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SOME PRESENT NONLINEAR PROBLEMS OF THE ELECTRICAL
AND AERONAUTICAL INDUSTRIES1

BY

ERNEST G. KELLER
Research Laboratory, Curtiss-Wright Corporation

1. Introduction. The accelerated growth of research in the field of nonlinearity is
due to different causes. The general advancement of science requires increasingly
more precise expressions for the laws of science. Accurate nonlinear equations fre-
quently depart from the linearized or postulated linear equations which have been
previously used for approximate results. The quest for perfection and generalization
and the love of difficult investigations by professional mathematicians play a large
part in this growth. Another incentive is the increasingly exacting requirements of
modern manufacturing. These requirements are born of the competitive necessity of
producing ever improved machines and equipment in the most economical manner.
The greatest incentive is necessity. Manufactured equipment and devices must be
designed to work.

A nonlinear problem2 has been defined as "one which, when formulated mathe-
matically, reduces to (one or) a system of differential, integral, or integro-differential
equations such that at least one of the three quantities, a derivative, an integral, or
a dependent variable, is involved transcendentally or algebraically to a power other
than the first in at least one equation of the system or in at least one boundary con-
dition of the system." Of course, in dealing with applied problems, a physical defini-
tion independent of all mathematical concepts is preferable, but such is difficult to
formulate.

Nonlinear problems resolve themselves into two general types, continuous and dis-
crete. The first type deals with the behavior of quantities in a field or in at least one
continuous region of space and, more often than not, reduces mathematically to sys-
tems of nonlinear partial differential equations. Problems relating primarily to this
field have been treated by Dr. Theodore von Karman in his Josiah Willard Gibbs
Memorial lecture.3 This paper is both a milestone and a beacon of progress in that
it is an admirable exposition and inventory of the nonlinear problems of continuous
fields and at the same time an inspiration and invitation to both the engineer and
mathematician for further advancement in this difficult field. Among other subjects,
the von Karman lecture treated relaxation oscillations, subharmonic resonance, non-
linear problems in the theory of elasticity in which the hypotheses of (a) small
deflections are abandoned, (b) Hooke's law no longer holds, plasticity, hydrodynam-

1 A Symposium Address before the American Mathematical Society at Stanford University, April
24, 1943. Manuscript received Aug. 16, 1943.

2 E. G. Keller, Analytical methods of solving discrete nonlinear problems in electrical engineering, Trans-
actions of the American Institute of Electrical Engineers, 60, 1194 (1941).

3 Theodore von KSrnidn, The engineer grapples with nonlinear problems, Bull. Am. Math. Soc., 46,
615 (1940).
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ics; and aerodynamics of (a) ideal fluids, (b) viscous fluids, and (c) compressible
fluids. The bibliography of the paper contains 178 entries.

The second type of nonlinear problem is called discrete. Discrete nonlinear prob-
lems are characterized by the fact that they possess only a finite number of degrees
of freedom. They are frequently reducible mathematically to systems of nonlinear
ordinary (total) differential equations or to systems of nonlinear integral equations.

2. Nature of industrial discrete nonlinear problems. Solutions of nonlinear prob-
lems in industry are usually in the "small"; i.e., a solution of a system is not required
for every magnitude whatsoever of the parameters involved. In the solution of such
problems the greatest single body of theory contributing to nonlinear analysis of
discrete systems is that which grew out of the attempts of the great French and Ger-
man mathematicians of the last century to solve the problem of three bodies. While
their objective, in its complete generality, was never realized, the pure mathematics
developed (theory of differential equations, convergence, dominant functions, singu-
larities, removable singularities, etc.) is today directly applicable in the study of non-
linear equations of electrical circuits, rotating electrical machines, and various non-
linear dynamical and aerodynamical devices. The two second largest bodies of theory
are those of nonlinear integral equations as developed by T. Lalesco4 and others5 and
the methods of Galerkin6 and Ritz along with the modifications of these techniques.7

