
12

ON THEODORSEN'S METHOD OF CONFORMAL MAPPING
OF NEARLY CIRCULAR REGIONS*

BY

S. E. WARSCHAWSKI

Washington University

1. Introduction. In determining the complex velocity potential of the two-dimen-

sional flow around an airfoil, one is lead to the problem of finding the analytic funfc-

tion which maps the exterior of a circle conformally onto that of a "nearly circular"

contour. T. Theodorsen developed a method for the practical computation of this

mapping function, a method which was later elaborated on in a joint paper by

Theodorsen and I. E. Garrick.1 Theodorsen reduces the problem of determining the

mapping function to the solution of a certain non-linear integral equation which

then is solved by successive approximations. In both papers examples of wing sections

of airplanes are calculated demonstrating the use of the process and the rapidity with

which it converges. However, the validity of the method from a mathematical point

of view, such as the proof of the convergence of the successive approximations, is not

discussed. The present paper is an attempt to supply such a discussion. Simple con-

ditions on the nearly circular contour (essentially involving the tangent angle and the

curvature) are established which insure the convergence of the process. The absolute

value of the difference between the mapping function and the successive approxima-

tions is estimated. These estimates serve both to prove the convergence and to ap-

praise the accuracy of the approximation. The analogous problem for the derivative

of the mapping function is treated. (The derivative of the mapping function enters

in the computation of the velocity and pressure distribution on the surface of the

wing.) Finally, conditions are discussed under which the map of the circle by means

of the successive approximations is star-shaped.

Although Theodorsen's method is of particular importance in the theory of air-

foils, it represents the solution of a general problem in conformal mapping. For this

reason all results of the present paper are derived for the "standard" case where the

interior of a circle about the origin is mapped onto the interior of the nearly circular

contour containing the origin under preservation of the positive line element at the

origin. However, all results obtained remain the same for the mapping function of

the exteriors and for a different normalization of the mapping function (see §3).

Sections 2-8 contain the actual results and proofs of the paper. To simplify the

presentation some auxiliary results used in the text are listed in §9.

2. Theodorsen's integral equation and the successive approximations. Let C be a

simple closed curve represented in polar co-ordinates by the equation p=p(d)

(O:S05S27r), where p(6) is absolutely continuous2 and for some e (0<e<l),

* Received May 9, 1944; presented to the American Mathematical Society, November 26, 1943.

IT. Theodorsen, Theory of wing sections of arbitrary shape, NACA Tech. Rep. No. 411 (1931);

T. Theodorsen and I. E. Garrick, General potential theory of arbitrary wing sections, NACA Tech. Rep.

No. 452 (1934).
2 A function g(6) is absolutely continuous in an interval if its derivative g'(0) exists for all 6 of this
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£ p(«) £ «(1 + e), (2.1)
1 + *

a being a positive constant, and
P'(e)

^ (2.2)
pW

Any curve C satisfying these conditions will be called a nearly circular contour.

Let us suppose that the function w=f(z) maps the circle |z| <1 conformally onto

the interior of C, and that /(0) =0, /'(0) >0. The function

/(z)
F(z) = log — = log

/(z) /(z)
+ i arg ■> (2.3)

z

which is defined as the real-valued log/'(0) when z = 0, is single-valued and analytic

for |z| <1 and continuous for |z| ^1. For z = e'* we write arg [/(e**)e-'*] = 0(0) — 0,

and therefore

F^*) = log P [0(0) ] + i(0(0) - 0). (2.4)

Hence

1 f1 t
0(0) - <t> = - — I {log p[e(<t> + t)] - log p[0(0 - /)]} cot —dt. (2.5)

2ir J o 2

(The term arg [/(z)/z ]*_<> = arg/'(()), which should be added to the integral on the

right, is zero.) Thus the function F(e'*) and hence /(z) may be found by solving this

integral equation for 0(0). The existence of a continuous solution of this integral equa-

tion is assured by Riemann's mapping theorem. This solution is also unique as is

shown in §9(a). In order to compute the solution we follow Theodorsen and form the

successive approximations

6o (<t>) = <t><

1 CT t
0«(<#>) - 4> = - — I {logp[0n-i(4> + <)] - logp[0„_!(0 - <)]} cot —dt, ]

2w J o 2

(» — 1, 2. — )J
(2.6)

The functions 0„(0) are continuous for 0 iS<£ in fact, they are absolutely continuous

and the squares of their first derivatives are integrable (for the proof of this, see

§9(b)); 6„(<t>) —<f> is a conjugate function of log p [0„_i(<£) ].

We shall show that the sequence 6n(4>) converges uniformly to 0(0) as n—> =o. Hence,

also log p[0»(0)] converges uniformly to log p [0(0) ] as n—> =o, so that the functions

F0(eie) = log a, Fn(e'*) = log p[0„_!(0)] + i(dn(<t>) - 4>) (« ^ 1). (2-7)

may be used to compute F(e{+) with any desired degree of accuracy.

Let F„(z) denote the function which is analytic for | z| <1 and assumes the bound-

ary values Fn(e**) for | z| =1. By the principle of the maximum modulus the uniform

interval except possibly for a set of Lebesgue measure zero and if Jlg'(6)d6 = g(b) —g(a) for every a and b

of this interval. In order to establish the convergence of Theodorsen's method under reasonably general

conditions, we employ the integral of Lebesgue.
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convergence of FJe^) to Fie'*) implies that Fn(z) converges to F(z) uniformly for

|z| sSl, and thus the functions /„(z) = zeFn(*) converge uniformly for |z| gl to the

mapping function/(z).

