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1. Introduction. Elastic problems dealing with orthotropic materials have had
considerable investigation in recent years,! but up to the present time, such investiga-
tion has been largely limited to a consideration of the problems involving thin plates
of this material.

In the present paper, two problems dealing with the stresses and displacements
in an infinite elastie orthotropic solid are solved, and in each case the results are ob-
tained in terms of three independent displacement potentials. The two solutions are:
1) the displacement potentials arising from an arbitrary distribution of temperature
within a finite region of the solid (the temperature being measured from an arbitrary
datum) and 2) the potentials arising from an arbitrary distribution of body force
within a finite region. Each of these problems reduces to the solution of three simul-
taneous partial differential equations, which are transformed, through the use of
Fourier integrals, into individual solutions for each potential. The expressions for
these potentials are reduced to the form of Newtonian potential integrals for those
cases where sufficient symmetry of the material propertics exists to allow such a re-
duction. In the more complicated cases, the results are still expressed in closed form
in terms of definite integrals.

2. The thermo-elastic problem. The conditions under which the thermo-elastic
problem will be formulated and solved are the following. The material is to be homo-
geneous, orthotropic, and elastic, throughout the infinite region, and is to be within
that class of orthotropic materials which has three coefficients of temperature ex-
pansion, aj, associated with the three principal directions of the material. The body:
forces will be taken as vanishing, since any problem involving both thermal and body
force effects has a solution which is merely the superposition of the two individual
solutions. The temperature distribution is to be an arbitrary function of positien with
the restrictions that this function must vanish everywhere outside some finite region,
be continuous everywhere and be differentiable everywhere except on a finite number
of surfaces. .

The fundamental relations needed to formulate the problem mathematically are:
the equations of equilibrium of an element of the material; the thermo-elastic equa-
tions, that is, the relations between strains, stresses and temperature; and the réla-,:
tions between strains and displacements.

The equations of equilibrium are found by a consideration of the equlhbrlum of
a rectangular parallelepiped of the material under general loading. Since these equa-
tions are independent of the type of material under consideration, they are given, as

* Received Sept. 1, 1943. ‘ '
1 See, for example, A. E. Green, and G. 1. Taylor, Stress distributions in aeolotropic plates, Proc. Roy.
Soc. A 173, 163 (1939).
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in the isotropic case for zero body force,? by three equations of the type,

do; 0Tz 07 25

ox dy 9z

=0, (1

where the notation is the conventional one.

The orthotropic material has been defined as one whose Hooke's law has the form
indicated by equations (2), when T is identically zero. The effect of temperatures,
different from datum, is to produce normal strains in the three principal directions
of the material, as specified under the conditions of the problem. Hence, when the
coordinate axes are taken parallel to the principal directions, the general formulas
for the strains have the form,

€: = 0110 + @120y + @130, + 1T, - - - ; Yys = QuaTysy * * ° .« (2)

If we now define three displacement potentials, ¢; such that
64’1 64’2 6¢,

U =— V= — w=-—
ox dy 0z
and such that ¢; and its derivatives vanish at infinity, the conventional definitions
of the strains become,
ou 02y dv a'w

€z = —— = Y Yys =

ax  ox o | 9y 0zdy

©)

Combining now, equations (1), (2), and (3), we obtain three equations of which
the following is the first:

a4 02 02 a2 a2 92 aT
5[(511 + boo — + bss )¢1 + ¢z —¢2 + Gla—‘ ¢z] = - ﬂx—a; SN (Y]

Each of these may be integrated once to give,?

02 0?2 02 a2 92
(bu—'i'bcc'—'f'bss >¢1+612—¢2+013—¢3 =BT, --- (43)

The arbitrary functions which appear in each of the foregoing integrations must
each vanish, since, for example, in the first equation, all terms vanish when x is in-
finite and v, 2 are finite, implying that all functions independent of x must vanish
identically.

Due to the convenient form of the boundary conditions, these equations are easily
integrated by the following procedure. Multiply each equation through by e—#(zt+vnt+zD
and integrate over the whole region, integrating by parts those terms containing
derivatives of ¢; This operation produces the following three equations, using the
abbreviated forms defined below in equations (6).

* A. E. H. Love, 4 treatise on the mathematical theory of elasticity, Cambridge, 1934, p. 125.