There are at least three salient characteristics of nonlinear engineering problems
which distinguish them from purely theoretical problems. First, oscillograms, differ-
ential analyzer solutions,8 or other records frequently indicate the nature of the solu-
tion of the mathematical systems in question. Such mechanical or electrical solutions
for the same system often differ so much among themselves that there is the risk of
concluding erroneously that the solution is not unique. (For example, the differential
equations which yield the two solutions represented in Figs. 3 and 4 also possess
sinusoidal solutions. Yet the solutions are unique; i.e., the solution in (4) is identical
with the sinusoidal solution.) Of course, there are systems which do not possess a
unique solution. In general, even when a solution is unique it may have so many
manifestations that it is often necessary to integrate the system to determine the
effect of the various parameters involved. A second characteristic of industrial non-
linear problems is that frequently the methods of mathematics are not powerful
enough to yield a complete solution of the problem in sufficiently simple form to be
usable. Tricks and devices, born of physical concepts, must guide the mathematics
if a usable solution is to be attained. The mathematics is surely necessary and it is
just as surely not sufficient. The solution is mathematics plus. A third distinction of
industrial nonlinear problems is the fact that the derivation of the equations of per-
formance requires, in addition to a knowledge of mathematics, mathematical physics,

• V. Volterra, Le(ons sur les Equations integrates, Gauthier-Villars, Paris, 1913, p. 90.
5 H. Galajikian, Bull. Amer. Math. Soc., 19, 342 (1913); also Ann. of Math., 16, 172 (1915);

E. Schmidt, Math. Ann., 65, 370 (1908).
• A. N. Dinnik, Galerkin's method for determining the critical strengths and frequencies of vibrations,

Aeronautical Engineering, U.S.S.R., 9, No. 5, 99 (1935). Also W. J. Duncan, Galerkin's method in mechan-
ics and differential equations, R&M 1798 (1938).

7 For additional bibliographies see references 2 and 3 above, also the book, E. G. Keller, Mathematics
of modern engineering, vol. II, Wiley and Sons, New York, 1942, pp. 303-304. These list a total of 302
papers; and these papers in turn possess bibliographies.

8 V. Bush and H. L. Hazen, Integraph of differential equations, J. Franklin Inst., 204, 575 (1927).
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and engineering, inventive ability in thought. A system of equations may be an in-
vention of the highest order. It is not always necessary to integrate a system of non-
linear equations. Often it is necessary only to determine under what conditions the
physical system is stable. Of course, no single stability criterion exists for nonlinear
systems such as exists for linear systems. When a solution of a nonlinear system can-
not be obtained with sufficient rapidity or when it can be obtained but is worthless
because the time consumed in applying it is too great, it may be possible to obtain the
information desired by integrating a dominant and a "subordinate" system such that
the solution of the actual problem is bounded or limited by the solutions of the domi-
nant and subordinate system. The use of dominant and "subordinate" systems will
be clear in the following problems.

3. Some representative discrete nonlinear problems of industry. In this paper a
number of representative nonlinear systems are treated which illustrate the princi-
ples enumerated in the last section. These systems are either original, appearing here
for the first time, or else of very recent date. Some of them pertain to electrical manu-
facturing, others to aircraft development. Although, as stated above, the derivation
of the equations of a system is often more important than the solution, none of the
equations considered are derived here. Some systems are derived in the literature and
to these references are given. The derivations of the remaining ones can not be given
for military reasons. These are viewed here merely as hypothetical nonlinear systems.

1. Nonlinear control circuits. As is well known, the volt-ampere characteristic of
a nonlinear series circuit (Fig. 1) is represented by the curve in Fig. 2. Such circuits
have numerous industrial applications due to their rugged mechanical simplicity and
at the same time their electrical sensitivity. The characteristic in Fig. 2 displays the
fact that there exists a so-called critical or resonant voltage Eo at which the R.M.S.
value of the current suddenly increases many fold. For a value of E <Eo (see E sin wt
in Fig. 1) the current is sinusoidal. For E>E0 the current has the wave form dis-
played in Fig. 3.

L(0 C R
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Fig. 1. Fig. 2. Fig. 3.

