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In previous papers1'2-3 the author has developed a direct method of geometri-

cal optics better adapted to the actual procedures of optical calculation than pre-

vious methods. In this paper we shall introduce in this direct theory Hamilton's

characteristic function, and with it we shall find the image of an arbitrary surface in

a given optical system with rotational symmetry. The author apologizes for changing

his notations again. In the previous papers a ray was specified by the coordinates

(x, y) of its intersection point with the object plane and by the optical direction cosines

£> V< f = V/w2—£2—i?2, i.e., the direction cosines multiplied by the respective re-

fractive indices. In this paper, x, y represent the optical lengths (i.e., lengths multi-

plied by the refractive index) of the coordinates of the intersection point with the

coordinate plane, while £, t), f = \/1 — £2 — j?2 are the direction cosines. The reader

may prove for himself that the fundamental formulas given in the former papers re-

main unaffected by this change in coordinates.

1. Hamilton's characteristic function and the direct method. In the previous pa-

pers we introduced the vector b with coordinates x, y, the vector t with coordinates

£, t), and analogously the vectors b'(a:', y') and t'(£', 77') for the image ray, x', y' being

the optical lengths of the coordinates of the intersection point of the image ray with

the coordinate plane z' = 0, and 77' the direction cosines of this ray.

We found the equation

b' = ab + /St, t' = 7b + 6t, (1)

where a, /3, 7 and 5 depend only on the symmetric functions

b2 = u, bt = v, t2 = w. (2)

They are connected by one finite equation,

ad — 07 = 1, (3)

and three differential equations.

We can find a first integral of these three differential equations by using Hamil-

ton's characteristic function. Hamilton has shown that there exists a function V which
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is a characteristic of the optical path (sum of optical distances) between the object

and image planes. If we know this function F as function of x, y, x', y', we find that

dV dV dV dV
£ = ——' £' = ——' 1 — —> v' = —■ (4)

dx dx dy dy

These equations can be combined into the vector equation

dV = t'db' - trfb, (5)

where the left side is a total differential.

Since (5) does not depend upon the choice of variables, we can therefore assume

x< y> £> V to be independent variables, and replace b and t by their expressions in (1).

We find then

dV = (7b + 3t)(Wb + |8<rt + bda + td/3) - trfb

= | [aydu + 2jiydv + f)8dw] + y (uda + vdfi) + 8(vda + wdff). (6)

The reader may convince himself that the differential equations in the former paper

are simply the three integrability conditions of (6), and that we obtain them by cal-

culating Eu„, Euu), Evu, from (6). Equation (6) is equivalent to

Fu = $ay + y (uctu + !>/3„) + 8(vau + w/3u),

V, = Py + y (uav + vpv) + 8(vav + w/3»), (7)

Vw = 5/35 + y(uaw + vf)w) + 5(vaw + Wj3«,).

We can eliminate one of the four coefficients, a, ft, y, or 5, using (3). Eliminating y,

we are led to

/3F„ = 5 [fa2 + (aw + /3s)au + (av + /3w)/3u] — (fa + <*«« + /3«»),

&V v = 3[a/3 + (aw + f)v)av + (an + Pw)(3v] — (/3 + a„w + (8)

= S[||82 + (aw + fiv)aw + (av + /3w)0«>] — (awu + fiwv).

We can eliminate 5 from (8), and thus get two differential equations connecting a

and /?. If Fis a given function of u, v, w, we can thus (theoretically) determine a and /?,

and therefore y and 5, by means of this single function F. The differential equations

in question are

/3F„ + %a + auu + puv /3F„ + /3 + a„w + f3vv

9w)fiv

(9)

fa2 + (au + f}v)au + (an -f a/3 + (au + /3v)av + (av + /3w))/3„

/3Fv) awu ~f~ fiwV

f/S2 + (au + /3 v)aw +(o:f + /3tf)^»
or

F„[a/3 + (au + /3fl)a„ + (av + /3w)j3„] — Ft[fa4 + (au + /3 v)au + (av + /3w)/3„]