In order to prove the convergence of the functions 0„(4) and 0„' (</>) we shall derive

estimates for the differences | 0„(4) — 0(4) | and | 0n' (</>)— 0'(4)| in terms of e and n.

These differences approach zero as n—»«, and will at the same time permit us to ap-

praise the degree of accuracy of the nth approximation.

Remark. Theodorsen considers the case where the exterior of a circle | f | =R is

mapped onto the exterior of a "nearly circular" closed curve T whereby the mapping

function w = g(f) is so normalized that limf,M w/f = 1. This case is immediately reduced

to the one considered above by means of the transformations w=u~1 and z = i?/f. Let

us suppose that T is represented by the equation r=r(@) (O±S0 ^2ir), where, for some

positive b and 0<e<l, 6(1+ e)-1 =K©) ^6(l + «) and |r'(0)/r(0)| ^«. Then the

function w =/(z) = l/g(f), where f = R/z, maps the circle |z| <1 onto the interior of

the nearly circular contour C represented by the equation p = p(0) = l/r(0), where

6= —0 and p(0) satisfies the conditions (2.1) and (2.2) with a = b~1. Forf = Re'*, we

write arg [g(f)/f] = ©W0 —if', where arg [g(f)/f] is defined as 0 when £" = oo. Then, for

f = i?ei* and z = e'* where </>= —if',

<r(f)
log   = log r[0(^) ] + i(0WO - i) - log R

r
/(z)

= - log log R
z

= - log p[0(4)] - i(0(4) - 4) - log R.

Thus one can form the successive approximations ©„(^) for the function 0(4) in the

same manner as the 0„(4) are formeci for 0(4)- Furthermore, 0n(^) = —0„(<f>), 4 = —<j>

and 0»WO — 0(^0 = — (0n(4) — 9(<t>)). Hence any bound obtained for 10„(4) — 0(4) | is
also a bound for 10n(^) — @(<A) |, and the same remark applies to the derivatives of

these differences.

3. Statement of results. We shall prove the following estimates:

I. If C is a nearly circular contour, and if 0n(4) and 6(<f>) =arg/(e'*) are defined by

(2.6) and (2.4), respectively, then

I / V'4
\en(<t>) - 0(*)| g 2fy- -J (3.1)

The bound for | 0n(4) — 0(4)1 obtained here approaches zero as n—>°o (since

0<€< 1) and is therefore sufficient to establish the convergence of the functions

0„(4) to 0(4). However, a bound which converges to zero more rapidly can be found if

a further assumption regarding C is made.

II. If C is a nearly circular contour and if

p'(02) p'(0i) | |
ZT\ 7TT (3.2)

p(9 2) p(0 i)

e being the same as in (2.1), then

| 0n(4) - 0(4) I ^ (2wA(n + l))1'^1, (3.3)

where A = 4'e"2.
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The following result is obtained for the derivatives 0„' (<t>).

III. If C is a nearly circular contour, if (3.2) holds, and if p{9) = d[p'(9) / p(9)]/d9
satisfies the condition

\ 'p(e2) - p(0!)\ g«|0i-0i|, (3.4)

e being the same as in (2.1), then

I e: (<t>) - 0'(</>) I g y/2x<r„ (A (n + 1))" V+>, (3.5)

where A =4'e'2 and
n

o-i=l + €, an = (1 + e)II (1 + eV^TF). (3.6)
k=2

For all n,

<r„ ̂  (1 + e) exp [2e\GZ~(l ~ e)~3/2], (3.7)

so that <rn is bounded if 0 < € < 1.

Estimates for the difference | Fn{z) — F(z) |, |z| ^1, may be obtained from those

for | 9n(4>) — 0(0) |. For by (2.2),

| Fn{e*) - F(e^) | {e2(9„_!(<*>) - 0(0))' + (0„(0) - 0(0))'}^

and for | z\ ^ 1

| Fn(z) - F(z) | g max | Fn(e») - F(e») \.

Thus, for example, in case II we find by use of (3.3) that

| F„(z) - F{z) | S 2(^tt(« + §))»/*«*".

Hence, if 0 < e < 1, the successive approximations Fn(z) converge uniformly to

F(z) = log [f(z)/z] when |z| gl. An analogous statement applies to the derivatives

d [,Fn(rei*)]/30 and d [F(re**) ]/d0.
To prove the three theorems I, II, and III, we shall first derive bounds for the

square means

(3.8)

M„ = — f (0„(0) — 0(0)) d<f>, M'n = — T (0^(0) — d'(<t>)) <**.
Z7T •/ o 27T */ o

Ml'' = ̂  f (0,(0) - »"(*)) V
27T 0

The above results will then be obtained by use of the inequalities (see §4(c))

| 0„(0) - 0(0) | ^ (2xMnM,/)1'2, | 0n' (0) - 0'(0) | (2xMn'Mn")>/2.

