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1. Introduction. The impedance concept is the foundation of engineering trans-
mission theory. If wave guides are to be fully utilized as transmission systems or
parts thereof, their properties must be expressed in terms of appropriately chosen
impedances or else a new transmission theory must be developed. The gradual ex-
tension of the concept has necessitated a broader point of view without which an
exploitation of its full potentialities would be impossible.

In the course of various private discussions, I have found that there exists some
uneasiness with regard to the applicability of the concept at very high frequencies. In
part this may be attributed to relative unfamiliarity with the wave guide phenomena
and in part to the evolution of the concept itself. Some particular aspects of the con-
cept have to be sacrificed in the process of generalization and although these aspects
may be logically unimportant, they frequently become psychological obstacles to
understanding in the early stages of the development. For this reason I am going to
devote several sections of this paper to a general discussion of the impedance concept
before passing to more specific applications; then by way of illustration I shall prove
that an infinitely thin perfectly conducting iris between two different wave guides
behaves as if between the admittances of its faces there existed an ideal transformer.
This theorem is a generalization of another theorem which I proved several years
ago to the effect that when the two wave guides are alike, the iris behaves as a shunt
reactor. Actual calculation of the admittances and the transformer ratio depends on
the solution of an appropriate boundary value problem.

More generally, wave guide discontinuities are representable by 7"-networks. In
some special cases these networks lack series branches and in other cases, the shunt
branch.

2. Evolution of concepts. Concepts evolve. It is a long way from the primitive
to the modern number concept. The primitive number was an integer, a concrete
integer at that. In some primitive languages there is no word corresponding to "two."
There are words meaning "twro men," "two horses," etc.; but the concept of "two"
applying either to men, or to horses, is lacking. To a primitive mind the difference
between a class comprised of two men and a class comprised of two horses over-
shadowed the similarity. Seeing similarities requires a degree of abstraction. A re-
sistance to abstract ideas seems to be a characteristic of human minds even in modern
times; only the modern mind is quicker to overcome it. An example, pertinent to
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our present discussion, is the following excerpt from a paper Derivation and discussion
of the general solution of the current flowing in a circuit containing resistance, self-
inductance and capacity with any impressed electromotive force, by Frederick Bedell and
Albert C. Crehore, published in the Journal A.I.E.E., 9, 340 (1892):

"From the analogy of this equation to Ohm's law, we see that the expression
[i?2 + (l/Cw—Lw)2]1'2 is of the nature of a resistance, and is the apparent resist-
ance of a circuit containing resistance, self-inductance and capacity. This expression
would quite properly be called 'impedance' but the term impedance has for sev-
eral years been used as a name for the expression [i?2+L2w2]1/2, which is the
apparent resistance of a circuit containing resistance and self-inductance only.
We suggest, therefore, that the word 'impediment' be adopted as a name for the
expression [i?2 + (l/Ca> — La;)2]1'2 which is the apparent resistance of a circuit con-
taining resistance, self-inductance and capacity, and the term impedance be re-
tained in the more limited meaning it has come to have, that is, [i?2+L2w2]1/2,
the apparent resistance of a circuit containing resistance and self-inductance only."

The name "impediment" was not adopted. Apparently, it was soon understood that
if one really wished to emphasize the difference between the impedances of various
circuits, one could simply describe the circuits and, therefore, for most purposes, it
was best to emphasize the similarity rather than the difference. And only ten years
ago there were some who objected to the use of the word impedance for the ratio
E/H in an electromagnetic wave and who wanted a new word for it.

