
55

QUANTITATIVE INTERPRETATION OF MAPS OF MAGNETIC
AND GRAVITATIONAL ANOMALIES BY

MATHEMATICAL METHODS*

BY
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1. Introduction. In geophysical prospecting for oil and other minerals gravita-

tional and magnetic anomalies corresponding to geological phenomena are mapped.

The problem of the quantitative interpretation of such empirical maps consists in

the determination of numerical values for all the geological parameters (depth, thick-

ness, slope, density, intensity and direction of magnetization, etc.) which characterize

a tectonic structure or an ore-body. To illustrate the possibility of such an interpreta-

tion it is preferable to avoid the complications involved in the mathematical study of

maps of complex anomalies. The complex anomalies are due to the coexistence in

the same region of many different geological phenomena. Resulting from the super-

position of many simple anomalies, they can be resolved into their simple compo-

nents each of which corresponds to a single ore-body or tectonic structure. This

resolution is the first step which must be performed, since no interpretation of a com-

plex anomaly map as such is possible. The problem of resolution is a very important

one since in most cases we have to deal with complex anomalies, the simple ones being

exceptions. Special methods devised by the author solve this important problem, but

they are not discussed in this paper which deals with the quantitative interpretation

of a simple anomaly map. We study here two cases: an axial anomaly created by an

anticline and a centered anomaly corresponding to a salt dome. They are sufficiently

simple and at the same time have great practical importance.

A new method of interpretation, based as the usual methods on the theory of po-

tential but essentially different from them, is introduced in this paper. In the usual

methods1 systematic use is made of individual values such as maxima, minima,

zeros, inflection points, etc., of the observed and plotted quantity as well as of their

distances. The use of such remarkable values and distances is founded on the tacit

assumption that they reflect exclusively the physical action of the unknown structure

or ore-body whose study is the object of the interpretation. This assumption is per-

missible for the anomalies of large magnitude but it is doubtful for those of average

magnitude and completely wrong for small anomalies.

In the past, geophysical prospecting by gravitational and magnetic methods was

directed mostly toward the study of important, clearly pronounced anomalies of

large magnitude which correspond to more shallow deposits or to big well defined

tectonic structures. But now the geophysicists are obliged to deal with more difficult

* Received April 11, 1944.

** On leave of absence. Now at The New School, New York.

1 For examples of these usual methods see L. L. Nettleton, Geophysical prospecting for oil, McGraw-

Hill Book Co., New York, 1940, Chapters 6 and 12, and also H. Shaw, Interpretation of gravitational

anomalies, Trans. Amer. Inst. Min. Met. Eng. 97, 271-366 (1932).



56 E. G. KOGBETLIANTZ [Vol. Ill, No. 1

cases and they have to interpret maps of small anomalies. Thus, we must study the

obstacles which naturally lead to an erroneous interpretation of an anomaly map by

the usual methods of remarkable values and distances if the magnitude of the anomaly

is not very large.

2. Punctual anomaly. An anomaly map is plotted on the basis of measurements

made at isolated stations. It is supposed to be generally correct, and the usual correc-

tions required by the topography of the region, the fact that the earth is not a sphere,

etc., are supposed to have already been made. We must emphasize that a quantita-

tive interpretation presupposes an accurate correction for the so-called regional anom-

aly, and it cannot be expected to yield good results if the latter correction is made,

as is customarily (and very unfortunately) done, simply by smoothing arbitrarily the

experimental curves. Special methods exist which ensure a very accurate correction

for regional anomaly by deducing it from the map itself, but this important question

cannot be discussed here. All usual corrections having been made, each individual

value obtained at a station is the combined effect of two anomalies: 1) the anomaly

caused by the tectonic structure or the ore-body the study of which is the purpose

of the interpretation, and 2) the anomaly generated by local irregularities of mass

distribution or of magnetization intensity in the immediate vicinity of and under the

point of measurement. This strictly local anomaly—we propose to call it "punctual

anomaly"—is in general very small. It affects only a small area around the point and

it is precisely this punctual anomaly which is responsible for perceptible variations

in the value of the observed quantity which occur for small displacements of the ap-

paratus used around the station. In fact the apparatus used now are extremely sensi-

tive and we cannot neglect any more the existence of punctual anomalies. There is no

correction at all for them since the punctual anomalies, affecting every observed in-

dividual value, cannot be evaluated. If the magnitude of the studied anomaly is

large, the punctual anomalies are negligible and the map can be interpreted with the

aid of remarkable values and distances. The positive results achieved by the old

interpretation methods must be explained in this way. But, if the magnitude of the

anomaly is small, the punctual anomalies not only modify the extremal values but

they also displace them, altering all the distances used in the usual interpretation

methods. Since these old methods express all geological parameters in terms of re-

markable values, their distances and ratios, it is plain that punctual anomalies render

these methods completely useless in the interpretation of small anomalies. It is a very

important though often disregarded fact that the interpretation based on isolated

values can in general be only qualitative and gives exactly nothing in case of small

anomalies. This important fact explains the lack of success in dealing with maps of

small anomalies and is the reason for the actual ineffectiveness of geophysical pros-

pecting in discovering new oilfields in U.S.A. New methods of interpretation well

adapted to small anomalies are now necessary. They must be introduced into practice

if the geophysical prospecting by gravitational and magnetic methods is to be applied

in the future.

The interpretation errors caused by punctual anomalies can and must be elimi-

nated and there is only one possible way to do it. Considered together, the punctual

anomalies in the region covered by the measurements have a random distribution;

they oscillate about zero and are independent one from another. Consequently, they

must undergo an almost total compensation if we form the average value of some
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function of the mapped quantity, the average value with respect to the whole map,

using all the observed values at a time. We can eliminate the harmful influence of

punctual anomalies and compensate at the same time for the possible residual ob-

servation errors only by combining all observed values in an integral. For any map

in general the average values express much better the action of the phenomenon under

study than do the individual values and their distances. In other words, interpretation

rules and formulae based on the systematic use of integrals give much more correct

quantitative results in all cases and for all maps. Rules based on special individual

values hold only in very rare and exceptional cases of big structures such as, for in-

stance, the shallow salt domes of Texas, the Kursk and Kirunawaara iron ore-bodies

or the Great Rhodesian Dyke.

The method described in this paper uses exclusively the average values and, in

particular, moment functions and moments of the observed quantity and of its square.

This method was applied by the author in France and in Iran with good results. The

cases studied here are chosen only for the sake of brevity. The method is elaborated

for the most general cases of complex anomaly maps obtained as result of magnetic

or gravimetric survey of a completely unexplored region.