In industrial applications E0 is prescribed. It is required to design a circuit which
will be sensitive for this prescribed value of E0. A simple slide rule formula is desired
which will express E0 as a function of the circuit parameters and of the nonlinear
reactor employed. The equation of performance for the circuit in Fig. 1 is

di 1 r
L(i) b Ri + — I i dt = — E cos &>(/ — /0). (1)

dt C J
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For the range of interest the current i is such that the saturation curve of the reactor
is single-valued and represented by the equation

H — ki = x — a3x3 + a6x5. (2)

With 6=oit, Eqs. (1) and (2) yield

dx
M

dx r
 1- R(x — a3x3 + a6x6) -f xc I (x — a3x3 + a^x^dd = — Ek cos (9 — 0O). (3)
dd J

where, for a given co, M and xc are constants. The integration of the nonlinear Eq. (3)
and the development of E0 as a function of the parameters of the physical problem
are carried out elsewhere and need not be repeated here.9

2. Nonlinear transmission line phenomena. If a series capacitor is employed in
the primary side of a transmission line to improve the power factor, curious wave
forms of voltage and current ensue. The system becomes unstable as far as possessing
a periodic solution is concerned. This is to be expected since the maximum flux den-
sity attains a value close to that of the knee of the saturation curve if the transformers

1.38 

are operating efficiently. The addition of series capacitance is thus likely to create an
unstable system. In this unstable system, the current and voltage taken on an in-
definitely large number of wave forms such as shown in Fig. 4. Synchronous motors
which require sinusoidal applied voltages cannot operate on currents and voltages of
the type shown in Fig. 4.

If the capacitor of the system is shunted by a resistor as indicated in Fig. 5, then
the equations of performance are

' E. G. Keller, Resonance thr.ory of non-linear control circuits, J. Franklin Inst.. 225, 561 (1938)
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d\p
dd

chR2 = xc I (ii — it)dd, (xe = 1/C),

ati = x — a3x3 + a6x°; H = ai; x = B/B0; B0 — dB/dH at H = 0,
or

d2x r xcBoa "1 dx + R2)
aB0 b h -Ki(l — 3a3x2 + 5a^x*) 1 (x — a3x3 + aB*5)

dd2 L Ri Add i?2

= — [i?? + x']l/2£ cos (0 + ^0 — tan-1 —-V
Ri \ Ri/

Now R2 must have the smallest possible value consistent with stability, since it
represents a perpetual loss of power. There are ten parameters and two variables.

-^VWV

E SIN 0

-rmr—O w-
Fig. 5.

There are infinitely many values of the parameters for which the system is unstable
and equally as many for which it is stable, i.e., for which the solutions are sinusoidal.
A convenient slide rule formula is desired giving the above smallest value of Rt as
functions of the other nine parameters of the system. The equations of the system are
derived and solved elsewhere.10

3. Nonlinear springs. It is sufficient to say that, in general, the differential equa-
tions involving nonlinear springs are integrable by hyperelliptic functions.11 If damp-
ing is large a combination of variation of parameters and hyperelliptic functions will
usually afford sufficient accuracy.

4. Electric locomotive oscillations. Experience classifies the five oscillatory motions
of an electric locomotive as pitch, roll, plunge, nose, and rear-end lash. The last two
are especially important because their pronounced existence in a locomotive produces
a tendency to derail. Considered superficially, characteristic oscillations of an electric
locomotive would seem to be similar to those of an ordinary vehicle such as an auto-
mobile, but experimental data and observation indicate the existence of dangerous

10 E. G. Keller, Beat theory of non-linear circuits, J. Franklin Inst., 228, No. 3, 319-337 (1939).
11 A theory of hyperelliptic functions in usable form is given by F. R. Moulton, On certain expansions

of elliptic, hyperelliptic and related functions, Am. J. Math., 34, 177-202 (1912).
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nose and rear-end lash which are not common to an automobile. If the tendency to
nose exists in an electric locomotive and if the locomotive noses for a speed Vo, then
it will nose for all speeds greater than V0. Consequently, nosing is not a resonance
phenomenon and cannot be avoided by running at a slightly different speed. It might
be supposed that nosing is due to the coning of the wheels or to the staggering of
the rails or to a combination of these two possible causes. Such causes, however,
would produce resonance frequencies for definite discrete values of V instead of in-
stability for all values of V exceeding Vo■ Rails on European railroads are not stag-
gered and yet electric locomotive nosing still persists. The tendency to nose and the
violence of the oscillation increase with the weight and power of the locomotive.