The functions /„(2) =zeFn<-z'> map the circle |z| =1 onto closed curves Cn. Since

the functions /„(z) are to be used as approximations to the mapping function /(z),

it is essential to know that the C„ are simple closed curves. This will certainly be the

case if the C„ are star-shaped with respect to the origin. (A closed curve is star-shaped

with respect to the origin if every ray from the origin intersects the curve in exactly

one point.) Knowing that C„ is star-shaped has the additional advantage3 that 0„(0)

3 Cf. Theodorsen and Garrick, I.e., pp. 184-185.
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is then an increasing function of <f> and therefore possesses a unique inverse function

4>—<pv(d). This permits us to form immediately the inverse z = ei*n(e) of the mapping

function w=f{z) for w on Cn■ We examine therefore the question when the Cn are

star-shaped, and obtain the following result:

IV. If C is a nearly circular contour and if the condition (3.2) is satisfied, then the

curve C\ is star-shaped with respect to the origin if e (2 log 2)-1, C2 if e^0.34, C3 if

6 5J0.31, and C4 if e = 0.3. For all C„ are star-shaped if e^0.295.
This result is derived by examining the values of e for which | OJl (<t>) ~ 11 = 1, so

that 8„ (<£) ̂ 0 and 0n(<t>) is therefore monotone increasing. For large values of n (n 2:4)

a more favorable estimate for e may be obtained by making use of (3.5) and of a lower

bound for &'(<!>) which is given in §9(d).

4. Proof of I. (a) Estimate of Mn. Let F(e'*) and Fnie**) be the functions in

(2.4) and (2.7). Because of the representations of 9(<j>)—<t> and 6„{(t>)—<j> by means of

the integrals (2.5) and (2.6), respectively, we have

/» 2t /» 2*
(0(<#>) - 4>)d4> = 0. I (6J<f>) — 4>)d<j> = 0. (4.1)

o J 0

We now apply the following well known theorem:4 If the function g(4>) is real-

valued, periodic {period 27r), and (g(4>))2 is integrable (in the sense of Lebesgue) 0 i=4> ̂ 2ir,

and if £(<£) is a conjugate function of g(4>) (then surely existing), then

2ir
•where

r f" [*(*)]«* + ^ f " k(*) ]*d<t> + /32. (4.2)
-7T J o J 0

l r 2t l rJx
a = — I g(<t>)d<t>, P = — I g{<t>)d<t>.

Zir J o 27T J 0

Applying this with g{<t>)+ig{<t>) = Fn(ei*) — F{ei*) and observing that /3 = 0 (be-

cause of (4.1)), we obtain

2 1 /• 2r ^ 1 /• 2r

Mn = — I (en(<t>) - 6(<j>)) d</> g — I {log — log p[0(</>)]}2d<j>. (4.3)
Zt J 0 Z-TT J 0

By hypothesis (2.2),

| log p[0„_i(0)] - log p[d(4>) ] | g e | 0„_i(</)) — 0{<t>) |,

and therefore

2 2 1 /* 2T 2 22
Mn ^ t — I (0n-i(</>) — 6(<j>)) d<t> g t M„_i,

27T 0

or

Mn ^ «M„_i, Mn g Mo«n.

For w = 0 we obtain from (4.2) by use of (2.1),

2 1 r2r 2 1 r2x/ p[0(<#>)l\2
Mo = - (*(*) - 0) dd, g - f (log^-^J) d<t> ^

Lit J o 2ir«/o \ a /

4 See, for example, A. Zygmund, Trigonometric series, Warsaw, 1935, p. 76 (Eq. (4)).
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Thus we have proved that if p(9) satisfies hypotheses (2.1) and (2.2),

M„ ^ e"+l. (4.4)

(b). Estimate of M„ ■ It follows from §9(b) and §9(c) that F„(e^) and F{e{*) are

absolutely continuous and that {<Z[.F„(e'*)]/<2<£]}2 and {d[F(e'*)]/d$}2 are integrable.

Furthermore, because of the absolute continuity of F„(e**) — F(e{*), the imaginary

part of the derivative d {Fn{e**) — F(e*)} /d<t> is a conjugate function of the real part.

Finally,

fS' F{e»)d+ = [*(«<♦) ]*"'* = 0, f " ^-F.(«*)d* = 0.
J o d<t> * J o d<f>

Hence, applying (4.2) with g{<f>)-{-ig{(f>)=d[Fn{ei*) — F{ei*)]/d(f>, we obtain6

M'n2 = f 2T(e'n(4>) - e'mW
2t J o

= ~~ f"' K-iWK-iW - — [»(*)K(*)V V (4-5)
2tJ o \ P P "

By (2.2) we have (omitting the argument <t> in the integrands)

M't g2 tT(d'nli + e'W (4.6)
2tc J o

As is shown in §9(c),
,2x 1

If2r J o
  (4.7)
1 - t2

Furthermore, applying (4.2) with g{4>)+ig{<t>) =d[Fn(ei*)]/d<i>, we obtain by (2.2),

i rv - D2d4>=1 riT(- ^ f f
2tJq 2v J o \ p / 2x •/ o

or

!{/* - 2 JiTe'nd<t> + 2tt| g es i- J

Since J*On d4> = 2ir, we find that

i riT * 2 i r2' ,2
— | 6nd<t> — 1 « — I 0„_id<£.
2tt •/ o 2* •/ o

2 1 rs* '2,
n = — I 0» <*<£,

2ic J a

If we set

m

we have fw„2^l+»wn2_ie2, and therefore

2 2 4 2n 2

w„ ^ 1 —(— e -f- € -)-•••+€ »Wo.