3. Center of gravity and first moments. The problem of locating the center of

gravity C of disturbing masses is a fundamental one, and its solution is the first step

of every interpretation. We solve it in the general cases of an axial anomaly and of a

centered anomaly. The coordinates x*, y*, z* of C are expressed with the aid of mo-

ments of the observed quantity Q, that is in terms of

xmQ(x)dx
** -co

for an axial anomaly and in terms of

Qm n = J J xmynQ(x, y)dS, Qm= j" J rmQ(r, 4>)dS, (r2 = s2 + y2, * tan 0 = y)

for a centered anomaly, the double integration being extended over the infinite plane

xOy denoted by P.
Axial anomaly. If the geologic feature being considered is much longer in one di-

mension (strike, axis of anomaly), the corrected map of the axial anomaly created by

such a structure is a family of nearly parallel lines and the interpretation deals with

a curve describing the behaviour of the plotted quantity on a typical profile perpen-

dicular to the anomaly axis. Cartesian coordinates x, y, z are introduced with the

z-axis directed vertically downward, the origin 0 being at the surface and the x-axis

being perpendicular (the y-axis being parallel) to the anomaly axis, as shown in Fig. 1.

The excess of the density of disturbing masses over the density of their environment

is called the density-contrast and is denoted by <r (<r^0). We represent the disturbing

structure as a homogeneous cylindrical body of normal cross section 5, denoting the

area of 5 by A. At a point (x, z) in the plane y = 0 the potential U of the body is given by

U(x, *)--!*// log [(* - *)* + (2 - f)2]^ + const- (*>

where £, f are running coordinates on 5 and k — 2/cr, / being the gravitational constant
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(66.7 X10-9 cgs.) and a the density-contrast. On the surface (plane P), z = 0, the par-

tial derivatives Ux and Uz = Dg of U are given by

Ux — iDg = — k J* J* (x — p)~ldS = kj) log (x — p)d$, (2)

where p = £+iT and F is the boundary of S. The second derivatives Uxx and Uxz are

called the curvature K and the gradient G respectively: K = Uzx, G = Uxl. Thus

K - iG = k J J (x- P)-*dS = kj> (x- p)"1#. (3)

Using in (2), (3) the binomial expansion, we deduce for large | jc| the approximations

which hold for any form of the section 5. Their first terms for instance are

Ux ~ — kAx~1, Dg~ kAz*x~2, — 2kAz*x~*, K ~ kAx~2, (4)

where 2* is the depth of the center of gravity C. Denoting an arbitrarily chosen origin

of the coordinate x' on the profile by 0, we regard the function Dg = Dg(x') as known

from the measurements. To find x* = 00*, z* = 0*C we shall use the first three mo-

ments of Dg,
/oo /* oo

Dg(x')dx' = wkA, Mi = I x'Dg(x')dx' = irkAx*, (5)

J [x2Dg(x) - kAz*]dx = *kff (f2 - HdS, (6)

where in (6) the origin of the coordinate x is the point 0*, the projection of C on the

profile, x* being considered as already found with the aid of (5). In fact, from (2) we

deduce that

x'Ux + kA - ix'Dg(x') = kJJ (p- x')~lpdS. (7)

Integrating (2) and (7) with respect to x' in (— °°) and observing that the in-

tegral of (x' — p)~*dx' equals iir since f in P = £+»T is positive, we have (5). To prove

(6) we integrate in (— oo, <») for ** = 0 the relation

x(xUx + kA) — i(x2Dg(x) — kAz*) — k J" J' (p — x)_1p2dS

and compare the coefficients of imaginary terms.

From (5) we deduce the rule x* = Mi/M0. However, in practice the integration

can be carried out only over a finite interval (—2?, R), where the known length R is

at least four or five times the depth z* of C. The contributions from the intervals

(—oo, —R), (R, oo) can be computed by means of the expansion of Dg(x) in powers

of tf-1,

Dg(x) = kAz*X~'l{ \ + 2cnz*x~l + (3c2i — Co3)z*2x~2 + 0(ar3)), (8)

where the constants are given by

(z*)m+nA cmn = J J $mZ"dS.
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In general, unless 5 is very irregular, we have z*cn = x*, z*2c2i=¥x*2, c03= 1, whence (8)

takes the form

Dg(x) = kAz*x~2{ 1 + 2x*x~l + (3x*2 - z*2)x~2 + 0(*"»)}. (9)

If M* and M* denote moments computed for the interval {—R, R), i.e.,

/R /* RDg(x')dx't M* = I x'Dg(x')dx',
-r J -R

and if we neglect terms of the relative order 0{{z*/R)2\, we find that

/ 2z*\ / 4z*\
■wkA = Mo = ( 1 + —J M2, Mi = f 1 + —J Mi", (10)

whence

2z*\ Mi/ 2z*\ Mi*
= ( l + ) 

\ ttRJ Mo*
(11)

M * and M* can be obtained from the experimental curve for Dg{x') by means of a

planimeter. From (11), we note that M*/M* is a first approximation for x*.

If we set x* = 0, by (9) we easily see that the contribution from the intervals

(—oo, —R), (R, 00) to the integral on the left side of (6) is of order (z*/R)2. If we

neglect terms of order (z*/R)2, (6) can be written in the form

7T kir2 C p
— M* = Moz* + — (e - tfdS,
2 R 2 RJJs

kir2

2 R " " ' 2 R

where, in the usual notation,

M* = I x2Dg(x)dx.
J -R

If we consider only those cases in which the horizontal dimension of S is much smaller

than its depth, then ffs(£2 — p)dS= — z*2A. Using this, and substituting for M0 from

(10), we have

2'
irM2* f. . (*-2 -r (tt2 - 4)zH

(i2) ?

Equations (11) and (12) permit

us to compute x* and z* by succes-

sive approximations, the successive

values being denoted by x*, z*

(m = 1,2,3, • • ■ ) and the correspond-

ing positions of 0* (Fig. 1) by 0*.

The steps are as follows: (a) We

choose a position for 0 and compute

Mo*, M*, integrating over the inter-

val — R>x'<R with a planimeter.

(b) We obtain x* by setting z* = 0 in

(11) and plot O*. (c) We compute M* Fig. 1.
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and new values of M* and M*. (d) Using (12) with z* = 0 in the right member we

compute 2*. (e) Using the values of M*, M*, M* obtained in (c), and replacing z*

in the right members of (11) and (12) by z*, we obtain xf, z2* and plot 0*. The steps

(c) and (e) are repeated until a stabilization of the points 0n* and the values x*, z* is

reached.