3 The by, ¢;; and B; are combinations of elastic and thermal constants arising from the above opera-
tion. The manner in which these constants appear in the second and third of these is easily deduced from
equations (5).
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(51182 + been® + besstD Er 4 c1an?Es + 1l *Es = B1S,

€1282E; + (best® + baan® + busl?) E; + c23Es = B.S, (5)
C1382Er + caanEz + (bsst? + bam?® + bsst 2 Es = BsS,

Ei:fff ¢ e ity dy dg,
S = f f f Te-itttotady dy d.

Equations (5) are easily solved for the Ej, and yield the expressions,
Ei = Fi(z: m g.)S’ (7)

where the F; become ratios of homogeneous polynomials in £2, 9% and {2
Noting now, that by their definitions, the E; are the Fourier transforms (in three
dimensions) of the ¢;, we may write

where,

(6)

1 0
¢i(x, y,2) = fof Fi(§, n, )eistrmtaS(E, q, )dE dy dF

1 ® ©
= —g—afff Fj(E; 7, g-)ei(zf+w+z{’)d£ d‘r] d¢ fff T(f’ s, t)e—i(r£+up+l(')dr ds dt,
T . i

and the order of the indicated integrations may be changed to give,

1 0 0
si= [ [[ resvarasa [ [ Finpeemsommeinga g, o
T — —

Since each F; (as defined by equation 7) is a ratio of second order polynomial in
£2, 72, and {2, to one of third order, we may write,

RZR}
)
RIRIR]

®

i

where R} =N +uin?+t2, and where the \;, pi, and B, are constants depending on
the values of the constants appearing in the determinants defining F;, and hence,
may be considered as known. Note that the A2, uZ, for k=1, 2, 3, must be non-nega-
tive, since no singularity may exist except at the origin.

In many cases, the expressions for the F; may be reduced to the form,

A
Fi= Y ZE.

2
k=1,2,3 Rk

(10)

This will always be true when the problem involves a material which is isotropic in
a certain plane (for example, a laminated plastic) unless identical values of R? recur
in the denominator. This may be seen by noting that since the denominator of F;
must be invariant under a rotation about the z axis due to this isotropy (the plane of
isotropy is here taken as the x, y plane), £2 and 52 must occur in the combination
£24+9?, and hence, N\ =pux, and the R} become essentially binomials. The reduction
of F; to the form of equation (10) is, in this case, merely a matter of evaluating 4 s«
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When equation (10) does hold, the integration proceeds as follows: Using the con-
ventional vector notation and the new coordinates with the subscript k (where
Ev=N\i§, xp=2aNiL, ri=r\;}, etc. and where 7, =1i(xx—7x) +7(yr—sx) + k(2 —tx)), the
integral over £, 1, and ¢, of equation (9) defining Green’s function G, may be written,

® Ajp _ - d& dn
Gi(x, v, 2, 7,5, t) = ff Z ik eimk R k k dte. (11)
— k=1,2,3 RE Aok

If we now change to a spherical coordinate system in which 1 is the angle between
7 and R and § is the polar angle about 7, this integral becomes,

A;
Gi= f f f > 2 gimimrcont sin o dy d8 dRy,
Nese

where the integration now takes place over, 0 <y =<7, 0<8§<2r, 0 R < . The ele-
mentary integrations over v and 8 produce

474 ; ® sin miR
Gi = Z ,kf ki de’
0

k=1,2,3 Nkpimy 1

which is known to have the value,

Ap 1

Gi=2x? Y
k=1,2,3 Nelk Mk
Now transforming the remaining terms of equation (9) to the coordinates with the
subscript %, and substituting the above value for Green’s function, we obtain,

1 T(N\ery, Y/
¢; = —ff > Aa N7y pasi, be) dry dsy dt,.  (12)
4r k=123 A/(xx — )2+ (e — s0)? + (2c — )2

Hence, the problem, wherein T'(x, y, 2) represents the temperature distribution,
becomes the problem of evaluating the Newtonian potential function corresponding
to a mass distribution of,