In seeking the source of the phenomenon, consider first an elementary experi-
ment. Let a miniature set of driving wheels and axle be constructed from two rubber
paste bottle stoppers and a lead pencil. If the miniature drivers are forced down
against two rulers as rails, if a torque is applied tending to rotate the wheels, and if
further in the forward motion slight lateral motion is permissible then an oscillating
torque will be experienced tending to rotate the axle about a line through the center
of axle and perpendicular to the plane of the track. The creepage forces between the
rubber wheels and the rails produce an oscillatory torque.

The weight of an electric locomotive is so great that it effectively rolls on elastic
wheels on elastic rails. Making use of this fact and whatever additional facts are nec-
essary the equations of motion12 can be shown to be

Mx o = 0,

My o = - F, - ft - 2/(~ - f) - 2f(~ - f) - F, - /, - 2f(j - f),

Mso + Xi(so — biif) + X2(zo — -f- biif) ~t~ X2(so — + bit]) + k\ia = 0,

.1S + X->c(zo + c!~ + bit]) — X2f(zo — -f- bzr\) +

= — bi(I' i + F2 + f\ + ft) — 2h — (}'i + y + y2) + 665/f,
V

Btj — Xi6i(so - biif) + X^Cz0 + c£ + b^ri) + X2&2(zo — + b^if) -f- k\i] = 0,

2fdt 6fP
CT = - <h(Fl - Fs) - <h(f, -ft -J— (y, - y2) - -±_ f

1 V

2f\b
= (y + y 1 + yd + fi(;yi)-

r

To the accuracy required, the flange forces are given by

(5)

12 E. G. Keller, Mathematics of modern engineering, vol. II, p. 72.
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+ * ' # »

where the constants H, I, J, j, i, h are determined from force curves, and 5i and 52
are lengths shown in Fig. 6.

The variables yu yt, y3, y«, and y are eliminated from (5) by means of the relations

y\ = yo + + dtf, yi — y0 + bd; — d£,
y3 — yo + hit + yt = yo + Ai? — ,

y = yo + isf,

where bs, d3, dit hi and are lengths defined in reference 12.
If in (5) Fi = F2 =/i =/2 = 0, then the equations are linear; and the solution can

be written down at once. This solution is either stable or unstable as indicated by the
roots of the characteristic equation. The nature of the roots are, of course, a function
of V, the operating speed of the locomotive. Even if the locomotive is unstable with
vanishing flange forces, it is stable with non-vanishing flange forces. In this case the
locomotive is operating roughly and damaging the track needlessly.

In practical applications, then, it is not necessary to integrate the nonlinear sys-
tem (5). As a check on the validity of the theory, however, it is necessary to integrate
the nonlinear system and compare the predicted motion with actual motion as deter-
mined by runs on a test track. Evidently the solution of (5) for Fi = F2 =/i —ft = 0
cannot be used as a generating solution for the case of the non-vanishing of the flange
forces because the stability or unstability of this generating solution is carried over
into the complete solution.

 : J ivy*

Fig. 6.

Since nosing and rear end lash are the two motions of most importance, it is suffi-
cient to resort to elementary means. Consequently, Fi and/,- [Eqs. (6)] are replaced
by segments of straight lines as shown in Fig. 6, and the second and sixth equations
of (5) are solved for y0 and f by operational methods (general operational methods
where both initial charges and initial currents exist must be used.) Since the flange
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forces are taken as functions with discontinuous slopes, the system of differential
equations and its characteristic equation change as the flange forces, as functions
of yu yt, V3, y4, change at points a, b, c, d, e, f shown in Fig. 6. The first set of initial
conditions are chosen by trial and error in such a way that the resulting motion is
periodic in y0 and f. The solution for a complete cycle is sufficient. The check of the
theory is the approximate agreement of computed and test periods.