The same method can be applied to maps obtained by means of a torsion-balance,

giving the curves of the gradient G(x) and the curvature K(x). Denoting the nth

moment of G by Hni we have H0 = 0. Also, integration by parts yields H\ = — Mo,

Hi = —2Mi, H3= —3M2. For the corresponding reduced moments we have M* =

— H*(1 + 2z*ir~1R~1), 2M*= -H*(l-\-2z*/irR), 3ikf2* = -H3* + 2kARz*. Thus (11),

(12) can be transformed into

H} / 2z*\ \H3* / tiz*\
x* = (1+ ), z* = (l + —), (13)

2H* \ rRj RH? \ Rj

where X =§7t/(37t —1) =0.187, ;u = 5(37r2 — 247r+8)/(37r2 — 7r) =0.485. Equations (13)

permit us to determine the center of gravity C from the gradient map only.

The first two moments La and L\ of the curvature K vanish. Since for |x| very

large K{x)~kAx~2, we define the moment Li and the reduced moment L* by the

integrals

L2= J (^x*K - —^dx, L2* = J* (x2K - —^jdx.

If we multiply (3) by x2, subtract kA from both sides and integrate over (—00, *>),

we find that Lt = 2H\z*, the contribution from the intervals ( — °o, — R), (R, °°) being

— 6kAz^/R. Since Hi=Hf(l+^z*/irR), we then have for z*

H?z* = aU*(l + Pz/*R), (14)

where a — — 4) =0.84, j3=ir/(7r2 —4) =0.535. Equation (14) supplies a control

on Eqs. (13).

The magnetic anomaly created by a cylindrical body of section 5 is related to the

gravitational anomaly generated by the same body, and the equations relating to

maps of G and K can be transformed into equations relating to maps of the horizontal

and vertical components X and Z of the abnormal magnetic field created by the

body. If Z and 1p denote the magnitude and inclination of the magnetization vector,

we have the classical relation (Poisson)

k(X + iZ) = 2I(K + iG)e~{*, (15)

where k — 2fcr, f being the constant of gravitation and a the density-contrast. Multi-

plying (15) by x and integrating over the interval ( — R, R), we obtain for the reduced

moments X*, Z* the relation k(X* +iZ*) = 2I(L*+iH*)e~i*. Since ii = 0, we easily

find that ttRL? = Ax*H1*(1+Az*/tR). Thus

/ ix* \ / 4x* \
kX* = 2111*1 sin <// H — cos \f/J, kZ* = 2IH*l cos ̂  — sin ̂  ),

whence we obtain for the two parameters I A and \p,

■0"T>IH * 1
IA =   = — (Xf2 + Zf2)1'2, Z? tan i = Zx*

kir 2ir
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where c is defined by the relation ttX*Z*c =4(X*2+Z*2). To find x*, z* we need

second moments. Since the principal term of the right side of (15) involves K, and

K~kAx~2, for large | x\ we have ttX~Z*x~2, -kZ~ — X*x~2. Therefore we define the

second reduced moments X*,Z* by the integrals

/R /• R(x2X - ZU~x)dx, Z2* = I (x2Z + X?v-i)dx.
-R J -R

Their numerical values can be obtained from the experimental data as areas under

curves deduced from the curves X = X{x), Z = Z(x).

Integrating (15) after multiplication by x2, and using the defintions of X?, Z*, L*,

we obtain

k(X2* + iZ?) = 2/e_i*\L* + i(H2* - 2iLL1*7r-1)].

Substituting in this result the values of H*, L* obtained by solving (13) and (14),

and using the relation 2irRL* = 8x*H*(l -\-4z*/irR), we find that

X* = a(l + z* = a(l + |3 z*R~1)N, + 4 x*2tt^R-\

where a and /3 are as in (12), 7 = 2(16 — ■k2)/{it3 — =0.665, and

Nx = (X1*X2* + Z1*Z2*)(Xl*2 + Z-?2)~\ N, = (X2*Zx* - X*Z2*)(X*2 + Z?2Yl.

The numbers Nx, Nt can be deduced from the maps. Thus the moments of X, Z give

the four parameters IA, ip, x*, z*.

It is to be noted that the above results can be obtained with the aid of the theory

of Fourier transforms. All our results are based on (2), which can be written as a

Fourier transform. Now p = £+*T, and since min.(f) >0, we have

/•« /• 0

i(p — *)-1 = J e't(p~z)dt = J e~"lp~x)dt.

This proves that Dg-\-iUx is the Fourier transform of a function u(t), vanishing for

positive t and defined in the interval (— co, 0) by the relation u>(2) =k(2ir)ll2Jfse~iftdS.

On the other hand, Dg — iUx is the transform of co(—l), which vanishes for negative t,

and Dg(x) appears as the transform of the function fit) defined for all values of t by

f{t) = £(k)1/2 f f e'WldS-, (16)

Dg(x) = (27r)_I/2 fVW, (17)
J -co

This expression will enable us to find easily the moments of Dg. The moments of the

square of Dg, which will be required presently can also be deduced easily from (17)

with the aid of the Parseval theorem.

Centered anomalies. In the case of a centered anomaly, we represent the disturb-

ing structure as a homogeneous irregular body B. Cartesian coordinates x, y, z are

introduced, with the 0-axis directed vertically downward, the origin 0 being arbi-

trarily chosen on the plane P (Fig. 2). C(x*, y*, z*) is the center of mass of B, and 0*

is its projection on the plane P of the map.

The gravitational anomaly is Dg(x, y). In the old methods, 0* is placed at the
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maximum of Dg. If the body is a solid of revolution with a vertical axis, this is cor-

rect; but if the body is irregular or inclined, the maximum of Dg occurs somewhere

above its uppermost part. In the present paper, we shall locate C by means of in-

tegrals.

O

If 8V is an element of volume of B at a point (£, 77, f), and if 5[Z?g(*, y)] is the

contribution to Dg from 5F, then b\Dg\ =/<rf5F[(x — £)2 + (y — ri)2 + p]~312. Now

Jfp8[Dg]dS = 2irfcrdV, which is independent of £, rj, f. Integration of this over B

yields JfpDgdS = irkV, where k = 2fa and V is the volume of B. This result holds for
any homogeneous irregular body or bodies.

Because of symmetry ffP[x — £+i(y — i?)]5[Z)g(a:, y)]<fS = 0. Thus

J J {x + ty)5[Z?g]d5 = (f + ti?) J" J* 5[Z>g]dS = irk(£ + iv)8V,

and integration over the body B yields

X*ffpDgdS = ffpxDgdS' y*ffpDgdS = f f yDgdS' (18)

These are two equations for x* and y*. They hold for complex anomalies as well as

simple ones. In practice, integration can be carried out only over a finite part of the

plane P. We choose that part lying inside a circle with center 0 and radius R, where R

is a constant at least four or five times the depth z* of C. The equations of this circle

are r=R, z = 0, where r2 = a:2-f-y2. We denote its interior by L. The contribution to

the above integrals from the infinite region r^R can be easily evaluated, since at such

large distances the gravitational action of the body is approximately the same as that

of a punctual mass <jV located at the point C(x*, y*, z*). Therefore, for rgtR we use

the approximate formula

Dg = fcz*Vr~z{ 1 + 3(x* cos 6 + y* sin ^r"1 + (9x*2 + 9y*2 - 6z*2)(2r)~2

+ 15 [2x*y* sin 2d + (x*2 - y*2) cos 2d]{2r)~2 + 0(0}, (19)

where r, 6 are polar coordinates in the plane P, with origin at O. Neglecting terms of

order (z*/R)~3 and higher, we have with the aid of (19),
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0-f)///^-/■/>«■
^1 - —^ J J (X + iy)Dgd,S = JJ (x + iy)DgdS.