The word "number" now includes fractions, negative numbers, irrational numbers
and complex numbers; the impedance is now a complex number, and not its absolute
value as originally intended. There are mechanical impedances, acoustic impedances,
electromechanical impedances, and finally impedances associated with any wave no
matter what its physical nature happens to be. The impedance is now the force/re-
sponse ratio when the force and response are harmonic functions of time and are
represented by complex exponentials. Around this concept has grown the transmis-
sion theory of force and response in linear systems. The principal tool of this theory is
the theory of functions of a complex variable. This theory is used for engineering
purposes as in the design of filters, equalizers, and other transmission systems with
prescribed desired properties; and with equal advantage it may be used for general
transmission studies. In this paper I am particularly concerned with fundamental
ideas applied to wave guides and wave guide elements.

3. General discussion of impedance and admittance. Superficially, it may seem
that the impedance concept does not apply to wave guides or if it does it is quite
different from the concept as applied to ordinary transmission lines. Actually there is
no significant difference; whatever difference there exists is largely psychological
rather than logical. In wave guides a characteristic impedance has to be associated
with each transmission mode. At first the existence of various transmission modes
may strike one as a feature which distinguishes high frequency wave guides from low
frequency "ordinary" transmission lines; but soon one will realize that even in ordi-
nary transmission lines it is usual to distinguish between different modes of trans-
mission. Consider, for instance, parallel wires at the same height above ground; there
are two obvious transmission modes recognized by communication engineers; in one
the currents in the wires are equal and flow in opposite directions and in the other
they are equal, flow in the same direction and return through ground. It is the exist-
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ence of these two transmission modes that accounts for the important engineering
difference between balanced and unbalanced transmission lines. Similarly, there are
two obvious transmission modes in a shielded parallel pair. The field patterns are
different for different transmission modes and the characteristic impedances are usu-
ally different. The existence of transmission modes is not peculiar to hollow tubes
and other structures which have become prominent in high frequency transmission;
high frequency transmission studies make us merely aware of the fact that any
physical wave guide, whether a coaxial pair or a shielded pair or a hollow tube,
admits of an infinite number of transmission modes with their characteristic field
patterns, characteristic impedances, and propagation constants.

Another cause of worry to some is a degree of indeterminacy connected with an
impedance and its associated quantities. The characteristic impedance of a wave
guide may be defined in a number of ways giving different values. For each oscilla-
tion mode a cavity resonator behaves as an ordinary circuit comprised of inductance
and capacitance; but different values are obtained, depending on how L and C are
defined. This indeterminacy is really inherent in these conceptions but in elementary
theory it is not stressed for the simple reason thkt no occasion arises for such stressing.
In the final analysis, this indeterminacy is of the same kind as that involved in the
essential arbitrariness of units and is related to the fact that properties of analytic
functions are not affected by a constant factor. Putting it in the language of transmis-
sion theory, the essential properties of impedance functions are not affected by ideal
transformers. If we have a closed box containing an electric network with two acces-
sible terminals and if we measure a resistance R across these terminals, we cannot
be certain that the box contains a resistance R\ it may contain a resistance R/10
which is then boosted to R by an ideal transformer. It does not really matter which
is the case. Similarly, if the measurement seems to indicate that in the box we have
a tuned circuit with an inductance L in series with a capacitance C, we may actually
have a tuned circuit with an inductance \L and the capacitance 2C in the secondary
of an ideal transformer which then doubles the impedance. More generally, the im-
pedance function is defined by its zeros, infinities, and other singularities except for a
constant.

If V is the voltage across an impedance Z, I the current through Z, and W the
complex power, then

V = ZI, W — \VI* = $ZII*, W = (3-1)

where the asterisk is used to designate conjugate complex numbers. Now suppose
that our voltmeters and ammeters contain concealed ideal transformers; then "Z"
will have different values in the above equations and we shall have

VV*
V = Zv.il, W = \Zw.tII*, W    (3-2)

2Zw,v

These new equations are in effect various definitions of impedance and admittance
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V 2 W VV*
Zyj = ZWJ = Zw,y = — ,