5. Nonlinear differential equations of dynamic braking of a synchronous machine.
The equations of dynamic braking are

dl (E — IR) [(rsoA)2 + *dXq\ mo /'[** + (rsoA)2]

dt L [(rso/s)2 + xd'xq\ s4 [(rs0A)2 + Xi-Xq\[(rs0A)2 + xdxq]*
(7)

ds m P x\ + (rso/s)'2

where
dt s [xdxq + (VsoA)2]2

2 KPr3xq(xd — Xd')^o KPr
Ho = ' Mi = ni J n

I being the field current, s the rotor speed, t the time in seconds, all other symbols
being constant parameters. It is desired to obtain an expression for the time of
stopping of the rotor as a function of the parameters of the machine.

The last term in the right member of the first of Eqs. (7) has in all cases a magni-
tude of approximately ten per cent of its predecessor. Thus a solution as a power series
in a parameter which vanishes with mo is to be expected. Neglecting the term con-
taining no in (7) and dividing the first equation by the second, we obtain a solution
of the resulting equation immediately. However, this solution is an implicit function
of I and s and such that it is solvable explicitly for either I or s only as a slowly con-
vergent series. An attempted solution by the method of variation of parameters is
equally cumbersome.

It is known from oscillograms, however, that both I and 5 are monotone decreas-
ing functions of the time for the interval within which (7) is valid. Change of de-
pendent variables by

E
I = -—h 11 e v and j = s0 e~l

R

dy R f R(A2 - Al) t [4 + 0re'Y][E/R + he^\3 e"+i'
Jt~T + L[A\+ (re')2] + "° [A\ + (re')* [A2 + (re*)2]3 7^'
dz [(E/R) + he~»Y[x\ + (re<)2]

= Mi

yields

dt [A' + (reO'K2

where
A\ = Xd'Xq, A2 = XdXq, A > Ao-

The number of revolutions before the rotor of the machine comes to rest is

1 r°° If00
N = — | s dt = — I s0e~'dt.

27T J 0 27T J 0 (9)
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Now it is sufficient for practical purposes to set an upper limit to N as given by (9)
provided the upper limit is sufficiently small and provided the results display the
effect of each parameter of the system. To accomplish this (8) may be replaced by a
simpler system of equations. Evidently,

[^4o + {re*Y] g {Al + r2)e2*, [A2 + {re'Y] ^ (A2 + r2)e2* (10)

for 2^0. Employing (10) in (7) and integrating, we have

R R(A* - Al) r '
y = —1 + w.. . Jo e~2zdt

L L(Al + r2)
1 (r2 + 4)mo

+ 477(^l02 + r2)U2 + r2)

Mi(r2 + <) r'VE t "I2

<n)

*2C42 +r2V /JIM e 2*dt,

where the instantaneous values of y and z as given by (11) are always less than those
given by the solution of (7) for 0 <t < oo.

The system (11) is of the form

Uk(t) = + r Ki\t, £, wi(£), • • • , «n(S)]^£ {k = 1, 2,•••,«)
J 0

which is Lalesco's system of nonlinear integral equations. The solution of this is the
limit of the sequences

«t0) = 4>k(t),

= <t>k{t) + f Kk[t, £, <£i(£), • • • , 0n(£)]^£ (k = 1, 2, • • • , »),
•J 0

In the present application 4>i(t) = Rt/L and <f>2(t)—0. For small synchronous machines
the second approximations wi1' and give values of y and z such that N in (9) is in
error by five per cent. The integration in (9) is carried out numerically. Because of
bearing friction and other decelerating factors not included in (7) the upper limit in
(9) is finite.

6. A double-valued nonlinear problem. Consider the integration of the equation

10 + 136 + n[kxB + kt tan-1 k3(0 ± o)] = 0. (12)

This equation was derived ingeniously by W. W. Beman to express an important
phenomenon in aerodynamics. The quantities I, /3, /x, ki, kz, k3, and a are all positive
numbers and the plus or minus sign in (0 ±a) is used according as 0<O or #>0.

