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where

Erf(z) = — f e-e'dp.
\/ 7T 0

It should be noted that in (18') the function v(x, t) is expressed in terms of tabulated

functions.

The final solution of our problem is given by (4) in conjunction with (11) and (18)

or (11') and (18').

THE SPHERICAL GYROCOMPASS*

By WALTER KOHN (University of Toronto)

In the existing literature on gyroscopes1 the theory of the gyrocompass is de-

veloped for the case of a rotor whose ellipsoid of inertia is an ellipsoid of revolution.

The mathematics of this treatment is somewhat involved and, in deducing the differ-

ential equations of motion, approximations based on the smallness of the earth's

angular velocity are made. In the present communication we shall treat a gyrocom-

pass the rotor of which has a spherical ellipsoid of inertia. The motion of such a

gyrocompass is, of course, covered by the more

general theory usually given, but owing to the

symmetry of the sphere this case allows a con-

siderably simpler, separate treatment in which,

moreover, no approximations are necessary. At

the same time the essential features of gryo-

scopic motion are preserved.

The following system will serve as a simple

model of a spherical gyrocompass. The rotor is a

rigid homogeneous sphere rotating freely about

a light axle which passes through its centre. The

ends of this axle can slide in a smooth horizontal

ring which is concentric with the rotor and

rigidly attached to the earth. When the rotor is

set in rapid revolution about its axle the latter

executes oscillations about the meridian which

will now be examined. Fig. 1.

In the figure the right-handed unit triad, i,j,k,

which is fixed relative to the earth is defined as follows: 0 is the center of the rotor;

k lies in the direction of the upward vertical; i lies along the meridian and points

north; j, pointing west, completes the triad. The unit vector, a, lies along the axle

of the gyrocompass and the unit vector, e (in the i, k plane), is parallel to the earths'

axis; thus the angleA, between i and e, is the latitude of the observer.

* Received July 10, 1944.

1 Cf. T. Levi Civita and U. Amaldi, Lezioni di meccanica razionale, vol. 2, Zanichelli, Bologna, 1927,

pp. 191-195; or J. L. Synge and B. A. Griffith, Principles of mechanics, McGraw-Hill Book Co., New

York, 1942, pp. 430-433.
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It is clear that the couple exerted by the ring on the rotor must be of the form

G = G(a X k).

Further, if A is the moment of inertia of the rotor, <o its angular velocity and h its

angular momentum, we have the relation

G = h = A <i>.

Consequently

to a = 0, (1); ok = 0. (2)

Since the gyrocompass has only two degrees of freedom, equations (1) and (2), to-

gether with initial conditions, completely determine its motion.

We observe that u is made up of three parts: the spin of the sphere about its axle;

the rotation of the axle relative to the frame i, j, k; and finally the absolute rotation

of i, j, kor of the earth to which it is attached. Therefore we may write :co = 5a + 0k+ fie,

where 5 is the spin of the rotor, 6 the angle between the meridian i and the axle a,

and 12 the angular velocity of the earth. Differentiation of this relation gives

w = ia+sa + #k+0k, and since the angular velocity of a is $k+fie and that of k

is fie, this equation becomes

« = ia + i($k + fie) X a + 0k + 6il(e X k). (3)

Substituting (3) into (1) and (2), we immediately arrive at

S — 2 cos X sin 8 = 0, (4); sfi cos X sin 8 + 6 = 0 (5)

as the required equations of motion.

The solution of these equations may be obtained in the usual way. From (4) it

follows that s=so+fi cos X(cos 60 — cos 9), where So and 60 are the initial values of s

and 6. Inserting this value of j into (5), we obtain a differential equation for 6 alone,

which is of the classical type S —f(&); this can be solved in terms of hyperelliptic func-

tions. If the initial spin so is great we may replace j in (5) by So to obtain the well

known result: the motion of the axle a is identical with the motion of a simple pendu-

lum, the position of equilibrium being in the direction of the meridian.

An interesting property of the spherical gyrocompass can be deduced directly

from Eqs. (4) and (5) which are exact. For, if we multiply by s and 6 respectively and

add, we obtain si = 88 = 0, which on integration becomes s2+02 = constant.2 This

shows that a spherical gyrocompass has an angular velocity of strictly constant

magnitude relative to the earth.

The author is indebted to Prof. A. Weinstein for his advice and criticism.

2 Levi Civita and Amaldi, I.e., derive a corresponding result, namely

iAff* + }Cs' = const.

for the general gyrocompass. (A and C are the transverse and axial moments of inertia respectively.)

They then explain it by energy considerations. In fact, however, this equation and therefore also their

reasoning is not strictly accurate. The exact form is

iAd* + JCi' + i(C — A)W cos* X sina 8 = const.