(3-3)1 1 1
Yv.i — ——> Vw,r =  > Yw.v = ■—— •

Zv ,1 Zw.I Zw fv

Ordinarily, we make sure that there are no concealed ideal transformers in our
measuring instruments. Furthermore, at low frequencies we can measure the voltage
across the total capacitance1 and the total current through the inductance. There
seems to be no question about the meaning of " V" and "I" and it so happens that in
this case we are led to equations (3-1). However, in a section of a transmission line
or in a cavity resonator the capacitance and inductance are not localized and we are
forced to recognize the existence of a certain amount of indeterminacy. There is no
harm in this indeterminacy; it does not really matter in which of the following two
forms we decide to write the expression for power

I I*
W = \ZII*, or W = %(n2Z) , (3-4)

* n n

so long as we know how to compute it.
Just as ideal transformers in our "ammeters" and "voltmeters" transform equa-

tions (3-1) into equations (3-2) in the case of "ordinary" networks, they may be used
to transform equations (3-2) into (3-1) in the case of wave guides and networks with
distributed constants.

4. General impedance relations. Eliminating V, I, and W from (3-2), we have
the following equation connecting various impedances

ZwjZw.v = Zv,iZv,i. (4-1)

If the impedances are real, then

Zw.iZw.v — Zyj. (4-2)

In equations (3-2) V and I may be arbitrarily chosen values of the voltage and
current associated with a given impedor. If we choose a given definition for I, we can
define a voltage

Vw.i = ZWJI (4-3)

for which equations (3-1) will hold and the impedance Zw.i will become the only
impedance associated with the impedor. We can also define

V
Iw,v = > (4-4)

Zw ,v

so that again we shall have equations (3-1) with Zw.v as the sole impedance.
Since the power is an invariant we have

* * Vw.i Iw .v
Vw.il = VIw.v or  = —— • C4-5"*

1 Or almost across the total capacitance.
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From (4-3), (4-4), and (4-5) we have

' w.i iw,v

It is now evident that we can base our calculations on any particular voltage-current
pair and then, whenever desirable, we may pass to any other pair simply by inserting
in our transmission diagrams an ideal transformer with a proper impedance trans-
formation ratio.

5. Characteristic impedances and admittances of wave guides. The basic imped-
ance associated with the nth transmission mode in a wave guide is defined as the ratio
of the transverse electric to the transverse magnetic intensity

X, - — • (5.1)
H t,n

It is called the wave impedance or the specific impedance and enters in the expression
for the average power flow per unit area in the direction of the guide

Ws = hEt,nH*.n = \KnHt,nH*,n. (5-2)

The reciprocal of this impedance is the wave admittance

Mn = ^; (5-3)
K-n

the power flow is then

Ws = \M*nEt,nE*.n. (5-4)

In wave guides with perfectly conducting walls the various transmission modes
carry power independently of each other. The field patterns are "orthogonal" to each
other and may be "normalized"; that is, the transverse intensities for a typical mode
may be expressed as follows

Et,n = VnFn(u, v), H,,n = InFn(u, v), In = MnVn, (5-5)

where

J J [F„(«, v)]*dS = 1,

If
(5-6)

Fm(u, v)Fn(u, v)dS =0, if m n,

u and v are suitable coordinates in the transverse plane of the wave guide and the
integration is extended over the entire cross-section. The coefficients V„ and I„ may
be called respectively the normalized voltage and normalized magnetomotive force or
normalized current associated with the wth mode.

Calculating the total power carried in the wth mode, we obtain

W = hKJJ* = W*VnVt (5-7)
Thus, if we express our transmission formulas in terms of normalized voltages and
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currents, the same impedance coefficient appears in the alternative expressions (3-1)
for power and this impedance is also the ratio of the normalized voltage to the
normalized current.

