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CANTILEVER BEAMS OF UNIFORM STRENGTH*

BY

I. OPATOWSKI

Armour Research Foundation

1. The object of the paper, its methods and results. The problem of shaping a

beam from a given amount of material in such a manner as to obtain maximum

strength requires that the maximum stress of each cross section be constant. In the

case of bending, the classical treatment of this problem1 '2'M is based on the theory of

beams of constant cross section, the influence of shearing stresses and of the weight

of the beam being neglected. A collection of solutions of this elementary problem,

for rectangular and circular cross sections, is given in the Hiitte handbook for engi-

neers.5 If the strength of the material is relatively low, the weight W of the beam

cannot be neglected. This occurs in certain concrete structures, such as reinforced

concrete bridges, and was demonstrated by Gaede6 in his treatment of a cantilever

of rectangular cross section and constant width, the external load being a force F at

the free end.

In the present paper, we shall consider cantilevers of more general cross section

but with the same type of loading, except in §6 where more general loading will be

considered. Let us denote by x the distance from the free end, by A (x) the area of the

cross section and by S(x) the section modulus (5 = M/a, where M is the bending mo-

ment and a is the maximum stress). The bending moment M(x) =<rS(x) at the dis-

tance x from the free end is then given by

Fx + 7 f1 (* - &A «)# = <rS(x) (1.1)
J 0

where 7 denotes the density of the beam material. The total weight of the beam equals

7 fLA(Z)dZ = W (1.2)
J o

where L is the length of the beam. Since a is constant along the beam, differentiation

of (1.1) with respect to x yields

* Received March 20, 1944. This work has begun at the University of Minnesota and was completed

at the Armour Research Foundation. Presented to the American Mathematical Society under different

titles at the meetings of September 12-13, 1943 and February 25-26, 1944. The author is indebted to

Professor G. E. Hay for many valuable improvements which were included in the text of this paper.
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F + v f A(m = *S'(x), 5(0) = 0, (1.1')
J o

yA(x) = oS"(x), 5(0) = 0, aS'(O) = F, (1.1")

where the primes denote derivatives with respect to x. By use of (1.1') we can write

(1.2) in the form
oS'{L) = F + W. (1.2')

We note that (1.1') and (1.1") are forms of the well-known equations of equilibrium

of a beam, Q = M', q = M", where Q, q are respectively the shearing force and load

per unit length.

If the section modulus is assigned, A(x) is given by (1.1") and the problem is

solved. In general however there are no criteria for the choice of the function S(x);

instead, some geometric characteristics of the cross section are assigned. Problems

of this type are treated in the present paper in a general manner. They involve an

integral equation (cf. Blasius7). Its solution may involve almost any of the classical

special functions. Some simple cases leading to hyperbolic, Bessel and elliptic func-

tions are discussed. The possibility of using Legendre, hypergeometric, Lame and

some other functions is indicated.

2. The type of beam. Throughout this paper we shall limit ourselves to cantilevers

satisfying the following conditions: the line of centroids is a horizontal straight line

(x-axis); each cross section has a vertical axis of symmetry (F-axis). In the plane of

the cross section we choose a system of orthogonal Cartesian coordinates (U, V) with

origin at the centroid C. In the vertical plane through the x-axis, we choose a system

of Cartesian coordinates (x, y) with origin at the free end and y-axis directed down-

ward. We assume that the curves bounding the cross sections are representable by

the equations
U = u(x)ui(t), V = v(x)v\{t), (2.1)

t being a parameter. The functions u^t), Vi(t) determine the shape of the cross sec-

tion, whereas the functions u(x) and i;(a;) represent the change of the cross section

along the axis of the beam. Any two cross sections are obtainable from each other by

a transformation of dilatation8 which depends on the position of the cross sections.

We will choose Mi(/) and Vi(t) in such a manner that u(x) and v(x) be 2^0.

3. General equations. It is easily seen that S=I/Vm, where I is the moment of

inertia of the cross section about the Z7-axis, and Vm is the maximum value of V.