Thus (18) can be written in the form

r r / z* 3z*2 \ r r
(x* + iy*) J J DgdS = (! + — + J J (* + iy)DgdS. (20)

Equations (20), applied in the first approximation with z* = 0, give a first position Oi

for O*. If we choose the origin 0 at this point, then d — 0\0* is small.

To obtain an equation for z*, we integrate r2DgdS over L. Neglecting terms of

relative order (z*/R)2 and higher, we need only the two first principal terms of this

integral. Thus we can evaluate the contribution of an elemental volume 5Fat (£, tj, {)

by integrating r2b[Dg\dS over the region r' instead of L, the origin of polar co-

ordinates (r', 0') being at the point (£, rf) above the point (£, 77, f). In fact, the differ-

ence between two integrals over L and r' is of relative order (z*/R)2. Now

r2 = r'2+p2 — 2pr' cos (6—6'), and integration over r' ^R gives

J J = Trmyjr + (p2 - 2f2)i?"1 + fO(z*2/ R2)}.

Integrating this result over V and replacing the integral of the second term by its

approximate value —2kirz**V, we obtain

J J r2DgdS = TrkVz*R {1 - 2 z*R~l + 0(z*2/£2)}.

Dividing by RffLDgdS = irkVR(\ —z*R~1), we find that

z*R J J DgdS = (1 + z*R~l) J J rWgdS. (21)

The term §z*2i?-2 must be added to the factor l+z*i?_1 if the terms neglected are of

order (z*/R)3 and higher.

When the measurements are performed with the aid of a gradiometer or torsion

balance, the resulting maps of UX2 and Uvz give not only x*, y*, z* but also a control,

since each of these two maps can be used to locate the point C. Applying the same

reasoning as for Dg, i.e., first integrating bUX2 and 8UVZ corresponding to an elemental

volume 5F, and then integrating the result over V, we find that

x* j* J* xU xzdS = — J J" x2U zzdS, x* J J yUyzdS = J" J" xyUvzdS,

y*ff xu"ds=55xyUxzds' y* 5 5 yUv'ds=j 55y2uvzds-
(22)

All the integrals in (22) have the same reduction factor l-\-3z*/2R. Hence it does not

appear. The third reduced moments give equations for z*. They are
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7z*\ r r / 72*>
9X*ff lirts - s(l + - 24(l + ̂ )ffL*?v.JS.

(23)

wJJV,* - >(i+£)ffLyu*B - 2i('+Bfl"yU"ds-
If we neglect only terms of order (z*/R)3 and higher, the term llz*2/(18.R2) must be

added to the reduction factor l + 7z*(6i?)_1. Equations (22) and (23) are general. For

a solid of revolution with a vertical axis, they reduce to

(** + iy*) J J GdS = (l + -^0 J/L(* + (22*)

f /* / 7z* llz*2 \ r r

"*})*" =2{1 + m+ liF) J J/™' (23*>
where c is such that RcJJLGdS = JJLrGdS.

In the general case of a complex magnetic anomaly we assume that the magnetiza-

tion vector is the same for all particular isolated bodies which create this anomaly.

Its intensity 7, inclination and azimuth <f> are three unknowns; I cannot be sepa-

rated from the total volume V and it is the product VI which is deduced from the

maps; <t> is defined with respect to arbitrary cartesian axes of x and y on the surface

of the earth; X, Y and Z are the components of the anomaly.

We shall now deduce expressions for the six parameters VI, 4>, <t>. x*< y*< z* which

characterize the magnetization vector and locate the common center of gravity of all

the disturbing magnetic bodies. This can be done by computing the moments of

X, Y, Z from maps showing the distribution of X, Y, Z over the surface of the earth,

and by use of the classical Eotvos formulae,

M iX + jF + kZ)

= I (i |-j bk —[{U x cos <j> + Uv sin <j>) cos \f/ + U, sin ^], (15*)
\ dx dy dz/

where i, j, k are unit vectors on the coordinate axes. We shall use moments of the

first four orders, denoting them by subscripts. For example, Xm„ = ffLXxmyndS. It

is to be noted that Xmn are reduced moments. Neglecting terms of relative order

(z*/i?)2, and using the same method as in the case of (21) in the computation of in-

tegrals of the second derivatives of U, we obtain

— Xoo sec r// sec <j> = — Foo sec \f/ csc 4> = 2Zoo csc \f/ = 2irVI/R.

The first approximate values of VI, \J/, <j> are then given by

2 2 —1/2 2 2 2 1/2
tan <f> = Foo/-X^Oi tan ^ = ^Zoo(-^oo + Foo) 1 vVI = R(X00 + Foo + 3Z00) • (24)

The zero moments are small quantities, and approach zero as R approaches in-

finity. Hence (24) yield poor approximations. Nevertheless, the first value of (f> must

be used to rotate the axes of coordinates, directing the x-axis nearly parallel to the

horizontal component of the magnetization vector, so that cj> will be very small.

Among the six moments of the first order, we do not use X01 and F10 since they are

of order l/R compared with the other four, which are given by
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*10 fx* \ Foi / y* \
 = — sin \p I 1 H cot i cos <j> J,   = — sin 1 -) cot J- sin <j> ),
2 rVI \ 2 R ) 2wVI \ 2 R )

Zio / x* \ Zoi ( y* \
 = — cos yl I cos <t> tan \I/ J,   - — cos \l/1 sin d> tan -i/ 1.
2 ttVI \ R J 2 tVI \ R )

Hence we obtain better values for VI and tan

where

2tVI — (Z io + Z0i + + 5

—1/2 2 2 1/2 2 2 —1/2 / ^2 \
tan — 2 (Xio + Fqi) (Ziq + Z01) ^1 —

8ci = 3 sin 2<//(x* cos <£ + y* sin <f>) = 6 cos2 \f/-c3

4c2 = (cot \j/ + 4 tan \f/)(x* cos <f> + y* sin <f>) = (4 + cotan2 ^)c3,

c3 = 2 (Xxo + Fio) (Zoi + Zio) [(Z20 — £02X^01 — Zio) — 4ZoiZuZio\.