Before going on let us see just what the above formulas mean in one or two special
cases. Consider a wave guide consist-
ing of two parallel metal strips of
width a, separated by distance b,

  Fig. 1. In the dominant mode the
electric intensity is perpendicular to
the metal plates and is distributed

pIG j almost uniformly except near the
edges and in the external region where

the field is weak and little power is carried by the wave. Neglecting the edge effect,
we shall assume that the electric intensity is constant

Et = E0. (5-8)

The normalized distribution pattern is given by

Fo(x, y) = —(5-9)
\/ab

and, therefore,

Et = VaFa(x, y), V0 = Eo^ab. (5-10)

The wave impedance for transverse electromagnetic waves isXo = V/i/tand therefore

_ V0
H, = IoFoix, y), 70 = H0s/*b    (5-11)

K o

In air Ko = approximately 377 ohms. The transverse voltage V between the plates
and the longitudinal current I are

V = bE0 = Voy/bja, / = aH0 = /<>vV&; (5-12)

consequently the characteristic impedance on the voltage-current basis is

V bV o b
Kv.i — — = = — K o. (5-13)

I ala a

For the total power flow we have

* * * W*
W = |Wo = |MoFoFo = hKvjII =  > (5-14)

2Kr.r
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so that in the present case

b
Kw.i = Kw.v — Kv.i = — Ko. (5-15)

a

Consider now the TE\,0-wave in a
rectangular wave guide, Fig. 2; for
this wave the field is given by Fig. 2.

TX TX
Et = Ei sin — , Hi = Hi sin — >

a a

 / X2 \-"a
Ei = KiHi, Hi = MiEi, Ki = vVA'0 - -)'\ 4a2/

(5-16)

The normalized field distribution function is

/ 2 irx
Fi(x, y) = A/— sin —, (5-17)

V ao a
so that

Et = VxFi{x, y), Hi = hFi(x, y),
(5-18)

Vi = Ei^ab/2, 11 = Hiy/a/2b.

In this case the maximum transverse voltage V across the guide and the total longi-
tudinal current I are given by

V = Eib — Vi\/2b/a,
4

/4  
Htdx = — h\/ab/2.

0 IT

From these equations we have

(5-19)

The power transfer is

consequently

Ftrb ,
Kv.i = —=—K i. (5-20)

I 2 a

W = \KJiI*i = W*ViV*i-, (5-21)

ir2b 2b
Kw.i = K i, Kw.v = —Ki. (5-22)

8a a

Now let us see what happens when we join two wave guides, each consisting of
two parallel metal strips. Suppose that the frequency is so low that we do not have to
worry about higher transmission modes. At the junction the transverse voltage and
the longitudinal current must be continuous. This requirement is responsible for re-
flection unless the characteristic impedances of the two guides are equal. The coeffi-
cients of reflection and transmission depend on the impedance ratio K'y.i/Kyj of the
two wave guides. As we shall find later the effect of the geometric discontinuity can
be calculated equally well by concentrating attention on normalized voltages and
currents. With respect to these variables the characteristic impedances of the above
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wave guides are equal; but at the wave guide junction there will exist an effective
ideal transformer with the impedance transformation ratio equal to Kyj/K'yj- In
the case of ordinary low frequency transmission lines we prefer to think in terms of
total voltages and currents; to think in terms of normalized voltages and currents
would be to make simple matters complicated; but it will presently become evident
that, in general, it is advantageous to introduce the normalized variables at least in
certain stages of the analysis.

Take an iris in a rectangular wave guide. We know that for frequencies between
the lowest cut-off frequency and the next higher, the iris can be represented as a
shunt susceptance. The value of this susceptance will depend on its definition; but
the ratio to the corresponding characteristic admittance of the guide is an invariant.
It is this ratio that appears in transmission formulas involving lumped elements in-
serted in a uniform transmission line. If, however, the iris is between circular and
rectangular wave guides, the ratio of the characteristic impedances of the two guides
will also be involved and this ratio depends on whether both impedances are defined
on the power-voltage basis or the power-current basis. It is evident, therefore, that
in this case the iris cannot behave as a simple shunt susceptance. The theory which
we are now evolving permits us to prove that in the more general case the equiva-
lent transducer for the iris consists of two shunt susceptances, corresponding to the
two faces of the iris, and an ideal transformer between them. The transformer ratio
depends on the particular voltage-current set we happen to choose for our analytical
work but our final transmission formulas will be independent of this choice. The
degree of arbitrariness involved in the choice of " V" and "I" is of the same kind as
that involved in the choice of coordinate systems or of units. In elementary analysis,
a particular choice was so natural that a mistaken notion spread abroad that this
choice was a necessary one.