Since

6 The notation—[e] or (p'/p)[fl] means p'(8)/p(0).
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we obtain

2 1 C2t

Wo — — I d<f> = 1,
2ir J o

Thus by (4.6), (4.7), and (4.8),

ml ̂  (1 - «*) \ (4.8)

Mn ^ 4«2/(1 - 6s). (4.9)

(c) Estimate of | dn(4>) — 8 ((f)) |. To complete the proof we now apply the follow-

ing theorem: If g(<j>) is a real-valued, absolutely continuous and periodic Junction

(period 2it) and if (g'(<£))2 is integrable, then for any <£0,

[*(*)]■ " [^o)]s ^ 2rMM', (4.10)

where

M* = ^ f T [g(4>)]2d<t>, M'2 = r~ f *[g'(4>)]2d<t>.
2ir J o 2tt J o

The factor 2ir is the "best possible" constant-, it cannot be replaced by a smaller one.6

Let g{<t>)=0n{<t>)—0{<t>). Since then g(0)d<t> = 0, there exists a value <f>o such that

g(0o)=O. Hence

10n(</>) - 0(0) | g (2ttMnM:y*.

Using (4.4) and (4.9), we find (3.1).

5. Proof of II. (a) Estimate of M„ ■ Under the present hypotheses an estimate

for Mn sharper than (4.9) may be obtained. We shall prove that if p(0) satisfies (2.1),

(2.2) and (3.2), then
Mn' ^ A(n + l)e"+1, (A = 4'e''). (5.1)

Using the relation (4.5) we obtain for n ^ 1,

m: = [*»->] - ~ + ~ - 00 J<**}1/2

ak/."(7[,-1-7[9l)W
1/2

6 To prove (4.10), we note first that for x, 0^<t>o^2ir,

• <t> f 4>-2r

g\<t>) - g\<t>o) - 2 f g(t)g\M = 2 f g(t)g'(t)dt. (♦)

/»<t> i | /»0—2*" | /»/»2*

I I ««'| dt + I | gg'\ dl = I | gg'| = I | gg'| it,
- (An I I ^ </>n I ^ d>—2T ^ 0' <f>0 ' ** 4>-i* ^ o

one of the two integrals in (*) does not exceed iflw\gg'\dt. Hence, by the inequality of Schwarz,

[«(<*>)]2 - [*(*)]» g C"\ gg'\ dt S 2,M'.
J 0

Applying (4.10) with g{<f>) =cos" <t>(<t>o = iir) and letting n—* °°, we see that the constant 2x cannot be re-

placed by a smaller one.
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by Minkowski's inequality. Under the present hypotheses we have by §9(d),

0 < 6'(<t>) ̂ A = 4'e'\

Hence, by (3.2) and (2.2),

Mi rs eA (0n_x - = e(AMn^ + Mn'_,),

and, therefore, by (4.4),

M.'g e(At* + 3fnL0, («£ 1). (5.2)

For n = 0, we have, using (4.2) and (2.2),

if2* l f 2*/V r n V A r2r
Mo'2 = — | (0' - l)2<fy = — I (— [0]0' I 6'dcf> = e2A.

2ir J o 2tt J o \ p / 2ir J a

This inequality proves (5.1) for n = 0. For 1, (5.1) is easily seen to be true by

induction. Assuming that it holds for some m^O, we obtain by use of (5.2),

Mn+1 g e(/Un+1 + A{n + l)e«+l) = A(n + 2)«"+2,

i.e., (5.1) is also true for n+1.

(b). Estimate of 10„(</>)— 0(<£) |. Applying (4.10), (4.4) and (5.1), we find

| 8n(4>) - 6(<t>) | g (2tMnM:yi2 g (2wA(n + l))»»e*«

6. Proof of III. (a). Some properties of the functions F(e<*) and F^e1*). Be-

cause of the hypothesis (3.4), Fie**) has a continuous second derivative for7 0^<f>S2ir.

The same is true for all F„(e{*) as is shown in §9(e). Differentiating Fie**) and Fn(e'*)

twice with respect to <j>, we obtain

dF or d?F pr
— = — [9]e' + i(e' - i), — = p[e]6'2 + — [e]e" + ie",
d<f> p d<t>2 p

dF n P r i ^ F ^ _ ,/2 P r lit f,
  =   [0„_l]0„_l + i{6„ — 1), = p\dn-l\dn-l H [dn-l]dn-l + tOn-
d<j> p d4>2 p

The present proof is similar to that of (II) and we estimate first

n r2- )1/sM„" = J (*«" - •

We prove that, for n ^ 1,

£ 42(m + l)V„€*"f (6.1)

where A =4'e's and cr„ w defined in (3.6).