Evidently, for a particular amplitude of 6, Eq. (12) possesses a periodic solution.
The period and amplitude of this solution are desired. Eq. (12) in the normal form is

0 = 0i, 0i = — (n/I)[k!0 + kz tan-1 k3{0 + o)] — &0i//. (13)

An integral of (13) for /3 = 0 is

2m (ho2 r 1 „ 1)
0i = c 2 ^ ^2|^ — a) tan 1 i fl) ~ ^°g ^ 3— a)2)J |
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01 m ±y/c- f(6), (14)

where c — f{6a) and where 0O is the maximum positive displacement for t = t0. If (14) is
used as an equation of change of variable, the method of variation of parameters
yields

ddi dc dd\ /i /S
-—  1 = [kid + k2 tan-1 k3(6 + a)l 0\\
dc dt dt I I

whence
c = - 2/3e\/I, (15)

or
2/3 f ' 2/3— — — I Q\dt d = — — | 6 dd -f- d,
I J to I J »0

where d is an arbitrary constant. From the last equation

dc 2/3 2/3
0i = - — (± Vc-f(e)). (16)

dd I I

To determine the signs in (16) it is evident from (15) that c is a decreasing function
of the time. Consequently, for 6<0

dc dc dt dc— = — = — (- vc- m).de dt dd dt

Thus Eq. (16) is
dc 2/3— =±— Vc-M (17)
dd I

according as $i<0 or $i>0.
For the integration of (17) it is sufficient to replace y/ c—f (9) by &[c— f(6)] where k

is determined graphically by

f Vc - f(e) de = k J [c - fie) ]dd,

c=/(0o) or c=f(9o) according as Oo^d^do or 90' ^9^9%, and 90, 90', and 9q are
shown in Fig. 7. The curve in Fig. 7 is the solution (14). With this replacement and
simple integration

c = £ e-wkf,ilf(8)dd~^ (0o ̂  6 g 6q ),

c = £c#» - -J-fe, evu/Tf(0)d0J (do ̂  d g do"),
(18)

where co=f(0o) and cd =f(9o). The above values of c are substituted in Eq. (14). The
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solution is periodic when 80 is chosen such that turns out to be equal to 80■ The
period of the motion is then given by

Ce o dd
= 2 T (19)

The numerical integration of (19) presents no difficulty at the limits 60 and 8d
since 61 in the vicinity of d0 and do can be replaced by an integrable function/0 such
that the limit of {Jo/0i) = 1 at 0i = 0O and 0i = 0O' ■

Fig. 7. Fig. 8.

7. A nonlinear problem of two oleo-pneumatically coupled masses one of which
is subject to impact. It can be shown without difficulty that the nonlinear differential
equations of motion of m\ and m% shown in Fig. 8 are

poS p(S - smy(i2 - h)2" " " '— SwT + ,!l+" •[«-^J
PoS (20)
PoS p(S - - h)1 n

- 7 ^ +  [j( ]t - 0.

where

[^0)]2 = r2{R2 - [r, + bi(s2 — Ji)]2}, /(si) = (K0 + koSi), (21)

and m = (1— m), O^m^l. In Eqs. (20) and (21), Si, and t are the dependent and
independent variables, the remaining symbols being constants.

A solution of (20) is desired for the initial conditions ii(0) =i2(0) =v0. The time t
is counted from the instant when the lower end of the spring is in contact with a
fixed horizontal surface. For suitable values of R, rit and bi a graph of [A (r) ]2 is either
Fig. 9a or 9b.
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A4 [AK-A)f

Fig. 9a. Fig. 9b.

Even in the case where A(r) =irR the follow-
ing methods, (a) power series solutions in the
time, (b) numerical integration, (c) successive
integrations, (d) Galerkin's, (e) curvature, and
(f) expansions in power series in parameters,
become so laborious that they fail for practical
purposes. Lord Rayleigh13 has given methods of
handling differential equations linear in all terms
except containing a damping coefficient which
depends on the square of the velocity. The ve-
locity term is supposed small. In Eq. (20) the
velocity term is small or large dependent upon
the stage of the motion.

Consider the curves shown in Figs. 10, 11,
and 12. It is evident that the forces relevant to
these curves can be approximated by the arc
QoQi and the small number of secant lines QiQi,
RoRi, RiRi, and R2R3. The location of Qu R0l
Ri, i?2, and R3 will become evident from physical
conditions presently discussed.