6. An iris between two wave guides. Let us now obtain an exact equivalent circuit
for an infinitely thin perfectly conducting iris between two wave guides of arbitrary

0)
(2)

S / / S / , / / /

'////'////'/''/S//J V

Fig. 3.

cross-section (Fig. 3). The constants of this circuit depend on the particular trans-
mission mode under consideration; that is, there is one equivalent circuit for transi-
tion from each transmission mode in wave guide 1 to each mode in wave guide 2. The
most important case is that of transition from the dominant mode in one wave guide
to the dominant mode in the other, and in the following analysis we shall keep this
case specifically in mind; but the analysis applies to any other case. We shall use
Cartesian coordinates in our equations; but this does not mean that our analysis is
restricted to rectangular guides.

Suppose that the transverse field of the incident wave at the surface of the iris is
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E\(x, y) = V\Fx{x, y),
H\{x, y) = MiVlF^x, y),

where V[ is the normalized incident voltage. In response to this impressed field, we
shall have some field over the aperture of the iris. Let/(:c, y) be the tangential electric
intensity over the aperture; then in wave guide 2 the "transmitted" tangential elec-
tric intensity is

E\{x, y) = f(x, y) over the aperture,

= 0 over the screen.

In wave guide 1 the total tangential electric intensity, that is, the sum of the incident
and the reflected intensity, must be

FJFiO, y) + Ert(x, y) = f(x, y) over the aperture,
(6-3)= 0 over the screen.

The function defined by (6-2) may be expanded into a series of normalized or-
thogonal functions appropriate to wave guide 2; thus

oo

EKx, y) = £ v£n{x, y). (6-4)
n=l

The tangential magnetic intensity is then
oo

H'(x, y) = £ MnVnFn(x, y). (6-5)
n=l

The function defined by (6-3) can be expanded into a series of normalized orthogo-
nal functions appropriate to the wave guide 1; thus

oo

V\Fi(x, y) + E\{x, y) = £ VnFn{x, y). (6-6)
n=l

The reflected tangential intensity is therefore
oo

K(x, y) = (7i - Vt)Fi(x, y) + £ y). (6-7)
n=2

The corresponding tangential magnetic intensity is then
oo

Hrt(x, y) = - M1(V1 - V\)F1(x, y) - £ MnVnF„(x, y). (6-8)
n= 2

The transfer of complex power through the aperture must be continuous; therefore
00 00

2MiV\V*i - £ MnVnV* = £ MnVnV*. (6-9)r*

n= 1

The voltage reflection coefficient qv is defined as the ratio of the reflected voltage
V\ — V[ to the incident voltage V}; it may be obtained from (6-9) if we divide the equa-
tion by 2M\V\V*\ thus
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—— = - = -|"i + z MnVnVn] + MlVlVl |~i + j; ™nVnV„n 1. (6-io)
1 + qv V1 2 I MiViV\j 2MiV\V* L ^ MlV1V*]

Consider now the complex power flow into the second wave guide

W* = ~ M1V1V* + 4 E MnVnV*n . (6-11)
2 2 n=2

The form of this expression is such that from the input end various transmission
modes appear to be in parallel. It is not exactly that the characteristic admittances
Mi, Mi, Ms, • ■ ■ are directly in parallel; if we select the first admittance for reference,
the others are transformed in the ratio VnV*/ Vi V* before being connected in parallel.
In any case the net effect on the input admittance is the same as would be obtained
if we had an admittance F in shunt with a transmission line maintaining only the
dominant mode. Thus we can write

W = ^1^1*+ hYVtft (6-12)
where

•» V V*
(6-13)

n=2 V\V x

The ratio of the shunt admittance to the characteristic admittance

Y V x M V V*
— = = z ~ (6-14)
M Mi „_2 M^VxV*

is an invariant. It has the same value regardless of a particular basis for definition
of admittances and it depends only on the form of distribution of the tangential
electric intensity over the aperture.