Aik
p = — T(Nexk, ui¥i, 2x).
4r

For an isotropic material, the ¢ become alike, and are given by,

a1+11 T(f,S,t)
T = T ddd.
’ 4“—vfffx/(x—r)=+(y—s)2+(z—t)2 e

In the evaluation of Green’s function for those cases where the denominator of F i
has a multiple root, it is convenient to introduce the notation
9% 9? 92

Gi= X Gim Ar=—f—t—.
i = 2.6 T oy o

In this case, integrals of the form,

*J. N. Goodier, On the integration of the thermo-elastic equations, Phil. Mag. (7), 23, 1017 (1937).
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® Aian .
Gin =fff I eHlE=n =0t (=011 d¢E dy df (13)
—» 2

must be evaluated, provided R?> RZ. Using the above notation, the equivalence of
the following to equation (13) may be verified by substitution:

AsGjn = A’fff /;’2: e L= b (= wt (H+OIJE dy df. (13a)
The integral involved in this equation is, however, the same as that appearing in
equation (11), so (13a) becomes,
2
VG O s G B
where Cj, is an easily evaluated constant. Substitution will again show that,
Gin = C},‘A,\/(xz —72)?+ (y2 — s2)? + (32 — )%

is equivalent to the above equation, and hence the ¢, are given by,

Azcin = AI

1
b= [f f T(r, s, 0Gn(r, 5, 4, %, 9, 2)dr ds dL. (14)

In those cases where F; cannot be reduced to one of the foregoing convenient
forms, G; is more difficult to evaluate. Since no explicit form has been found for this
function, other than complicated definite integrals, it is believed best to leave it in
the form defined by equation (9).

3. The body-force problem. As in dealing with isotropic materials, the solution
of the body force problem may be shown to reduce to a form analogous to that of the
thermo-elastic problem. To show this, we shall consider only the problem where the
body force is directed parallel to the x axis, noting that the general solution is ob-
tained by the superposition of three such problems.

Equations (1) and (2) are modified to contain the body-force function, X, and to
eliminate the temperature terms. Equations (4) are then obtained again, where now
the right hand sides are replaced respectively by, X, 0, and 0.

The ¢; will not, in general, vanish at infinity in this problem, hence the procedure
needs a slight modification. The second and third of these equations are integrated
with respect to y and z respectively and then differentiated with respect to x. This
yields equations (4a), where again, X, 0, 0, appear on the right and where the ¢; are
replaced by d¢;/3X. The procedure is now identical with that of the thermal problem,
and the ¢; are found by the expressions analogous to equation (14).

4. The two-dimensional problem. If we carry through in two dimensions the
procedure used in the previous sections of this paper, we arrive at an equation which
is identical to equation (8) except that z, ¢, and {, no longer appear. The expressions
for F;are now simpler in form, being given by,

NE + uln?

i

TN+ i) (N )
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which may always be reduced to the form
A ik
F,' = _o
k=1,2 R.

unless Ry = R;. (RI=0\2£2+puin?).
Before changing the order of integration, we differentiate equation (8) with re-
spect to y. The integral form of Green's function becomes then

9 s(zé+yn)
G" f f (T i, (15a)
— kgz + ”2271”

unless Ry = R;, in which case,
s(xf+yn)
= A f f e = g dn. (15b)
)\252 + pan?

This latter expression is, of course, derived by the same reasonmg used in the three
dimensional problem.

Equation (15a), after the introduction of the coordinates with the subscript &,
can be written in the iterated integral form,

13"

G jx f 445 . i f“ COS NkX'k Mk p ( fk)
= SIN i Vi ANk - -
dy o M 0 &\? Nk

(Wk)

oG; © 44 ;i T
i* = f i* sin Vi — e-ll‘k!kldnk
ay 0 k 2

and this integral yields,

G jx 2xA jx Vi
dy N ap + oo
or

74 jx
KMA

In («% + i), (16)

and we obtain the familiar two-dimensional logarithmic potential.
Equation (15b), then becomes, in an analogous manner,

AG; = In (%3 + y3)
Nepti
or, :
w4 ;
Gi = 2 Ag[(\’z + y'.’) ln (xz + "3)] (17)
Atk

Hence, Green'’s functions are determined for each two-dimensional problem mvolvmg
thermal stress or body forces in the infinite plate. The usual methods of superimposing
plane stress (or strain) solutions may be utilized, of course, to solve the corresponding
problems for the finite body.