The coordinates x*, y* of the point 0* are obtained with the aid of second mo-

ments, as indicated by the equations

(C 3 \ ^*2

1 — -) H—— tan \p cos <t>,

(25)
2 2 -lr t/ CA X*2

y* = %(Z 10 + Zo 1) [2ZiaZn ~ (Z20 — Zo2)Zoi] ( 1 — —J~\ ~ tan sin <f>.

The expression
5 / 12z*\

Y 20 = — R cos ^ sin [ 1 J
2 \ 5 R J

shows that F20 is zero if the x-axis is parallel to the horizontal component of the

magnetization vector I. If F2o is different from zero, the value of <j> is given with good

precision by the important equation X02 = F2o tan <j>. Thus, by use of this equation and

Eqs. (25), we can change our axes so that x* —y* =<j> = 0. Computing the third mo-

ments in this new system of coordinates, we find that X2i = Xo3= F30= Fi2 = Z2i = 2o3

= 0, 3Zn = Z3o = X30 cot \p,

9 / 7z*\ .
3Xn = 3F2i = X30 = F03 = - — 1 - —) sin 4>.

These expressions give for tan \// the eight values X3o/Z3o, Yn/Zu, etc., and the mean

of these eight values can be considered as the final value of tan \j/. Now, with this

choice of axes, the second moments take the values Xu = F2o= Yot = Zu = 0,

5 / 16z*\ 5 / 12z*\
*20 — — R ( 1 — J cos l/', X02 — -^ ( J cos

2 \ 5R / 2 \ 52? /

3 / 8z*\ r„(, 14z*\ • ,
Fn — — R ( 1 J cos \f/, Z20 — Z02 — 5R (l cd) sin

8 \ 3R / \ 5R /
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Dividing any third moment by one of the five second moments different from zero,

we obtain an approximate value for z*, and the mean of all such values can be consid-

ered as the final value of z*. Thus, we have not only solved the problem, but have

also found a control of the solution, since the degree of concordance of many different

values found for the same parameter, such as z*, characterizes the reliability of the

solution.

Fom a practical point of view, a solution involving only the moments of the verti-

cal component Z is important, since in many cases magnetic surveys are limited to

measurements of Z only. In such cases we can find yp and <j> and locate the point 0*

by use of Eqs. (25) together with

/ y* — x* \
Zio tan 0 = Zoil 1 H — tan ^ 1,

2 2 1/2 / £4 \ r 2 2-i 1/2
5i?(Zio + Zoi) tan ^ = I 1 + —j [(Z20 — 2x*Zio) + (Z02 — 2y*Z0i) ] ,

where C4 is such that 5Rct = 142* — (x* cos </>+;y* sin <£) tan \p. For VI we have

Also, 2* is given by

(£4X2 2 1/2
1 + — J(z20 + z02) .

"TO
6 R / R

where the moments are related to the origin 0* with 0 = 0. It is plain that the accuracy

of the approximate values given by the above equations increases with R.

4. Interpretation of the map of an anticline with the aid of moments. Let us repre-

sent the structure of an anticline as a cylindrical body of normal cross section S. We

have first to choose for 5 some simple geometrical form which expresses the gravita-

tional action of the anticline adequately. Our choice is the region between two con-

centric elliptic cylinders, the major axes of which have an angle a of inclination

(Fig. 3). This choice is good, except in the vicinity of the deepest part of the region,

which part is at a considerable depth; the author has verified that such a choice leads

to good results in practise. We shall denote the outer and inner ellipses by Ei and Ey,

respectively, and their semi-axes by a, b and ya, yb, respectively, where 7 is a positive

constant less than unity.

Equations (10)-(14) give values for kA, x*, z*. We shall now show how y, a and

the eccentricity e can be deduced from gravitational anomaly maps.

Let us replace e by a parameter r = 2z*/c, where 2c is the focal distance of the outer

ellipse. We define a function »(s) by the relation

n(s) = M0 lM(— s)D , (26)

where 5 is a constant and 0<i<l, Mo is as defined in §3, M( — s) is the moment of Dg

of order —s, and D is the zero moment of [-Og(^)]2:

/oo /i 00

| x\~'Dgdx, D = J [Dg(x) \2dx.
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The graphs of |x|_sZ?g(x) and [.Dg(x)]2 can be plotted from the experimental curve

of Dg(x), and thus the reduced moments can be computed with the aid of a planime-

ter. On the other hand n(s) can be tabulated for various values of 5. We shall require

»(i), »(i). »(*).

Applying the theory of Fourier transforms to (16), (17), we have

J Dg(x)eix'dx = irk J J* e-f'l+^S, (27)

/QC (* °°

[Dg{x)]2e-iztdx = irk2 J J J J dSdS'J e'*Mdu, (28)

where <t>(u) = £<+(£' — £)« — J"'|«| — f |/~«|, and (£, f), (£', f) are two sets of running

coordinates on 5. We note that

/oo eivy(y — t)~sdy = (ip),-1e<,'T(l — 5)

for 0 < 5 < 1, Re [iv] ^0, where Re[iv] denotes the real part of iv. Consequently,

the application to (27) of fractional integration of order 1 — 5 yields for 0,

J Dg(x) | xY~^eixidx = -ttk j" J" p^e'P'dS. (29)

The inversion of order of integration is permissible, since all integrals are absolutely

convergent. Replacing in (29) the exponent 5 — 1 by —s, (0<j<1), multiplying both

sides of this by eiT,n and letting t tend to zero, we obtain

/oo
| x\~'Dg{x)dx = 7rk sec (firs) .Re [ $(.4; — s)],

-00

where $>(.<4 ; —5) =e"'l2Jf8p~'dS. For our region 5 we have
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HA; - s) = i4 («*)-• [Ffts, ft + *s, 2; - 4r-2<r2i")

— 7^(55, 5 + 5J, 2; — 4r~272e_2ia)],

where F(a, b, c\ x) is the classical hypergeometric function. The function

which depends on the four parameters 5, a, 7, r, can be tabulated for —1<5<1,

0i=7^1, O^afSfir, r^2 sin a. We shall require tabulations for s = j, J, f.

If in the right side of (28) we carry out the integration with respect to u for 12:0,

and then let t approach zero, we find that

2D = 2 J [Dg(x)Ydx = iirk2 ffJl (p - p'^dSdS',

where p = £+if, />' = £' — if. In the present case, we have

D = Ml(z*) V(a, 7; r),

where

<£(«, 7! r) = f(e~ia, eia; r) - 2Re[f(ye~ia, eia; r)] + /(ye~ia, yeia\ r),

3/(w, v, r) = 16ruV(u + v)~*[CxE - CtK + C3KE(b, X')],

K and E being complete elliptic integrals of the first and second kind of modulus X

given by 4M»=X2[r2+(w+n)2],X'and 6 being such that X' = (1 —X2)1'2, 2(uv)indn(b, X')

=X- (w+»), and Ci, Ct, C3 such that

C3 = 3X'[l - \'sn(b, \')cn(b, \')dn(b, X')],

Cx = 3dn2(b, X') + 3\'sn(b, X') - 1 - X2 + bC3,

Ci = 3\'2dn2(b, X')cn2(6, X') + 3X'j»(6, X')[l + X'2cn2(6, X')] + X'2 + bC3.