Similarly for the admittance ratio looking from the iris into wave guide 1 we have

F » MnVnV*n x  =2 —   ' (6-15)
M1 n=2 MlVxV*

If the frequency is in the interval between the lowest cutoff frequency and the
next higher, then Mt, M3, ■ • • are reactive and the shunt admittances are pure sus-
ceptances

F = iB, F = iB. (6-16)

For frequencies higher than the second cutoff frequency an iris entails some power
loss to the dominant wave. The lost power is contributed to one or more higher
transmission modes. This is analogous to what happens when a doublet antenna is
inserted in shunt with a parallel pair or at the end of it. The plane wave guided by
the parallel pair loses power; this power is then carried away by a spherical wave
which originates at the junction. One mode of energy transmission is partly trans-
formed into another. Usually there is also an energy exchange between a local field
and the plane wave; this results in reactance. At lower frequencies an ordinary coil
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(or a capacitor) inserted in a transmission line acts just like an iris; electrically it does
not matter just what physical means we happen to provide for a local storage of
energy.

We now can rewrite (6-10) as follows

1 1 / Y \ 1 Mi / Y \
 =_(1 + ) + _ww*  1 + _) (6_17)
1 + qv 2 \ Mi) 2 MA Miqv

where

ViVt
ViV*

The reciprocal of the voltage transmission coefficient is

(6-18)

1 v[ 1 Vi 1 r 1 / Y \ 1 Ml/ Y \-|
_ = — = — = — — 1 + ) + — mn* ( 1 + — ) . (6-19)
pv Vi \ qv V i » L 2 \ Mi) 2 MiV Mi) j

It is a simple matter to prove2 that for transmission lines coupled as indicated in
Fig. 4, pv and qv are given precisely by equations (6-17) and (6-19). In Fig. 4 the

M,

Fig. 4.

transformer ratio 1 :«2is indicated for the impedances rather than for the admittances
in order to conform to the established practice. If n = 1, which is always the case when
the wave guides on both sides of the iris are the same, the admittances Y and Y of the
two faces of the iris are just in parallel, and the transformer can be omitted.

The exact numerical values of n, Y/Mi, Y/Mi are found by solving the appropri-
ate boundary value problems.3 The approximate values can be obtained quite easily
if we assume a reasonable form of distribution of the tangential electric intensity
over the aperture,4 and of course, we can always calculate these quantities from
measurements of the transmission and reflection coefficients for waves moving from
one wave guide into the other. Thus,

1 + ov Mi 1 + qv Ki
n = —   > (6-20)

1 +q+ Mi l+q$ Ki

where qy is the voltage reflection coefficient for a wave moving from left to right
and qf is that for a wave moving in the opposite direction.

' See for instance S. A. Schelkunoff, Electromagnetic waves, D. Van Nostrand Company, Inc., New
York, 1943, p. 212.

3 For example, see S. A. Schelkunoff, The impedance of a transverse wire in a rectangular wave guide,
Quarterly of Applied Mathematics, 1, 78-85 (1943).

4 S. A. Schelkunoff, Electromagnetic waves, p. 491.
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If the iris is not indefinitely thin, there is a section of a wave guide between the
two faces of the iris.