(b). Proof of the inequality (6.1). Since

2* d2
— (F^e**) - F(e*))<ty = 0,

o d(j>2

' See, for example, S. E. Warschawski, On the higher derivatives at the boundary in conformal mapping,

Trans. Amer. Math.Soc. 38, 326 (Theorem III), (1935).
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we have, applying (4.2),

(M„+1) = — J — p[9])Q + />[0»](0>» — )

+ (— [».] - — [«]V' + — ~ 0")j V (6.2)
\p P / P J

Because of (3.2),

|/>(0)|^«. (6-3)

Using (9.3), (3.4), (6.3), (3.2), and (2.2), we find that

(M"+1)2 ;s£ f - e\ + \eC -d'2\ + \e"\\en-e\ +\e" - e"\\2d<t>.
2t J o

If Mn and Mi are defined as in (3.8), we have by Minkowski's inequality:

jCi ^ *[^» + ~ e'V^| '2

+

Since by (9.4),

and by (3.3),

we have

J" 2T(O2(0n - *)W| 1/2 + M:']. (6.4)

/ 1 /• 2r -V 1/2

Mo" = |—J (Os^J- ^^3/V2«, (6.5)

| 0n(*) - <?(*) | g (2x^4(» +

(i rir 11/2 -  
j— J (0n - d)2e"*d<t>j g (2xA(n + 1 )y2A3'W2 «"+2 = 2^!e"+V*(» + 1). (6.6)

Next, applying the theorem of §4(c) with = 61 (0) we obtain

(0„' - 0')2 g 2wMn Ml',

and taking the square root and using (9.3), we have

\e: +6>\s 2a + \/2ttmimi'.
Hence

(\ /*2x ) 1/2    

j— J («.'2 - 0'2)*d<f>| ̂  M„' (2/1 + \/2tA/„'M,") = 2AMI + Mls/2tMI Mi'.

Applying the inequality8 Ml S V7Mn Ml' to the factor Ml of the square root we

find that

8 If we set g(<*>) =0n(<t>)—e(,<t>), we have by integration by parts

= | [g(*)«'(*)]oT - /"«(*)«'W* |

s f"\ *(♦)«"(*)I d4> g j /;'U(,)]^.

This proves the inequalitv of the text.
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{ii* C"'2 - ' £ 2AM„ + (6.7)

Thus we obtain from (6.4) using (4.4), (6.7), (6.6) and (5.1),

M"+1 ̂  + 2^42(w + 1)€»+1 + 2Ah"+Wv(n + 1)

+ (1 + «n+\/2*v4(»+ 1))M»'},

and therefore

g ^42^n+2 J i + 2(„ + 1) + 2f\/T(n + 1) + (1 + en+1\/2irA(n +1)) — > . (6.8)
I A2en+i)

Assuming now that (6.1) is true for some 2, we see from this inequality that

(6.1) also holds for » + l. For, if we substitute in (6.8) for Afn" the right-hand side of

(6.1), we find that

Mn+i £ Ah«+*{1 + 2(» + 1) + 2V(« + 1) + (1 + 6"+V2ir^(« + 1))(» + 1)V„}.

For w^2,

1 + 2(« + 1) + 2«V*"(» + 1) < [l + 2(w + 1)](1 + t) < [l + 2(m + l)]«r„+1,

and therefore

M"+1 g ,4V+Vn+1(l + 2(« + 1) + (» + 1)') = Af(» + 2)Vn+1tn+2.

To complete the induction we show that (6.1) holds for n = 1 and w = 2. From

(6.2) with w = 0, we find that

Mi'= ~p[0W])e'2+pmi ~n ~ ~p 1/2

^ e - n2d<f>) 12 + Mo'Y| ,

by Minkowski's inequality and (3.4), (6.3), and (2.2). Applying (4.4), (9.3), (5.1), and
observing that by (9.4) M" ^y42«(l + «), we find that

/ 1 +A \
M{' ^ t\A* + (1 + A)A + ^2(1 + «)) = Ah*l2 + —— + el

Since .<4 2:1, (1+A)/A ^2, and therefore

Mi' g Ah\4 + e) < 4^42«2(1 + t). (6.9)

To prove (6.1) for w = 2, we apply (6.8) with « = 1 and Ml' replaced by .42«2(4-fe)

(see (6.9)), to obtain

Ml' ^ A V [5 + 2t\/2v + (1 + 2ei\/rA)(4 +■«)].

Since 2-v/2tt<6 and l+2e2\/ir]4 >1,

5 + 2(\/2t + (1 + 2e2\/irA)(4 + «) < (5 + 6« + 4 + e)(l + 2e2\/irA)

< 9(1 + t)(l + 2e2\/irA) = 32 <72,
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and, therefore
Ml' ^ 32atAh3.

(c). Estimate of 1(<£) — |. Applying the theorem of §4(c) with g((f>)

= On (</>) — 0'(<t>), we obtain from (5.1) and (6.1)

Now

| 0n'(0) - 9'(<l>) | g y/2mrn (A(n + 1))"V+1.

(d). Proof of (3.7). To estimate <rn we first note that

XI (1 + ek\/2irA k) ^ exp |\/27ivl
k- 2 L k= 2 J

n n / n n \ 1/2

= fEf,w)/,(v'if(W)/!) = H £ e*~' ̂  *e* r •
/c=2 A-=2 V A-=2 A:=2 /2 A-=2 V A=2 *=2

by the inequality of Schwarz. Hence

JL [ e / 1 \) eV2
 ( Of < 

t-. u - e V 1 - e2 n (1 - 3/2

We find therefore that <r„<(l+«) exp [2a/x^4 «2(1 — «)~3/2].