— /3 auv — /3/S„w + %aavv + %a/3vw + (au/3„ — avfiu)(uw — »2) = 0,

F»[f/32 + (<*u + flv)aw + (av + pw)f}w] — F„,[aj3 + (au + /3»)a„ + (av + /3w)/3„]

+ ifi2 + 2Puav -f (3vaw -f- |/3z)/3„ + + (a„/3„ — aw/3v) (uw — v2) = 0.
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Let us now assume that for a given optical system we have calculated V, and there-

fore a, /3, 7, 5; and let us proceed to investigate the image of an arbitrary surface.

2. Point and diapoint, the diapoint function. In a former paper4 the author intro-

duced the definition of a diapoint. Let us consider an object point P and a ray

originating from it. The plane through the object point and the symmetry axis of

the system is called the meridian plane. We define the diapoint as the point where

the image ray intersects the meridian plane, and the diamagnification v as the ratio

of the distances of a point and diapoint from the axis. The function F describing the

optical path from the object point to its diapoint shall be called the diacharacteristic.

To each point of the object space belongs a diacharacteristic, which we shall compute

later.

To a given arbitrary point belongs a two-dimensional manifold of diapoints, one

for each ray, and all these diapoints lie in the meridian plane. The diapoint charac-

teristic for a given object point thus assumes a two-dimensional manifold of values.

These may, however, be singular points; for instance, points having a sharp image.

In this case, all the diapoints fall together, and, according to Fermat's law, the optical

path from point to diapoint is constant along all rays. The diapoint characteristic is

a constant.

An intermediate case is the one in which all rays intersect a curve in the image

space. It can be proved that, in this case, the image rays can be split up into a one-

dimensional manifold of pencils, each pencil converging to a point of this curve in

such a manner that they form a series of circular cones with the curve tangent to the

axis of each cone at its apex.5 For each ray in such a cone, the diacharacteristic

must again have a constant value, and thus the diacharacteristic can assume only a

one-dimensional manifold of values. Such an image has been called half-symmetric

by M. Boegehold6 and the author.

Thus, the characteristic describes the image of any object point. Let us investigate

an object point with the coordinates x<>, yo, Zo (optical lengths) and an arbitrary ray

through it with the direction cosines £, 77, f = V1 — (i^+f2) = Vl — w. Let X be the

optical distance along the ray from the coordinate plane to the object point. We find

that

X = Zo \/\ — w. (11)

Let b0 be the vector (^0, yo)- We then have

b0 + Xt = b. (12)

Inserting this into (1), we find that

b' = ah + /St = abo + 03 + aX)t, t' = 7bo + (5 + 7*)t. (13)

An arbitrary point on the image ray is given by the vector b0' with

b0 = b' + X't' = (a + X'7)b0 + (/3 + a\ + \'(S + 7X))t. (14)

We find the diapoint by choosing X' such that b0' and bo are parallel, or that

4 M. Herzberger, A new theory of optical image formation, J. Opt. Soc. Amer. 26, 197-204 (1936).

5 M. Herzberger, Die Gesetze erster Ordnung in optischen Syslemen, Zeit. fur Physik, 45, 86-96

(1927).
6 H. Boegehold, Raumsymmetrische Abbildung, Zeit. fur Inst. 56, 98-109 (1938).
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X' = (aX - P)/(S - y\). (15)

This gives for the diamagnification

v = a + X'7 - 1/(6 — 7X). (16)

The diacharacteristic is now given by

Z)=F — X + X' = 7 — X+(aX- U)/(« - y\), (17)

where V{u, v, w) is the optical path between the object and the image coordinate

planes. D is given in (17) as a function of u, v, w, and z, but for a given object point,

these are not independent variables. Equation (12) shows that

*o — X£ = x, yQ — X17 = y. (18)

