + Tf, L"8 = Lf,
while for Ta0,

Pa0 = 2? (if k = 1),

Tao = + r- (if k = 2).

(To be continued)
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