Thus, if a is the area enclosed by the curve U = V = V\(t) and /3 the corresponding

section modulus, we have

5 = Pu(x) [»(x)]2, A = au(x)v(x). (3.1)

If we set a =ay/(aP), the substitution of (3.1) into (1.1), (1.1"), (1.2), (1.2') gives

Fx+ayf (x — £)«(£)»(£)<*£ = o&u{x) |w(a;)]2, (3.2)
J 0

7 H. Blasius, Trager kleinsler Durchbiegung und Stake grosster Knickfestigkeit bei gegebenemMaterialver-

brauch, Zeit. f. Math. u. Phys., 62, 182-197 (1914).
8 The writer is indebted to Prof. H. Busemann for this geometric terminology.
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(mv2)" = auv, o = 0, o = i7, (3.2')

af u(x)v(x)dx = W/y, (3.3); <t/3(mi>4)'^z. = F + W. (3.3')
«/ o

If !>(;e) is known, (3.2) is a Volterra integral equation in u(x) with the kernel

(oc: — ̂ )/[w(rc) ]2. This kernel is a continuous function, within the interval of integration,

if i>(0)?^0, because we assume !>0t) continuous and by its physical meaning it must

be 5^0 for x>0. Therefore, according to the general theory of integral equations,9 if

v(0)^0, Eq. (3.2) has one and only one solution u(x) if Fp^O and only a meaningless

solution m = 0 if F = 0. In other words, a cantilever of uniform strength under the ac-

tion of its own weight alone must be such that »(0) =0.

4. Particular types of cantilevers of uniform strength. These are obtained by as-

suming particular forms for u{x) or v(x).

I), v is constant. The cross sections have constant height. If Fj£0 the integral of

(3.2') is
u — Fr(ayv)~1 sinh (rx) (4.1)

where r = (a/v)m. Substitution from this equation in (3.3') gives the following condi-

tion for W:
cosh (rL) = 1 + (W/F). (4.2)

If F=0 no solution exists, which is in accordance with the general statement of §3,

because here »(0) ^ 0.

II). v{x) is a linear function of x. The cross sections have linearly varying height.

We may restrict ourselves to the case

v{x) = c ± x (4.3)

since if x had a coefficient different from +1, the coefficient could be factored out and

included in the function Vi(t). Also, since we agreed to take v(x) S; 0 (cf. §2) and x = 0

represents a point of the beam, c must be ^0. Since dv= ±dx, the solution of (3.2'),

(3 3') is10
u = xr*itZ1(2ial'iv1ii), (4.4)

where Z\ is a cylindrical function of order 1 which must satisfy the conditions

Zi(2ia1/2c1/2) = 0, ± tr/3a1/2tZ0(2ta1/2c1'J) = F, (4.5)

± <rj9a1/2iZ0[2ta,/2(c + Z,)1'2] = F + W. (4.5')

The second equation in (4.5) and Eq. (4.5') are obtained by use of the formula10

Z{ (a;) =Zo(x) —x^Ziix). We put

Z1(2iaI/%1/S) = A iJ i(2 ia'2 v'2) + BH^ia* *), (4.6)

where Ji and Hare the Bessel and the Hankel functions of the first kind and first

order.10 Equations (4.5), (4.5') then give the following conditions for A, B and c:

■ See for instance R. Courant-D. Hilbert, Methoden der mathematischen Physik, vol. I, 2nd Edition,

Julius Springer, Berlin, 1931, pp. 119, 120, 133; or Riemann-Weber, Die Differential- und Integral-
gteichungen der Mechanik und Physik, vol. I, 7th Edition, F. Vieweg, Braunschweig, 192S, pp. 426-428

or E. Hellinger-O. Toeplitz, Enc. d. math. Wiss., vol. II. 3, pp. 1459, 1460.
10 E. Jahnke-F. Emde, Funklionentafeln mit Formeln und Kurven, 3rd Edition, B. G. Teubner,

Leipzig, 1938, pp. 128, 144-147, 224, 237, 242.
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AiJ1{2ianc'i) + BHi\2iamcm) = 0, (4.7')

- AJoVia'Y'2) + BiHo1\2ia'V2) = ± F/{apa'2), (4.7")
1/2 (1) 1/2 1/2

- AJ0[2i(ac ± aL) ) + BiH0 [2i(ac ± aL) ] = + {F + W)/(aPa ). (4.8)

We discuss first the case c = 0, i.e., f(;c) = x (the lower sign in (4.3) has no meaning

here, since v must be SiO). The free end of the cantilever is represented byw = a: = 0.

Therefore, since ■ffp'(O) = °°, the constant B must be zero. Since /i(0) =0 and /o(0)

= 1, Eqs. (4.7'), (4.7") require that A = — F/(<T^a112), and Eq. (4.8) gives

J0(2io1/2Z-1/2) = 1 + (W/F).

