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STRESSES IN THE DIAPHRAGMS OF DIAPHRAGM-PUMPS*
BY

A. M. BINNIE
Engineering Laboratory, Oxford

1. Introduction. Complete prevention of leakage from a reciprocating pump is
difficult to ensure over a long period of working. When the fluid to be pumped is
of such a nature that no leakage whatever is permissible, some modification in the
design of the pump is essential, and under these circumstances a diaphragm-pump
may conveniently he used. This in its essentials consists of two chambers (Fig. 1)
attached to a modified reciprocating pump. The chambers are of conical form rounded
off at the apex and at the base, and between them a diaphragm is clamped at its edge.
For high-pressure operation the diaphragm is a very thin steel disc. The fluid to be
pumped passes through one chamber, connexion to inlet and exhaust valves being
made by means of a number of small ports. The other chamber is connected similarly
to a single-acting reciprocating pump, which is not fitted with valves. This chamber,
the pump cylinder and their connecting ports are filled with a liquid (commonly oil),
and thus motion of the piston of the reciprocating pump causes the diaphragm to be
pressed alternately against both conical surfaces, thereby producing the desired
pumping action. The inevitable leakage of oil past the piston is made good by means
of an auxiliary pump.

An approximate method of calculating the stresses in the diaphragm is explained
below, hence the size of the chambers may be so designed that the fatigue strength
of the diaphragm is not exceeded. In section 2 the deflexion of the diaphragm is
taken as sinusoidal, in section 3 as a cubic, and in section 4 as following a Bessel-
function relation Attention is confined to the stresses which result from distortion
into the same shape as the chamber, no regard being paid to the local stresses round
the ports.

2. Stresses when the transverse displacement is sinusoidal. In general the dis-
placement of the diaphragm from its unstrained position has not only a transverse
but also a radiai component; therefore it
does not seem possible (except by relax-
ation methods) to calculate the stresses
for a specified shape of chamber. It is
necessary to assume a reasonable ex-
pression for the transverse displacement Fig. 1. Arrangement of diaphragm and chambers.
w, from which the corresponding radial
displacement u and the stresses will be obtained; and, when both u and w are known,
the shape of the chamber is determined.

With the axes shown in Fig. 1 we shall in this section take w as specified by

w
W0 / 7Tr\

-t(1 + cost)' (1)
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where a is the radius of the diaphragm and w0 the maximum value of w. This expres-
sion satisfies the conditions that the slope must vanish at the centre and at the edge.
For u we assume as an approximation1 that

« = r(a — r)(Ci + C2r), (2)

where Ci and Ci are constants which will be determined by the principle of minimum
strain energy. The conditions that u is zero at the centre and at the edge are auto-
matically fulfilled. Now the transverse displacements are many times the thickness
of the diaphragm, hence large-deflexion theory must be employed. In Timoshenko's
notation (loc. cit.) the radial and tangential strains are thus

du 1 /dw\2'% + iW •
U

et   
r

(3)

The diaphragm being very thin in comparison with its radius, the strain energy in
it due to bending may be neglected in comparison with that due to the stretching of
its middle plane. Hence the strain energy in the diaphragm is

irEh Ca
V\ =     I r(e, + e] + 2veret)dr. (4)

1 — i/!j0

Here E denotes Young's modulus, v Poisson's ratio, and h the uniform thickness of
the diaphragm. On putting (1) and (2) into (3) and inserting the results in (4) we
obtain

3 7 3ir4
Vx =  — CW + — CiC2a5 + — C2V + wl

10 60 1024
irEh 1=  —(
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{Cl(i _ +1))+m ^+,(£+i))}]. (aWoa
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Now

hence

dFi dVl = =0; (6)
dCi dC2

C i = 25 Wo

C2 = -

128a3

15w§
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{7—
(7)

128a4

In the remaining calculations we will consider the case v = 0.3 when (7) reduces to
2 2

Wo Wo
Ci = 1.06 — , Ct = — 1.76— • (8)

a' a
1 Cf. S. Timoshenko, Theory of Plates and Shells, McGraw-Hill, New York and London, 1940, chap.

IX.
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The radial and tangential tensile stresses are

E E
Or — -—— (er + vet), <Tt = ('fit + ver). (9)

1 — J/2 I — V2

Then, with the aid of (3) and (8), (9) becomes

Ewl ( r r2 ivr\
oT = <1.51 - 7.11 h 6.38 h 1.36 sin2 — > ,

a2 I a a2 a )

Ewl ( r r2 wr)
= ' <1.51 - 4.95 b 3.67 b 0.41 sin2 — V .

a2 [ a a2 a )
<rt

(10)

These expressions are plotted in Fig. 2, from which it will be seen that the maximum
stress occurs at the centre and is given by 1.51 Ew^/a2. If wo/a = l/35 and £ = 13000
tons/sq. in., the maximum stress is 17 tons/sq. in., which for a good quality steel is
a reasonable working stress. Finally we will examine the shape of the chamber corre-
sponding to (10). It will be noticed from (2) that u is zero not only at the centre and
at the edge but also at r/a = — Ci/{Cza) =0.60. On differentiating (2) it appears that u
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Fig. 2. Radial and tangential tensile stresses in the diaphragm.
 sinusoidal displacement.