Thus <f>(a, 7; r) can be tabulated.

We have now derived expressions for — s) and D occurring in the right side

of (26). Substitution yields the equation

E(s; a, 7; r) = n(s) (30)

where E(s\ a, 7; r) = [<£(«, 7; r)\~'m{— j; a, 7; r), with

m(— s; a, 7; r) = sec (57rj)^4_1z**i?e[<E>(^4; — s)].

In (30) we set s = j, 5, f, to obtain three equations which we can solve for the re-

quired quantities a, 7, r.

Once a, 7, r have been determined, we can deduce a new value for 2* from the

relation
2 —1

z* = MoD <t>(a, 7; r).

This serves as a control on the value obtained from (12).

In actual computations based on experimental data, we can use only a finite re-

gion on the surface of the earth. Hence reduced moments must be introduced, as

before, and the parameters of the problem must be deduced by successive approxima-

tions.

The same procedure can be used in treating maps of the gradient G and the curva-
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ture K. Each map leads to an independent set of values for x*} z*, a, y, r, kA. In the

case of a magnetic anomaly, the map of X or of Z could be used. In all cases the mo-

ments can be expressed in terms of <¥>(-4 ; —5).

We note that the above method yields kA. Now A is the area of the cross section

and k = 2a, where / is the gravitational constant and tr is the density-contrast. We

define the average thickness T of the disturbing layer as the geometric mean of the

extreme thicknesses; T =(1 —y){ab)in. Since A = irab{\ — y2), we then have .<4(1—7)

= 7r(l+7)r2. Hence, if <r is known, A can be found and then T. Often T is known.

In this case, A can be found, and then a.

5. Interpretation of a centered anomaly created by a salt dome. Before applying

the new method it is interesting to see what can be obtained by the old method.

Some results can be achieved if we disre-

gard the cap-rock, neglect the slope of the

flanks and omit the depth of the salt dome

base considering this structure as a homo-

geneous vertical infinite circular cylinder

whose top is at the depth p (Fig. 4). The

interpretation problem is reduced to find-

ing the three parameters: k(<r = k/2f), p

and the radius a of the dome. Instead of a

we consider the angle«, letting a=p tan w.

With the origin at 0*, just above the cen-

ter of the top circle (maximum of Dg, zero

for the gradient (?) the expressions for G

and Dg are:

G(r) = kia/ry^X-^K -E) - XJT],

Dg(r) = k[CiE + C2K - irpf(r)],

where C\ = bp sign (a — r) + 2(ar)1/2X_1,

C2=X(a2 — r2)(4ar)-1/2+/>[£(&, X') — 2>]sign(a — r) and 2f(r) = 1+ sign(a — r), sign 0 be-

ing defined by sign 0 = 0. The elliptic function E(b, X') and the complete integrals K,

E have the moduli X' = (l— X2)1'2 and X is defined by X[^2+(a+r)2]1/2 = 2(ar)1/2,

r being the distance from the origin. The argument b (0^b^K') is that in

dn{b, X') • [p2 + (o+r)2]l/2 = a+y. Either of'two curves G = G(r), Dg = Dg{r) can be

deduced from the other by graphical differentiation or integration. Therefore, we can

use both of them for the interpretation.

Here it is the maximum of the product F(r) =r1/2\G{r)\ which it is important to

locate and therefore the curve G must be transformed into the graph of the function

F{r). In fact, the equation F'(r)=0 reduces to X3£(/>2+a2 —r2) =0 and the maxi-

mum of F(r) corresponds to r = r0= (£2+a2)1/2. The corresponding value of the

modulus X is Xo= [l —tan2 (7r/4—o>/2)]1/2. The value of the maximum itself is

max F(r) = F0 = k(p tan co)1/2[2X0_1(£o — -K"o)+Xoi£o]. Thus, we have at our disposal

three experimental data r0, F0 and the maximum Dgo = irkp(sec w—1) of Dg{r). First

we find the angle w, solving the equation B(«) =n, where the function B(u) is defined

by ir sin (w/2)(l -fsin w — cos u)B(u) = — 21/2[(l+sin u)Eo~ -Ko], the modulus X0

being a function of u only. The value of the number n is deduced from the measure-
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ments by the rule n = rl/2Fo/Dgo, this value being simply the ratio of two maxima,

multiplied by the square root of the observed distance ro. The function B{u>) is easily

tabulated. Knowing <o, we have p=r<> cos and a—p tan w. The value of k is de-

duced from Fo or Dg0. That is all that can be obtained, using the old method, and

it is evident that it cannot satisfy a geologist. In practice the best value for r0 is

(S/tt)112, where 5 denotes the area of the closed curve, the locus of maxima of F(r) on

all radial profiles through the origin 0*. This rather rough method of interpretation

works if it is applied to an isolated salt dome. The advantage of the inaccurate first ap-

proximation which it gives consists in the simplicity of computations. The interpreta-

tion requires only the table of values of the function B(u) and it can be performed as

fieldwork and very rapidly.

We shall now apply the new method. It is assumed that the salt dome is a solid

of revolution. Cartesian axes are chosen, with the z-axis directed downward along the

axis of revolution, and the origin 0* on the surface of the earth. We denote the cylin-

drical coordinates of a general point inside the solid of revolution by (p, <f>, f), and of

a general point outside by (r, 6, z) (z<fmin.); R is the distance between these two

points. By means of the classical formula

/'2a d<t> rx
■— = 2ir I e~^~z}uJo(ru)Jo(pu)du,

o R J 0

where Jn(t) is a Bessel function, we deduce for the potential

/I 00

e"'W (u)Jo(ru)du,
o

where

W(u) = irk J f e~l"Jo{pu)pdpdf =   f e~tuJ\(pu)pd£, (31)
J J A U J c

A being the region the revolution of which generates the solid, and C being its bound-

ary. Denoting the Hankel transform of order r by Hr, so that by definition

F(r) = Hr\f(u)] = f f{u)Jr
J 0

.(ru)udu,

for 2 = 0 we have U(r, 0) =Ha\W(u)/u]. Differentiation of (31) yields similar expres-

sions for Uz = Dg(r), [/„, G, K:

Dg(r) = Ha[W{u)}, U„ = Ho[uW(u)], - G = Hi[uW(u)], K = Ht[uW(u)]. (32)