If L and W are not related by this equation, the constant c must be distinct from

zero. The determinant of the coefficients of (4.7'), (4.7"), considered as equations

in A and B is, by a known relation of Bessel functions,10

- Ho1\z)Ji(z) = - tTV'V172, (4.9)

where z = 2iall2c112. Since this cannot be zero it is seen that there are no solutions if

F=0, which agrees with the general result of §3. If F^O, the solutions of (4.7'),

(4.7") are

A = ± 7T(apf1c'2FHl1\2ialY2), B = + tWV^FiJtfia1?*). (4.10)

Substitution from these into (4.8) gives a relation for W,u

xa,/V/,[/l(«)ffS1)G') - Z^'m/cG-)] = 1 + (W/F), (4.11)

where z = 2£ = 2i(ac+aL)112.

III). u(x) is proportional to [t>(a:)]n. This includes a circular cross section (« = 1),

a rectangular cross section of constant width (« = 0), a rectangular cross section with

the height proportional to the width (n= 1), an elliptic cross section with axes pro-

portional to each other (n = 1). By a suitable choice of Ui(t) and Vi(t) we may reduce

the problem to the case u=vn. The first two equations in (3.2') then give

x = f v"+l[C2 + 2a(n + 2)-!(2« + SyV+^-^dv, (4.12)
J 0

where C is a constant. The last equation of (3.2') and Eq. (3.3') give

<r/3C = F/(n + 2), W = [F2 + (n + 2)(2« + 3)~'2yaa^lf'2 - F. (4.13)

If n = — 1 the cross sections have a constant area; this case gives elementary expres-

sions for u(x) and v(x) but the width at the free end is infinite. When n — 1, the in-

11 By (4.3) the possible range of L is (0, + °°) or (0, c). The left hand side of (4.11) is within this range

a function of L which increases continuously from 1 to + «>, as may be shown by the theory of Bessel

functions and by (4.7'), (4.9), (4.10). Therefore for any assigned values of F, W, a, c there exists, in each

case (4.3), one and only one value of L satisfying (4.11). Problems of this type in which the length L is

not assigned but a given amount of material is to be distributed into a cantilever of uniform strength

under the action of F and W or W alone have occurred in some biological fields (cf. C. Holtermann,

Schwendener's Vorlesungen iiber mechanische Probleme der Botanik, Leipzig, 1909, pp. 18, 19 and O. Fischer,

Enc. d. math. Wiss., IV.8, p. 119).
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tegral in (4.12) is hyperelliptic; when n = 0, it is elliptic. If .F = 0, Eqs. (4.12) and (4.13)

give
v = o[2(2» + 3)(« + 2)]"1*2. (4.14)

IV. More general cases. Instead of u and v we introduce new variables u> — ww2,

t = 1/f; w is directly proportional to the section modulus, and r inversely proportional

to the radius of gyration of the cross section. From (3.2) we obtain

Fx + ay f (x — t)r(t)u(()d£ = <r/3u>(x). (4.15)
J o

This is a Volterra integral equation in u(x). From it, or directly from (3.2'). (3.3')

we have

w"(x) = aT(x)u(x), «(0) = 0, <7/Sco'(0) = F, afa'(L) = F + W. (4.16)

Since most of the so called special functions satisfy linear differential equations of

second order, the first equation of (4.16) suggests the possibility of using such func-

tions. The following are some results which may be easily checked. The constants

p, q, s, a must satisfy the last three equations in (4.16).

IVa). r{x) = p — qe2x, o)(x)=Zm(nex), where Zm = a cylindrical function (Bessel,

Hankel, etc.), m* = ap, n2 = aq.

IVb). r{x)=p — q{cosh *)~2, u(x) =^m,(tanh x), where = an associate Le-

gendre function (Pim\ Q(„m)), mi = ap, w(n + l) =aq.

IVc). r{x) =p — q cos x, u(x)=a function of an elliptic cylinder.12

IVd). T{x) = (p — qx-\-x2)/(kax'1), u(x)=a confluent hypergeometric function.12

IVe). r(x) = (p— qx')/x2, u(x) =xll2Zm(nx'n), where Zm = a cylindrical function,10

m2si=l+4ap, n*s2 = 4aq. If p = 0, in order that v be finite s must be <2.