While the iris acts effectively as a lumped impedance, the field associated with
it is actually distributed. Even if the frequency is such that the iris is reactive, the
field extends to some distance on either side of it. Near the cutoff for the second trans-
mission mode this distance may be quite large; but ordinarily the field extends roughly
to a distance comparable to the transverse dimensions of the guide. There will exist,
therefore, a mutual impedance between those faces of two nearby irises which face
each other. For frequencies above the second cutoff, the mutual impedance may, and
usually will, exist even between two distant irises. All these considerations do not
affect our essential picture of electrical properties of wave guide discontinuities; they
affect merely the numerical values of various impedance and admittance functions.

In the above equations we have treated Et and Ht as if they were scalars; in gen-
eral, they are vectors. However, the analysis is similar to the above and the final
formulae are the same.

In the case of coaxial pairs or wave guides formed by parallel metal strips the
dominant wave is transverse electromagnetic. If the edges of the iris are normal to
the lines of force for the dominant wave, the voltage between the edges is equal to
the transverse voltage across either guide; the total voltages associated with higher
transmission modes are equal to zero; and the transformer ratio is unity provided we
base our transmission diagram not on the normalized characteristic impedance but on
the conventional impedance K which in this case equals Kv.i, Kw,i and Kw.v-

7. Reactances in series with wave guides. An example of a reactance effectively
in series with the wave guide is shown in Fig. 5 which represents a circular wave guide

t
2a
_L_

Fig. 5.

and a narrow radial transmission line.5 Let us suppose that we are concerned with
transmission of a TMo,i-wave. For this wave the field is circularly symmetric. Mag-
netic lines are circles coaxial with the tube, and electric lines are in radial planes.
It is practically self-evident that the radial line is in series with the guide, and that
in parallel with the radial line there is an impedance associated with the gap. If the
frequency is between the lowest cutoff frequency and the next higher, this "gap im-

pedance" or fringing impedance is capacitive and is
. .   of little importance except when the impedance of

^ ^ ^ ^ the radial transmission line is high. For frequencies

I

k2 k3

X X
k2

I

above the second cutoff, the gap impedance is in
part resistive on account of power transfer from the
dominant wave to the higher order waves. As seen
from the gap, the impedances of various waves in

I  the guide and the impedance of the radial wave are
in parallel; the two halves of the guide are in series;

Fig. 6. and the impedance diagram looks like that shown

6 S. A. Schelkunoff, U. S. Patent 2,155,508, April 25, 1939.
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in Fig. 6. The same diagram is shown in Fig. 7 where the characteristic impedances
K\ and K\ have been "expanded" into semi-infinite transmission lines; the impedance
consisting of 2Ki, 2Kz, • • ■ in parallel is represented simply as the gap impedance Za.

\ z \

\29,K, -  U    K,

Fig. 7.

Starting with equation (10.17-1) of "Electromagnetic Waves," we can obtain the
approximate gap impedance by the method explained there. In this case, however,
the following elementary derivation is preferable. To begin with, let us remove the
radial line and assume that the electric charge is being transferred across the gap by
an impressed voltage V'. The total conduction current I in the tube is the sum of
currents associated with the various transmission modes. Thus for the input current
we have

I = Ii + I2 + I3 + • • • • (7-1)

The input power is then

W = hV'I* = hV'I* + hV'lt + • • •

= \Z\I\I\ + 5Z2/2/2 + • • • 1

where Z\, Z2, • • • are the input impedances of individual waves; that is,

V V1
Z\ = —> Z2 = —> • • • . (7-3)

Ii 12

In the above equations we have tacitly assumed that the gap is very small and
the current associated with each mode does not vary in the gap. This restriction will
presently be removed. The total power contributed to the wave is divided between
different modes; one-half of it is carried to the left and the other half to the right.
The power carried in one direction in the wth mode is ^K^jIhI*\ thus we have

Zn = 2Kwj. (7-4)

Actually the applied voltage is distributed in the interval ( — s/2, s/2) around the
midpoint z = 0. Assuming that the distribution is uniform, we may write the con-
tribution to the total current associated with the wth wave at point z due to an
elementary voltage at point i as follows