The advantage presented by the expressions (32) consists in the possibility of us-

ing the theorems of the transform theory in calculating the moments and moment

functions used in the interpretation. Because of lack of space we can give as example

only the general expression for the moment function of Dg which holds for any form

of the solid of revolution, the expression applied below to the interpretation of the

gravity map of a salt dome. There is another approach to the mathematical problem

of computing the moments and moment functions needed in the interpretation. In-

deed, direct integration of the explicit formulae (32) is easily performed with the aid
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of divergent and summable integrals of Bessel functions of the general type (with a

and b restricted only by a-\-b> —1),

/* oo

1 ^Jb{ui)dt^2'u-^Y[{a + b + \)/2}\Y[{b - a + \)/2}\~\ (33)
J 0

but we prefer to use the transform theory. A salt dome creates also a magnetic anom-

aly and, for a solid of revolution, (15*) gives the expressions for its components on

the ground z = 0 with the aid of gravitational quantities G, K and Uzz. Using the re-

sults of Section 3, we choose the origin and the *-axis so that x* =y* = 0, c/> = 0. Under

this assumption

k(X + iY) «= /[cos \f/(Ke2ie - Uzl) + 2G sin ieie],
(34)

kZ = 2/(sin tyUzt + G cos ^ cos 6).

Instead of X, Y it is convenient to use in the interpretation the radial and transversal

components Ar and At of the horizontal anomaly (X2+F2)1/2. Transforming the X-

and F-maps into the maps of A r and A t, we can consider their moments and moment

functions as experimental data. The corresponding expressions in terms of parame-

ters of the problem are deduced with the aid of

k(Ar + iAt) = /[cos i(Keie - U,ze~i9) + 2G sin *]. (35)

With the aid of (34), (35) all the rules for the interpretation of the gravitational

anomaly can be adapted to the interpretation of magnetic anomalies produced by a

solid of revolution. Far from the origin 0* the gravitational action of a body can be

approximately expressed as that of a material point of the same excess-mass M — aV

located at the center of gravity C(0, 0, z*). Thus, for large r we have the approximate

formulae

Dg~fMz*r-\ -G~3fMz*r-', K ~ 3fMr"3, Utl fMr~\ (36)

the neglected terms being of the relative order (z*/r)2. For the magnetic quantities

Ar,Z we have, denoting the volume of the salt dome by V, (the caprock does not

create a magnetic anomaly),

.4,~/F,r-3(2cos^ cos 6 — 3z*r_I sin \f/), — Z ~ /F,r~3(sin \f/ + 3z*r-1 cos ^ cos #)• (37)

The moment functions are defined by the integrals extended over the infinite plane P

and the formulae (36), (37) are used in computing the reduction factors introduced

by the integration over the finite area r^R, denoted by L.

The formula (32) Dg(r) =H0W(u) gives immediately W{u) =Ht>Dg(r), that is,

2irW(u) = ff Dg(r)J0(ru)dS. (38)

If the form of the solid is considered as known, only its dimensions being asked, i.e.,

if the expression of W(u) as function of the parameters is prescribed, the relation

(39) becomes the source of equations since for every particular value of the arbitrary

parameter u (which is the reciprocal of a length) it is an equation in the unknown

parameters of the problem. In practice the numerical value of the second member is
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obtained by integrating over L, and adding to the result the contribution of the

infinite area r^R. This contribution, computed with the aid of (36), is equal to

2irfM(z*/R)[Ji(Ru)/Ru] where, as has been seen in Section 3, 2xfM=irkV is the

value of the first moment of Dg. In this method the map of Dg is transformed, for

each value of u, into the map of the product Dg{r)J0{ru) and the integration over L,

giving the second member of (38), is performed on this map. Let us consider as an ex-

ample the special case when the flanks of the dome are vertical. In this case the area A

is formed by two rectangles (see Fig. 5*) and there are seven parameters: the radii a

(salt) and b (cap-rock) of two cylinders which together form the dome with its cap-

rock, the depth p at which the salt begins (bottom of the cap-rock), the thickness h

m of the cap-rock and that H of the

^  » p salt, the density-contrasts &i and

ki (salt). The expression (31) gives

the characteristic function W(u),

ir-1«2IF(w) = e~"v[ak?J\(au)

(1 — e~vH) + bk\J i(bu)(e"h — 1)].

Choosing any seven numerical val-

ues for u and computing for them

the corresponding values of the

SALT <J"2 M product 7r-IM2W(w) with the aid of

the rule (38), we have a system of

seven equations with seven un-

knowns a, b, k\, ki, p, H. h. Solving

it we have all the necessary infor-

mations about the dome. This

method can be applied only if the

flanks of the dome are vertical. Let

us now consider the case of a

PIG 5 deeply buried salt dome, substi-

tuting for it as an idealized form a

truncated cone with the vertex at 0*. This assumption is not acceptable for shallow

domes. We need the moment function and we begin by giving its general expression

which holds for all solids of revolution. A. Erdelyi and H. Kober have recently

proved2 an important theorem on the Hankel transform which they formulate using

Tricomi's form of this transform. In our notation (Hankel's form) this theorem

states that if W = H,+iaw, where s>— 1, <x>0, and u1,2w(u) belongs to £2(0, °°)

then T,a(W)=H,[T,a{w)], the operator T.a being defined by

/» 00

T(a)T.af(x) = 2x'J (y* - a*)~-1y*—"f(y)dy.

Applying it to our relation W(u) =H0Dg(r) with —1 <s<0, s+2a = 0, we have

/» 00 /% 00 /% 00

(.y2 - x*)-U+'lVW(y)ydy = x~' I J.(xt)t'+1dt I (r2 - P)-u+'l*Wg(r)rdr.
x J 0 J t

* In Fig. 5 the letters Ai and A2 denote the centers of the two end surfaces of the cap rock cylinder.

s Quarterly Journal of Math., 2, 217 (1940), Theorem 5, case b.
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Interchanging the integrations in the second member (absolutely convergent double

integral), using t = rv112 and passing to the limit * = 0, we get the desired general ex-

pression for the moment function M(s) of Dg(r) for — 2<s<0,

M(s) = ^ Dg(r)r'dS — 2ir f Dg(r)r'+1dr
%/ J p %/ o

/I 00

W(u)u-e+»du. (40)
o

The same result can be obtained integrating the relation r'+1Dg = H0r'+1W(u) un-

der the sign of integration in u and applying the integral (33). Now the integral in

the second member of (40) can be calculated, using (31) and the formula (3) p. 385,

ch. 13.2 of "Bessel Functions" by G. N. Watson, 1922. Let w be the angle the radius

vector of a point (p, f) makes with the z-axis; thus f = (p2+f2)1/2 cos w, p = £" tan w. Let