For the first interval of motion replace Eq.
(20) by the equations

where

Fig. 10.

Si -f- Ko -f- koSi — a[.4o + tno{si Si)] g — 4i)2,

^2 + 7Uo + Wo(S2 — $l)] — = — 5(^2 — 4l)2,

PoS _ p(S — 5 m)3 P<£ t p(S — Sm)2
(x =  j B —  1 y =   > 5 — )

my 2wicVR2 «2 2w2cWR2

1 Lord Rayleigh, Theory of sound, (2nd ed.) vol. I, Macmillan, London, 1894, p. 81.

(22)
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and A0, mo, K0, and k0 are shown in the figures. The ordinate of R3 represents the
value of (1— £)-1-20 when the system is at rest under the force of gravity. The points
i?2 and Rt are located such that no ordinate on the secant lines exceeds the correspond-
ing ordinate on the arc by more than ten per cent.

The solution of Eq. (20) is now broken up into two time intervals. We reduce
Eq. (21) to the normal form by the substitutions

Sl = £l + «li ^2 = £2 + «2, li = £3, I2 = $4,

where a\ and 02 are constants such that no constant term remains in the resulting
differential equations. Then the equations are

£1 = £3,

b " ?* (23)
£3 = — (afflo + &o)£i + aWo?2 + ~ ?3)2,

£4 = T«oSi — ymoh — Sfe — b)2.
and

01 = 7[g + (<*Ao ~ ffo)] — a[yAa — ng]/yh,

a2 = {ma[y(g + aA0 — K0) — a(-)o4o — ng)] — £0(7^0 — ng)}/m0yk0,

and aAo = Ko in order that ii may not be positive in its initial motion. That is, the
origin of time is taken to be the instant at which the upward force of the spring S
is equal to the downward force due to gas pressure on m\.

The general solution of (23) (with squared terms suppressed) is

(24)

£1 — A % sin o)\t A2 cos o)it -f- A 3 sin A 4 cos 0)2/,

£2 = biAi sin toi/ -f- biA2 cos coit -I- b2A 3 sin C02t -I- b2A\ cos o>2tt

£3 == 101A1 cos co\t — ojiA2 sin co2^4 3 cos oi2t — £02^4 sin C02t,

£4 — bico\Ai cos coit — bi<o 1A 2 sin co\t ~-f- ̂2^2^ 3 cos c*>2/ — b2co2Ai sin co2tt

where wi and u2 are the roots of the characteristic equation and

b 1 = {am0 -(- £0 — coi)/atf»o, b2 — (afflo ~t~ ^0 — ui\) / amo.

The nonlinear terms in (22) are taken into account by the method of variation
of parameters. Employing (24) as equations of change of variables and remembering
that (24) satisfies

~T"~ = £*> ~T~ =
dt dt

d£4
—— = — («o + £o)£i + am o£2,  = ymoiii — ymofa
dt dt

we have
i , / , d„—— Ai + —— A 2 + —— A 3 H A 4 = 0,

dA 1 dA2 OAs dA 4
(250dfc . . dfc . d$2 .

 Ai + A2 + — A3 + — At = 0,
dAt dA2 dA3 6At
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3£s . d^3 . 6^3 . 3£3
 A i + -— A 2 H A 3 H A 4 = /3(£4 — ?3)2.
dAi dA 2 3,4 4 (25")

3£4 . 3£4 . 3£4 . 3£4
 ^41 + -— ^42 H ^3 H 4 = — 5(£4 — J3)2.
3/11 3/12 3^13 3^4

The solutions of (25), after some rather lengthy trigonometric manipulations, are

5 4* b£ . 5 b$
Ai = —— — (f4 - £3)2 cos «!/, A2 = — — (f4 - £3)2 sin m^,

"1(02 — b 1) «i(o2 — bi)
26)

5 + 6i/3 . S + b ,/3
• 13 — — " /1 --- (£4 — £3)" cos o.'21, At — —— —— (£4 — £3)2 sin <02'-

0^2(^2 — ^l) C02(t>2 — ^l)