 7 cubic displacement.
—  Bessel-function displacement.

has a maximum value 0.12wjj/a at r/a — 0.24 and a minimum value — 0.06«iQ/a at
r/a = 0.82. Hence the greatest radial difference between the shape of the chamber
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and w as given by (1) is 0.12 ufa/a, which for wo/a=l/35 is only 0.98X10_4o. For a
chamber of normal diameter this difference is too small to be appreciable in manu-
facture.

It is of interest to determine the strain undergone by a radius of the diaphragm,
and for this purpose an accurate method of rectification is available. For a chamber
of sinusoidal shape a radius is extended to a length s given by

/••'*/ 7T2Wo iA1"
j=2 ( 1 +  COS2 — ) dr

J o V 4a2 a J
2a f 1/2 / irr\112 / irr\

= - (t - p*)-1" ( 1 — p2 sin2 — J d[ —), (11)
ir J o \ a / \ a /

7r2Wo /( ir2w5\
where p2 =  / ( 1 -] I.

4a2 / \ 4a2 )

Since p is small, the first bracket in (11) may be expanded by the binomial theorem
and the complete elliptic integral replaced by

= —(i _ \
2 \ 4 64 /'

The strain of the radius then reduces to

j — a p2 13p*
— = t + ~Jr+---- (12)a 4 64

For wo/a = 1/35 this strain amounts to 0.05%, hence in a steel wire distorted into this
sinusoidal form the tensile stress would be only 0.0005X13000 = 6.5 tons/sq.in.

3. Stresses when the transverse displacement follows a cubic relation. To esti-
mate how far the stresses depend on the expression assumed for w, we will in this
section replace (1) by the cubic

w
/ 3r2 2 r3\

= Wo(^ (13)

This equation satisfies the same four boundary conditions as (1), and the greatest
difference between the two is approximately 0.010w0 at r/a = 0.28 and 0.72. After
employing (2), (3), (4) and (6) we find that

irEh I" 1 3 7 9 Wo
Fi =  — CW + — CjCV + — Clo6 + —

1 — y2L 4 10 60 35 a2
3 H

+ — wla{2C^v - 1) +C2a(3r+ 1)} |, (14)

3w? 9wl
Cl = Tn(23 - 15">' C2 = ~ -3")- (15)56a3 56a1
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For p = 0.3, (IS) reduces to

Wo wo
C, = 0.99 —, C, = - 1.62—, (16)

a3 a4

and the stresses obtained from (3) and (9) are

Ew§ ( r r2 r3 r4)
oy = <1.42 - 6.61 h 25.67   39.56  b 19.78—V,

a2 (. a a2 a3 a4)

Ewl ( r r2 r3 r4-*
a, = < 1.42 - 4.60 b 9.32   11.87  h 5.93— > .

a2 I a a2 a3 a4)

(17)

From Fig. 2, in which these expressions also are shown, it will be seen that the maxi-
mum stress is slightly smaller than that obtained in section 2.

4. Stresses when the transverse displacement follows a Bessel-function relation.
Lastly we will take w as given by

w = W*{Jo{kr) - m), (18)

where k=a/a, a = 3.83 • • • being the first positive root of 7i(^)=0,

m = /o(a) = — 0.402 • • • ,

and
Wo = w„/|/o(0) - /»(«)} = wo/1.402

This equation satisfies the four boundary conditions, and it gives a displacement
which, unlike those previously considered, is unsymmetrical about the line w = wo/2.
Except at r = 0 and r = a the displacement is everywhere less than that specified by
(1), the greatest difference between the two being approximately 0.019 wo at r/a = 0.53.
The same procedure as before leads to

Vi = VEh [— CV + — CAa6 + — C\a« + f rj\{kr)dr
1 — v2 L 4 10 60 4 J o

, ( k2va3Jl(ka)
+ W\l — (C2a + 3 CO

+ — (2 + v)(Cia - CO (j"ji(kr)dr - aJj(Aa))j J, (19)

6(2 + ")|J* Jo(kr)dr - a/02(£a)j - k2va3Jl(ka) J,

^9(2 + i»)-| J Jl(kr)dr — a/J(£a)| — £2va3./o(/fea) J.

5PF?ci = ,
4a4 L

5Wl1
4a6

If we take v = 0.3 and J^Jl(x)dx = 1.2599 3 (20) reduces to
' After some fruitless attempts to evaluate this integral, I asked Professor G. N. Watson whether

it was expressible in any simple form; his reply was that he thought not, and he computed its value to
15 places of decimals, his result being 1.2S990 97359 05768. The value 1.2599 is sufficiently accurate for
our present purpose.
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wl wl
Ci = 1.01 —, C2 =- 1.74— (21)

a3 a4

and the stresses are

jj. t"2
Or

Ewa ( r r2 )
= < 1.44 - 6.95 — + 6.31 — + 4.10/?(*r) > ,

a2 (. a a2 )

Ewl ( r r2 )
<r, = < 1.44 - 4.84 b 3.63 — + 1.23J\(kr) V .

a2 I a a2 J

(22)

These stress distributions, which are plotted in Fig. 2, are in close accord with the
results obtained in sections 2 and 3.

5. Conclusions. The following conclusions emerge from the above calculations:—
(i) For the three kinds of displacement considered, the maximum stress in the dia-

phragm is at the centre and is about 1.5 Ewl/a2.
(ii) The stress distributions due to the three kinds of displacement do not differ

widely. Hence, if it is decided to use one kind, and small errors are made in the
difficult process of machining the chambers, no great alteration in the stresses
will result.