P„ be the Legendre function of the first kind P„(cos co). Since F[{\+s)/2, —5/2; 1;

sin2 w] —P, and (2 +5) sin2 wir[(3+5)/2, —s/2; 2; sin2«] =2(P„ — cos wP,+1), we have

M(s) = (2 + s)c, J" J* k sec3 o)P,Z'pdpd£ = c, J" k sec2+' u(P, — cos ooP,+1)£2+'d£, (41)

where (2-f-s)cJ = 27rr'(l/2)r(l+s/2)r(l — s/2). The formula (41) solves the problem

for a deeply buried dome. The parameters in this case (see Fig. 6) are: the three

lengths 0*Aj = pj, j = 1, 2, 3, the density contrasts k\ = 2J<r\, ki = 2fat and the angle co,

P,x

y CAP

SALT

Fig. 6.

the slope of the dome's flanks. Instead of pj we use the ratios r=pi/p2, q_=p%/pi and

write p2 ~ p- Also, k = ki/k\ this ratio being generally negative. The parameters r< 1,

q > 1, k verify the equation

4z* [l - r3 + (q3 - 1)£] = 3[l - r* + (q4 - 1 )k]p. (42)

In our case w is constant in the second integral of (41) since only the integral
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along BA does not vanish. It is equal to (2>+s)k\p3+'<t>{s\ r, q, k), where r, q, k)

= 1— r3+'+k(q3+' — 1). Denoting (3+s)_1e» sec2+' co[P,(cos «) — cos wP,+i(cos a>) ] by

/(s; co), we have the explicit expression of the moment function M(s)

M{s) = krf'+'Jis-.wMs-.r.q, k). (43)

The/(s; w) is easy to tabulate for eleven particular values of s, namely for 4s = m,

where the integer m verifies — since — 2<s<l. If 4s = m the function P, re-

duces to polynomials or to elliptic integrals K and E. In fact, letting cosw=x, we

have 3jP_7/4 = 3P3/4 = jPi/4 + 2*P_i/4, P_j/4 = Pi/4, P-3/4 = P—1/4, 5PbH=6xPln — P_l/4i

21P7/4 = 10a:Pi/4+(20^2 — 9)P_i/4, where it cos (w/4)P_i/4 = 2 [cos (u/2)]lliK and

ir(cos (w/2)]1/4Pi/4 = 2 cos (co/4)[4(E — K) + (1 + with the modulus

A = tan («/4).

Also P_3/2 = Pi/2, 3P3/2 = 4xPi/2 — P—1/2, where P±i/2 are elliptic integrals too, but

with modulus n — s'm (co/2), namely irP-i/t = 2K and TrPi/t = 4E — 2K. Transforming

the experimental gravity map into the maps of the quantities r'Dg(r) and integrating

on these maps over r ^R, we obtain the reduced moment function M*(s) which differs

from M(s) only in the contribution of the infinite area r^R. This contribution is

computed with the aid of (36), and the reduction factor v(s) in

M(s) = M*(s) [l + rWfc/*)1-] (44)

is defined by 4(1 —s)f{s~, u)<t>(s\ r, q, k)v(s) =3/(0; w)<^(l; r, q, k).

We consider equations of the general type Q(s, t\ «, r, q, k) = N{s, t), where the

function Q of four unknowns w, r, q, k is defined by Q= [/(s; w)</»(s) ]"'[/(/;

■ [/(0; co)0(O)]'-*, the 0(s) denoting <l>(s; r, q, k). Thus the number N(s, t) is to be

calculated by the rule N(s, t) = [M(s)]_'[M(0]'[Af(0)]'_*. Its first value is obtained

by using the reduced moment functions M*(s), With the aid of these first

values N* we have to find first approximations for our parameters «, r, q, k. It is

sufficient to form four equations of the type Q = N, giving to the orders s and t nu-

merical values, for instance s=— 7/4 and t=— 5/4, —3/2 and —1, —5/4 and

— 3/4, —1 and —1/2. Solving such a system with the experimental data iV*( — 7/4,

-5/4), N*( — 3/2, -1), 7V*( —5/4, -3/4) and JV»( —1, -1/2), we get the first ap-
proximate values for w, r, q, k. The depth p is then found using the ratio M*(s)/M*(0)

for any value of 5 (or t) and in practice the average value from many such determina-

tions will be taken as p. Using the set of first approximations in (44), we improve the

first values of the second members N(s, t) in our system of four equations Q = N and

solving the improved system, we have second approximations for co, r, q, k, p. This

procedure of successive approximations is continued until the stabilization of se-

quences. The depths p\ = rp and ps — qp are found, as well as ki = kki, since the value

of k\ can be obtained from the value of any M(s). We observe that the interpretation

yields both density contrasts cri (cap-rock) and <r2 (salt). The depth z* of the center of

gravity obtained with the aid of (42), compared with z* computed by (23*), gives a

control. The control also is obtained with the aid of four other values of the order 5

which were not used for the interpretation. We choose the negative values of s in

order to diminish the reduction factor in (44). It is interesting to add that the same

method applies to the interpretation of G- and X-maps, their moment functions

G(s), K(s) being expressed in terms of M(s). In fact G(s) = — (2+s)Af(s — 1) and
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K(s)=c!M(s-1) with c.T(H-5/2)r(l/2-j/2)=2r(-5/2)r(5/2+j/2). For the in-
terpretation of the magnetic maps we can use the same function M(s) since the

moment functions ^4r(i) and Z(r) are given by ki{2-\-s)Z(s)= —21 sin xp sK^s) and

M r(s) = —21 sin \p- (2-\-s)M(s).

In the general case, when the vertex of the cone is on the vertical of the point 0*

at the distance (unknown) I above (/>0) or below (/<0) the ground, the moment

function has a very complicated expression and is difficult to tabulate. In its place

we use the integrals Dn of the type

Dn = r-" ff (I2 + r2)-("+1'2>Dg(r)dS,

and the interpretation yields all the seven parameters ki, fa, pi, pi, pi, w, /, the angle w

being the slope of the dome's flanks. Lack of space does not permit the development of

this general case.

Conclusion. The possibilities offered by the new method for quantitative inter-

pretation of magnetic and gravitational anomalies we attempted to develop in this

work seem to be very large. The mathematical tools, used in the proofs of the final

interpretation rules, are not needed at all in practical applications. If the tables of

functions used and the charts of auxiliary curves for the graphical solution of funda-

mental equations are calculated once for all and plotted, all that remains to be done

in a particular case is the plotting of some auxiliary maps derived from the experi-

mental data and the evaluation of some areas with the aid of a planimeter.

No use of average values in the interpretation is known to the author, with the

exception of the work of K. Jung,3 where only one integral, namely our is

defined and its value 2fM is used together with remarkable values and distances.

3 K. Jung, Zeit. f. Geophysik 13, 45-67 (1937).