7. An integral representation for 0„' (<£). We shall discuss now the conditions under

which the images C„ of the unit circle by means of the functions w=fn(z) =zeJ?»<*) are

star-shaped. For this purpose we shall first establish the following representation for

On (</>). If C is a nearly circular contour and if the function p(0) which represents C satis-

fies hypothesis (3.2), then the derivative d,', (0) of 0n(<t>) is continuous and

i r*+r (p' p' 'I 1 ~ <t>
0i'(4>) - 1 = - — I {— (t) (<*>)> cot—— dt, (7.1)

2ir J t-r \p p ) 2

e:(<t>) - i = - ^ f {— K-iW] - — K-i(<^>)]}(?n-i(/) cot -—-dt
2ttJ\p p j 2

- — K_i(0)] — K-s(</»)K'-ste) (n ̂  2). (7.2)
P P

Proof. The integrand of (7.1) is continuous in both the variables t, <f> except pos-

sibly for t=cf>, and is bounded because of (3.2). Hence the integral (7.1) is a continuous

function of </>. Since this integral represents the conjugate function of (p'/p) [$] for

which the integral over the interval (0, 2-rr) is zero, it is equal to 9{ (</>) — 1, at least for

almost all <t>, and, because of the continuity, for all This proves (7.1).

Let us suppose it were proved that d{ (</>) is a continuous function when

& = 1, 2, • • • , n (reSil). We then show that the formula (7.2) holds with n replaced

by »+l, and that 0„'+i(<£) is continuous. This will then prove the representation (7.2)

and the continuity of 0„' (<j>) for all n.

Since F„+i(e<0) =log p[0„(0)]-H(0»+i(0)~ cf>) is absolutely continuous (see §9(b))

it follows that 0»'+i(0) — 1 is conjugate to (p'/p) [0n(<£) ]0» (0), and we have, for almost

all (/>,
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1 C * (p'r , 1 T=*+t t
e;+M) - 1 = - — I <— [9»W]9„'(r) cot — dt,

2tJ 0 \ p J r—<t>— t 2

the integral being convergent in the sense that limj,0 Js exists. We write

9n+l(<t>) — 1 = — — f "(  [@n(4> + t) ] [^n(</>) On (4> + 0 COt — dt
2irJ o \ P P ) 2

+ — f {— [9n(<t> -/)]-— K(0) ]} 8n (</> - t) cot — dt
2irJ o \ p p ' 2

- — K(<#»)] ~ f {dn'(4> + I) - e: (<f> — t) \ cot 4 dt.
p 2ir J o 2

Because of (3.2) and the continuity of 9„ the first two integrals represent continu-

ous functions of <f>. The third integral (without the factor — (p'/p) [#»(</>) ]) is equal to

(p'/p) [On -i(<t>)]0n since 0„' (<£) — 1 is conjugate to this function. Introducing the

variable r =<j>+t in the first integral and t=4> — t in the second, we obtain

1 r++T tp' . . p' . ^ t — <t>
6n+i(<t>) — 1 = — — I K(t) ] — — [0n(4>) ] f On (r) cot —-— dr

2ir J #_T K p p J 2

p p

The right-hand side of this equation represents a continuous function of <j>. Hence

6„+i(<t>) may be defined as a continuous function for all </>, and therefore 0„+i(0) has a

continuous derivative for all <f>. This completes the proof.

8. Conditions under which Cn is star-shaped. Proof of IV. The curve Cn is star-

shaped if 0„'(</>)£iO. By (7.1) and (3.2)

1 C *+«•
^ (0) _ 11 g -

Z7T J

« r *+T

2IT J a_t

p' p' t — 4>
— (t) (</>) cot   dt
P P 2

/ - 4>
(t — <j>) cot dt = 2e log 2.

Thus, if 2t log 2 ̂  1 or « ̂  (2 log 2)_1, then 0i' (<£) ̂ 0 and Ci is star-shaped.

Let us suppose it were proved that 0„' (</>) ̂0 for some »g£lf provided e does not

exceed some value €o<l. Then we examine 0„'+i((£). By (7.2), (3.2), and (2.2),

I On'+,(0) - 11 ̂ 4 f *+T w cot dt + €* 1I • (8-D
27T J f—T 2

It is to be noted that On(f)—dn(<t>) has the same sign as t—4> since (/) 2^0. We find

by integration by parts that

2 1
mn <= —

2t

r*+* t - <t> \ C++*/1?„(/) - en(<t>) y
I («.« - enM)o: (/) cot —— dt = - dt

J ^_T 2 2ir J if>—T \2 sin

_ j_ r "-/'»('> - < - Kw -»] + < - »yJf
25t«/ \ 2 sin %(t — 4>) )
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Hence by Minkowski's inequality,

1 f - * - K(<t>) - <*>]\2 ) 1/2< ii r+Y9-(/) ~ 1 ~ l9nW ~
" — (,2ir J t-w V 2 sin \{t — <t>) ) /

+ i± ["■( -* )v,i
(.2rJ t-r \2 sin \{t — <t>)/ )

t - <t>
cot dt = 2 log 2 = c2.

Integrating by parts, we find that

l /•*+»/ t - <t> \2 l r*+T
— I ( —; ) dt = — I (<-<*>)
2tt J J,-* \2 sin — </>)/ 2ir«/

Furthermore, by the theorem of §9(f),

J_ r *+T - t - [fln(4>) - <<>M 1 r^'/logp[0«-i(f)] ~ log p [»>-,(») ]V

2t J \ 2 sin f(< — <f>) / 2ir J t-r \ 2 sin \{t ~ 4>) )

By (2 2), the right-hand side of this equation is

2 i rt+'/e^t) - \2 » t
£= e — I I J d/ = € w„_i.