If we set „
*0 + yo = mo, (19)

then M0 is constant for the given object point, and we find that u, v, w are connected

by the equation
«o = « + 2X» + X2w. (20)

Equation (20) allows us to eliminate m. Inserting this into (17), we obtain D as a func-

tion of v and w alone, with u0 and z0 as parameters. This function D(u0, z0l v, w) is

the diacharacteristic. We obtain the

points that are imaged sharply if we

find the value of Mo and 2 for which

the following identities are true:

D, = 0, Dw = 0, (21)

for any value of v and w. If a point

has a half-symmetric image, we must

have

DVVDW„ - Dlu, = 0. (22)

Points Mo, Zo for which (22) is fulfilled

identically have half-symmetric im-

ages.

3. Refraction at a sphere. As an

example let us investigate the image

formation of a sphere of unit radius.

The object and image planes will be

at the center. If s, s' are unit vectors

along the ray (Fig. 1), we then have FlG-

a' = aa, s' = 7a + 6s, (23)
with

ad = 1. (24)

We denote the optical path from the object point to the refracting sphere (vec-

tor ar) by X, and from the refracting sphere to the image reference plane by X'. We

then have

a + Xs = war, n'&r + X's' = a'. (25)
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Inserting (25) into (23), we find that

X' = — m'2X/(m2 + nn'yX), a = n'/n + y\', 5 = n/n' + 7X, (26)

whence
n2 — n'2 + nn'y\

V = X = X + X'. (27)
n2 + nn'y\

Finally, we find from (25) that

a X s = rc(ar X s) = w'(ar X s') = (a' X s'). (28)

Thus, aXs is an invariant vector. Since a s—va.2 = u (cf. (2)), we then have

n&T s = \/n2 — u v2 = Qi n'&r-s' = V«'2 — « + v2 = Q'. (29)

Equations (25) and (29) now give

nn'
0 = 0,

«2 + (Q - v)(Q' - Q) (30)

7 = ((?'- £>)/«»'. 8 = n/n' + {Q - v)(Q' - Q)/nn'\

and for the characteristic function we have

y = «2-g)k-w'2+(Q-*0(^-0]

«2 + (0 - vW - Q)
Since

- n2 = e'2 - e2, (31a)

Eq. (31) can be written in the form

v = «2 - v)(Q - Q'W + »)
« + (Q - »)((?' + *0

This is the characteristic function of the sphere. We now form the diapoint charac-

teristic. Let /x be the distance of an object point *0, yot Zo from the reference plane

measured along the object ray. Equation (17) gives

F = V — m + = (X - ft) |~1   1. (33)
S — yn L (5 — yn)(S — ?X)J

In these equations we substitute for u from the relation

u = Mo + /it; + /i2w. (34)

If we write

«o + 22 = p2, (35)

where p is the distance of the object point from the center, and

t — v -f- fi — v ~f~ 21(1 — w)~112, (36)

we then find that all our functions depend only on p2 and r. We have in particular

Q2 = ni _ p2 + t2_ q/2 = _ p2 + t2j (37)

and finally
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f _ <s - gxe - -w + o (3g)
p2 + (Q — T) (Q' + T)

F as function of v and w assumes only a one-dimensional manifold of values. Every

point has a symmetrical image.

Equation (38) becomes independent of r only if

Q — t or Q = — r. (39)

The first case leads to p = n, i.e., the refracting surface itself has a sharp image. The

second case leads to

P - - »', (40)

i.e., to the so-called aplanatic surfaces. In both cases the optical path between the

object and the image points vanishes.

A simpler method leads to the diapoint characteristic of a plane refracting surface.

If z is the distance of the object point from the plane, we find that

F = z(l — »)-»'*(»'*/n* - 1). (41)

For a given object point, F is a function of w alone. Every object point is therefore

half-symmetric. Only for z = 0 can F become independent of w. The plane therefore

gives a sharp image only of itself (and of the infinite plane, whose points are given

by z/f = z/\/1 — w = constant).