The solution of (26) is obtained with sufficient approximation by using a device com-
mon in celestial mechanics; i.e., for small values of the time, the Ai entering (26)
through £3 and £4 may be considered constants having the values obtained by the
solution of (24) for £1= —fli, £2= —02, £3 = ^=^0 at / = 0. Thus the solution of (26),
to the accuracy required, is reduced to quadratures. Moreover, since the interval for
which this solution is valid is small (0^/^0.01) the trigonometric functions involved
may be expanded as power series in t before the quadratures are performed. The
solution of (25) is

Ai = Ci+ fi(t) (i = 1, • • • ,4), (27)
where /,•(()) = 0. The substitution of (27) in (24) gives the complete solution for

where o>2/i < 5 and o>2 > «i. The values of C, = A ,• as determined above.
The value of [£4(/i)~ MM]2 locates the point Qi in Fig. 10. The ordinate of Qi

is i'o. The ordinate of 7?i is given by — S\(t\). The ordinate of i?4 is the value of
(1—£)~12 when the air chamber is decreased to 0.7 of its initial value.

/ r'-20
12
II
10
9
8
7
6
5 = R
4
3
2

P IS A 0CMMAL Mint OH C

f = ̂
.1 .2 .3 .4 .5 .6 .7 .8 .9 -» -d.

Fig. 11. Fig. 12.*

* In Fig. 12 the origin should be marked So and the second point of intersection of the straight line
through the origin and the curve should be marked Si.
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In the solution for the second interval (h^t<h) of motion it is sufficient to re-
place the arcs RiR^RtR, and Q1Q2 by the secant lines RiR* and QiQi- The quantity
(ia — ii)2 on the interval Q1Q2 may be written

(i2 — ii)2 = — Bo + «o(i2 — ii), (28)

and (22) becomes

(p2 + ccmo + ko)si — amaSi = g + aAo — PB0 + f}no(ii — Si) — Ko, (29)

— 7W0J1 + (p2 + ym0)st = ng — yAn + 8 B0 — Sn0(S2 — Si),

where any additional constants are shown in the figures. At the new origin of time
for (29), Si(0)=j2(0) = 0 and ii(0) =ii(/i) =»i, i2(0) = i2(0 =v2.

The proper determination of the constants bx and bt in the substitution Si = £i+Ji,
s2 = £2+&2 in (29) yields

(p2 + &n0p + atmo + ko)l-i — ((inop + awo)?2 = 0,

— (Snap + 7Wio)£i + (/>2 + 8noP + 7Wio)?2 = 0.

While the characteristic equation of (30) is of the fourth degree, yet its roots are
widely separated in practical cases and quickly found by Graeffe's method.

The values of Ji = £i+&i, s2 = £2+&2 as given by the solution of (30) do not yield
the equilibrium positions of «i and m%, because when (i2 —ii)! becomes small the rela-
tion (28) and Eqs. (29) are no longer valid. This is no defect of the solution because
its purpose is the determination of the maximum accelerations acting on m\ and m2.
These maxima occur in the interval The equilibrium positions of mi and m2
are determined from static considerations.

A point of special interest is the determination of the effects of the factor ng upon
the solution. The above solution is constructed with this in mind.

The roots of the characteristic equation of (30) have special physical significance.
In practical cases these are usually one or two pairs of complex roots. If there are
four complex roots, one pair gives a high frequency oscillation of moderate magnitude
for m,\. This is to be avoided.

If [A (r)]2 is given by the graph shown in Fig. 9b the above method is still applica-
ble. The solution is very sensitive with respect to [A (r)].2 Of course, the intervals
of solution will exceed two in number, but in each interval the value of (i2—ii)s will
be given by the ordinates of the arc Q0Q1 or the secant Q1Q1.

The most complicated process involved in solving (20) is the solution of a quartic
equation.

4. Concluding remarks. The seven problems presented above are representative
of the nonlinear discrete problems of industry in so far as one nonlinear problem can
represent a group the members of which differ greatly. No bibliography is given for
the reason stated in footnote 7.

Methods of handling industrial nonlinear problems of continuous systems arising
in industry are reserved for a subsequent paper.