2tt J \ 2 sin !(/ — <#>)/

Hence

mn g emn.i + c.

Since ntg = c, we have
1 - «"+'

I <1 +«+ f! +•••+«")= £ 
1 — e

Hence, by (8.1),

2 . 2 r i - «-+i t
I 0„'+1(0) - 11 ̂  em'n + e* I »„'_!(«) I fS 2e I———J log 2 + 6*1 0n'_i(<#>) I. (8.2)

Applying (8.2) with n = 1, we find since Q£ (0 = 1 that,

I 01 (4) - 11 £ 2e(l + e)2 log 2 + «2, (8.3)

and this will be less than 1 if 6^0.34.

For » = 2 we find, since 8{ (<£)^l+2« log 2 and 6{(<t>)>0 for e<(2 log 2)_l, that

I 61 (<t>) - 11 2e(l + a + *2)2 log 2 + e(l + 2t log 2).

This expression will be less than 1, if e^0.31 (<(2 log 2)_l).

By (8.3), \di (0)| ^ 1.7927 if € = 0.30. Hence, applying (8.2) for « = 3 and using
this estimate for 61 (<f>), we find that 161 (<f>) — 11 :S 1, if € ̂  0.3.

Assuming that, for some «^1, O<0n'_i(0) ^2, we see from (8.2) that

i 2 log 2
| et+ito) - 11 S „ . t + 2? < l

(i - «)2

if e 0.295. Since for e ̂ 0.295 this assumption is certainly satisfied for n = 1 and n = 2,

it follows that for all n \ 0n'+1 (</>) — 11 <1 if <^0.295.
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Remark. For large values of n the bound for e can be improved by use of Theorem

IV and the left hand inequality in (9.3).

By Theorem IV, | 0„''(0) — 0'(0) | ^\Z2ir<rn(A (w+l))3/2en+1, and by (9.3), 0'(0)

^yl_1(l +e2)~1/2. For any given fixed n, e0can be chosen so that \Z2wa„(A (« +l))3/2eJ5+1

<A~'(1 +«o)_1/2. Then, for all e^e0, 6J (</>) ^0'(<f>)-A^il+e2)~1/2^0.

9. Auxiliary theorems. This section contains the proofs of some of the auxiliary

results cited in the text.

(a). Uniqueness of the solution of Theodorsen's Integral Equation. If C

is a nearly circular contour, the integral equation (2.5) has at most one continuous solu-

tion.

Let us suppose that it had two such solutions, 6i(0) and 02(0). Since

/» 2t /» 2r

I (0,(0) - fid* = 0, I (0,(4) - <j>)d<t> = 0,
J 0 *^0

it follows by use of the theorem cited in §4(a) that

M2 = ^ f (0,(0) - 02(0))2<f0 ^ f ' {log P[fl,(0)] ~ log p[0,(*))]}2^.
2ir J o 2tt J o

By (2.2),
|logp[0iW>)] - logp[02(0)]| g«|0i(4>) - 02(</>)|,

so that we have M2^e2M2. Since 0<e<l, M = 0 and hence 0i(0)=02(0).

(b). A property of the functions 0„(0). If C is a nearly circular contour, then the

functions 0„(0) defined by (2.6) are absolutely continuous, and (0„' (</>))2 are integrable

(in the sense of Lebesgue) for O:S0:S2ir.

This is clearly true when n = 0. We suppose that this statement were proved for

some w^O. Since log p(0) has bounded difference quotients (by (2.2)) and 0n(0) is ab-

solutely continuous, it follows that log p [0»(0) ] also is absolutely continuous. Further-

more, because of the inequality

(-[*„(*)e2(0n'(0))2,

it follows that the integral

/ (y [«»(*) K'(*)) d<t>

exists. Hence, the conjugate function of log p[0»(0)], namely 0»+i(0)—0, exists and

is absolutely continuous and the integral foT(9n+i(<t>) — l)2d<j> exists.9

(c). A property of 0(0). If C is a nearly circular contour, then 0(0) =arg/(ei*) (de-

9 We are using here the following theorem: if g(</>) is an absolutely continuous and periodic function

(period 2t) for 0S4>S2tt and if [g'(«#») ]* is integrable, then the conjugate function f(<#>) is absolutely con-

tinuous and (|'(</>))! is integrable. (See, for example, W. Seidel, Uber die Randerzuordnung bei konformen

Abbildungen, Math. Annalen 104, 223 (1931).
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fined by (2.4)) is absolutely continuous and (0'((/>))2 is integrable (in the sense of Lebesgue)

and
l r2r l

- e'Wl- r ■ (9.D
2ttJq 1 — e2

Proof. Since the curve C is rectifiable, the function F(e'*) is absolutely continu-

ous.10 Hence

^-F(e<*) -i = - [8(<t>)]e'(<t>) +
d<f> p

exists almost everywhere for ^2tt, and is integrable. Furthermore, the function

i = u{z)+iv(z), z = rei*, may be represented by the Poisson Integral in

the unit circle,

m(z) + iv(z) = — f {u(eu) + iv(eu)} ——    -   dt. (9.2)
2n J o 1 + r2 — 2r cos (/ — <t>)

For almost all <£(0=0 = 270,

lim u(re'*) = — [d(<f>) }d'(<t>) = w(e'*), lim i>(re'*) = 9'(<t>) = v(ei*).
r—»1 p r-» 1

Since C is star-shaped, 0'(</>) ̂0, and we have by (2.2),

»(e*) + «(e'*) ^ 6'(<t>)(l - e) ^ 0.