Ine~ r„ l«-«!—, (7.5)
s

where In is the amplitude at the source. The total current at point 2 is then

T r •/2
In («)=-f e-rJ~l-. (7-6)

s " —«/2 s
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The power contributed to the wth wave is then

/*/2 /7»/*(z) - • (7-7)
-i/2 S

Thus we shall have

Wn = hnV'I*. (7-8)

where (assuming that is real)

i e/2 /» «/21 /• «/2 */
x-"T I dz I

S •J —s/2 -»/

2 2(1 - e~r.»)
e r„U =   (7-9)

8/2 **—*/2 r«5

On the other hand

tt'n = K wjlJ*; (7-10)

consequently

F« 2Kw,i
(7-11)

n Xn

Since %n decreases with increasing w, the successive components of the gap admittance

Y„ = Y2 + F3 + F4 + • • • = —+ • • • (7-12)
2*®, IKwj 2 *<<>,

decrease.
The typical is given in problem 8.10 on page 509 of "Electromagnetic Waves"

r, Vkl 4^11/2r, r« 4»n."
(7-13)

where kn is the nth zero of J0(x). For sufficiently large n, therefore, we have
2 2

(n) I* n$ kn$
Zn = T„KwjS = —- = , • (7-14)

iiruxst 4ir Woea2

The impedance of the radial line is approximately

5 2ttI
Z = 60i — tan  (7-15)

a X

A more accurate expression in terms of Bessel functions may be found on page 269
of "Electromagnetic Waves."

8. Conclusion. The ideas developed in this paper are adequate for expressing
transmission properties of wave guides with discontinuities in terms of impedances
and admittances associated with these discontinuities. These impedances are reactive
if the frequency is such that the energy in either guide can be transmitted to any
distance in only one mode; otherwise, the discontinuities present some resistance for
the mode under consideration and a negative resistance to those other modes which



1944] IMPEDANCE CONCEPT IN WAVE GUIDES 15

participate in transmission of energy. The finding of exact values of impedances re-
quires solution of corresponding boundary value problems; but frequently good ap-
proximations can be found by making reasonable a priori assumptions on physical
grounds. In fact, the point of view outlined in this paper makes it easy to make such
assumptions.

More complex discontinuities can be analyzed into simpler discontinuities. The
discontinuity shown in Fig. 8 is equivalent to an ideal transformer between two wave
guides; across the left "winding" of which there is a small shunt capacitance6 and
across the right winding there is the capacitance7 associated with the annular disc

Fig. 8.

Fig. 9.

looking into the second guide. In parallel with the latter capacitance there is the series
combination of the impedance of the radial line and the second guide itself. We may
express these ideas by the diagram shown in Fig. 9, where the inductance is used to
designate the radial transmission line only because this line, when it is short, is ap-
proximately an inductance.

More generally, the discontinuities should be represented by impedances distrib-
uted along the guide, as in fact they are. Finally, the section of the guide with the
discontinuities may be replaced by an appropriate J"-network.

Recently J. R. Whinnery and H. W. Jamieson8 have obtained explicit expressions
for the capacitances of numerous types of "step discontinuities" in transmission lines
formed by parallel conducting planes. They show how to apply these results to coaxial
conductors. They find theoretical predictions in good agreement with measured
values. The equivalent circuits given by Whinnery and Jamieson do not contain ideal
transformers; this is because for transmission lines comprised of two conductors, the
transformer ratios at discontinuities are equal to unity and the transformers may be
omitted.

• In the first approximation this capacitance may be neglected.
' We assume that we are operating below the second frequency cutoff; otherwise there will also be a

conductance.
8 J. R. Whinnery and H. W. Jamieson, Equivalent circuits for discontinuities in transmission lines,

I.R.E. Proc., February 1944, pp. 98-114.