If the function v(x) = 1/t(x) is assigned by means of any one of previous expres-

sions for r, the function u =oir2 is determined by the corresponding expression for

co(;c). In the case of a rectangular cross section, v(x) represents the height and u{x) the

width.
S. The deflection curve. The curvature of the geometric axis of a beam of con-

stant strength in bending is1,2-41 /r = h/v{x) where h=<r/(Evm), E being the modulus of

elasticity and vm the value of vi(t) at the point of maximum stress (cf. §2). We note

that this equation is a form of the well-known relation a = Ey/r. For small deflections

the usual approximation is l/r=diy/dxi. Thus

y(x) = — j" tp(x)dx, v(x) = h J' [»(x)]-1</a;, (5.1)

since
y( 0) = 0, (dy/dx)z-L = 0. (5.2)

A simple formula for the deflection at the free end is obtained through integration

of (5.1) by parts. Setting —y(L) = V, we have

/ /• L \ x=L /» L f L

Y = h\x I [»(:«)+ h I [v{x)]~1xdx = h I [v{x)\~lxdx. (5.3)
V J x ) x=0 J 0 J 0

12 E. T. Whittaker-G. N. Watson, Modern analysis, 4th Edition, Cambridge University Press, 193S,

pp. 337, 405.
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It is seen from (5.3) that, if f(ic) tends to zero as kxn with w^2 and k is constant, the

deflection Y is infinite. This would Occur, for instance, in the case corresponding to

Eq. (4.14). Such a physically impossible conclusion may be explained by the fact that

a large value of n implies a rapid variation of v(x), i.e., a rapid change of the cross

section, whereas the theory which was used is based on bending of beams of constant

cross section.13 More important still, the theory used in this paper neglects the shear-

ing stresses in comparison with the bending stresses. Such a procedure is not permis-

sible in the vicinity of the free end, and consequently it is understandable that the

theoretical results for this part of the beam differ widely from reality.

6. More general loads. If M(x) is the moment of the external load acting on the

cantilever, we have instead of Eqs. (1.1"), (1-2')

M"(x) + yA(x) = <tS"{x), aS( 0) = M(0), <rS'(0) = M'( 0), (6.1)

aS'(L) = M'(L) + W. (6.2)

For example, if the beam is acted upon by F and also by a load distributed uniformly

along the axis of the beam of intensity T, we have M(x) = Fx-\-%Tx2. If i» = const.,

we obtain by (6.1), (3.1), and (6.2),

u = [Fr sinh (rx) + T cosh (rx) — T]/(ayv) (6.3)

cosh (rL) + T(Fr)~1 sinh (rL) = 1 + (W + TL)/F, (6.4)

where r = (a/v)112. If 2" = 0, Eqs. (6.3), (6.4) reduce to (4.1), (4.2). Eqs. (6.3), (6.4)

may be easily generalized to the case M(x) =?.anxn.

7. Numerical examples. We consider a rectangular cross section of width 1 pnd

height H. Then (cf. §3) a = H, vm = H/2, /3=i72/6, a = 6y{aH)~1. Let L= 10 ft.,
/?= 9000 lbs., <r = 75000 lbs./sq. ft., y = 150 lbs./cu. ft., £ = 45 X107 lbs./sq. ft. These
values correspond to a certain type of concrete.

I). Cantilever of constant height (§4, Case I). We put //= 1 and assume the height

vH=® = 1.9 ft. From (4.2) we obtain the weight W=3000 lbs. We put i? = [67/(crzO ]1/2.

Then R = 0.0795. From (4.1) we obtain the width

u(x) = FR(v7)-1 sinh (Rx) = 2.51 sinh (0.0795a;).

At the fixed end we then have u = u( 10) «2.21 ft. Equation (5.3) gives for the deflec-

tion F = ffL2/£t)«0.1 in.

II). Cantilever with a linearly varying height (§4, Case II). Let the height at the

fixed end be 2 ft. and at the free end 1/4 ft. In (4.3) we take v{x)=c-\-x. Since

Hc= 1/4 ft.,H(c+10) = 2 ft., we get H = 7/40, c = 10/7 ft. Eqs. (4.10) give A =-69.1,
B = 29.0, and from Eqs. (4.4), (4.6) we obtain

u = v 3/2[— 69AiJi(i£) + 29.0ffi1)(i£)], where £ = 0.8(3^/7) ' . (7.1)

At the fixed end a: = 10, and we thus obtain 2.2 ft. At the free end, v — c and by

(4.4), (4.5) we have the general result m = 0. From (4.5') or (4.11) we get the weight

IF«4800 lbs. From (5.3) the deflection is

  Y = 2cr(EH)~l[L - c loge (1 + L<rl)] ~ 0.2 in.

13 A method which takes into account the variability of the cross section was worked out by J. Resal,

Resistance des materiaux, Paris, 1898, pp. 393-405 for rectangular and double T cross sections of con-

stant width.