Because of the representation (9.2) we conclude that v(z) +«(z) jg 0 and v(z) —u(z) giO

for |z| <1. Hence v2(z) — u2(z) SiO for |z| <1. Now

l r2r
— I (v2(re%*) — u2(rel*))d<l> = 1.
2ir J o

Hence, taking the limit as r—»1, we obtain by Fatou's lemma

h f0 d'K4>) [! ~ (t- 01d4> -h
and by (2.2),

ll r2r 1

rJ. WMms —.

This proves that (6'(<t>))2 is integrable and that (9.1) holds.

(d). An estimate for and d"(<fi). If C is a nearly circular contour and if in

addition (3.2) is satisfied, then

—== ^ W) ^ A = 4v\ (9.3)
A\/l + e2

( \ r 2t ) 1/2

J {6"(<t>)}2d^ ^A"26min (1 + £; V2). (9.4)

10 This follows from a theorem of F. and M. Riesz, Uber die Randwerte einer analytischen Funktion,

Comptes Rendus du Quatrieme Congres des Mathematiciens Scandinaves a Stockholm (1916) pp. 27-44.

See also, F. Riesz, Math. Zeitschrift, 18, 95 (1923).
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The proofs of these inequalities are contained in a paper to be published elsewhere.

(e). A property of the functions F„(<t>). If C is a nearly circular contour for

which (3.2) and (3.4) are satisfied, then the functions Fn(ei*) have continuous second de-

rivatives which satisfy a Holder condition with any fixed exponent a, 0 <a < 1.

The proof may easily be given by induction. Since log p(<£) and 0i(<£) —<t> are con-

jugate functions and since the second derivative of log p(<j>) satisfies the Lipschitz

condition (3.4), it follows from a theorem of I. Privaloff,11 that 0{ (</>) and exist

and that 0j" (<t>) satisfies a Holder condition with any fixed exponent a, 0<a<l. Let

us suppose now, that it had been shown that (</>) exists and satisfies a Holder con-

dition with any fixed exponent a, 0<a<l. Then log p [#„($)] has continuous first and

second derivatives, (p'/p) [0»(4>)]0» (<£) and />[0»W]0»^(^) + (p'/p)[0»(0)]0»" (<A)» re-

spectively, and the latter satisfies a Holder condition with any exponent a, 0<a<l,

(because of (3.4) and (3.2)). Hence, again by Privaloff's theorem, the conjugate func-

tion d„+i(<f>) — <f> possesses a second derivative 0'n'+i(</>) which satisfies such a Holder

condition. This completes the proof.

(f). A theorem on conjugate functions. Let us suppose that u{t) is a periodic

function (period 2ir) possessing a continuous derivative for OsS/rg 27t. Let v(t) be con-

jugate to u{t) and let us suppose that v(t) also possesses a continuous derivative for

0^t^2ir. Then for every 6,

f " (*"> ~ Y* . f " ( '«> - Y*.
J o \ sin \(t — d) / J o \ sin \(t — 6) /

Proof. Let G(z)= U{z)-\-iV(z) denote the function which is analytic for |z| <1

and assumes the boundary values git) =u(t) +iv(t) — (w(0)-f iv{6)) for z = eu. Then the

real part of [G(z)]2 may be represented by the Poisson integral (z = rei*)

1 - r2
■ dt.[t/(z)]2~ [V(z)Y- = ^- f" {(«(*)-u{d)Y-(v(t)-v(0))'} —

2tt v o 1 + r2 — 2r cos (t — <j>)

For z = reie,

[t/(z)]2 - [f(z)]2 i r2' («(/) - u{e)Y - (v(t) - v(e)y-L(
2irJn1 — r2 2tJ0 (1 — r)2 + 4r sin2 \{t — 6)

As is easily seen, the limit of this integral as r—»1 is

dt.

1 f 2T (u^ ~ U^2 ~ ^ ~ dt (9 5)
2w J o 4 sin2 \{t — 6)

By the mean value theorem (since U(eie) = V(el>) =0)

11 I. Privaloff, Sur les fonctions conjuguees, Bull. Soc. Math. France 44, 100-103 (1916); orZygmund,

I.e. p. 156. Privaloff's Theorem states: if g{<t>) is periodic (period 2x) and satisfies a Holder condition with

the exponent a, 0 <a < 1, for all <#>, then any conjugate function of g(4>) satisfies such a condition.
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Lf/(z)]2 - [F(z)j2 d r
_ 1 I LAZL = [j/2(pe«) - F2(pei9)U

1 — r dp

= 2 [u{peie) — U{pel>) - V(peie) — V(pe»)\ , (r < f < 1). (9.5)
t dp dp J „=r

Since g'{t) exists and is continuous,

dU dV
— + i — = e"G'{pe«) -> - ig'{0)
dp dp

as p—> 1. Thus limp_i d[Z7(pei9)]/3p and limp_i d[F(pei4)]/3p exist. Furthermore,

limp,i U(pe'e) = limp_i V{peie) =0. Hence, the limit as r—»1 of (9.6) is zero and there-

fore the integral (9.5) is zero. This proves the theorem.


