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Equation (4) shows that the remainder of the elements of the first row of w-1 can be

calculated in order from each succeeding line of the table by performing the operations

indicated on columns (3) and (5) respectively. The other elements in the upper right-

hand corner of k-1 then are computed from Eq. (5) which gives for instance when

i = 3 and j =4,

n—2

106«34 = 106au + Z4 X 10'/GJ.T, L = ~ 140.875 + 1.23396 X (34 + 34)

= - 56.966.

The inverse matrix now can be completed quickly by filling in the lower left-hand

corner according to Eq. (6), so that

= io-6 X

"0.0160803 - 2.4179 - 4.7183 - 140.875"

0.0160803 0.1678 - 2.1326 - 98.920

0.0160803 0.1678 0.4532 -56.966

L0.0160803 0.1678 0.4532 19.786J

ON THE PROBLEM OF HEAT CONDUCTION IN A
SEMI-INFINITE RADIATING WIRE*

By ARNOLD N. LOWAN {Math. Tables Project, Nat. Bureau of Standards)

R. V. Churchill1 derives the solution of the problem of heat conduction in a semi-

infinite radiating wire when the initial temperature is zero, and the boundary tem-

perature is a constant. It is the object of this paper to derive the general solution

corresponding to an arbitrary initial temperature distribution when the boundary

temperature is a prescribed function of time.

Let k, c, p, s, A, h and a = k/pc denote the thermal conductivity, specific heat,

density, perimeter, cross-sectional area, coefficient of heat transfer, and thermal diffu-

sivity of the wire, respectively. Further, let a=hs/cpA and b=aTt, where Tt is the

temperature of the medium. If the wire is sufficiently thin so that the temperature

may be assumed to be constant over the entire cross section, the problem becomes

one-dimensional and the temperature T(x, t) must satisfy the following differential

equation, initial and boundary conditions:

(--<* — +<*) T{x, t) = b (x > 0, t > 0), (1)

lim T(x, t) = /(*), (2); 7\0, t) = «,(/). (3)
!-»0

It is easily verified that the expression

T(x, t) = e-a'u(x, t) + »(a;, /) (4)

* Received July 17, 1944.

1 R. V. Churchill, Modern operational methods in engineering, McGraw-Hill Book Company, New

York, 1944, p. 119.
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satisfies Eqs. (1), (2) and (3), provided the functions u{x, t) and v(x, t) satisfy the

following differential equations, initial and boundary conditions:

du d2u
- a—= 0 (x > 0, t > 0), (5)
at ox2

lim u(x, t) = /(*), (6); «(0, t) = ea'<p(t), (7)
I->0

dv d2v
 a-— = — av + b, (8); lim v(x, t) = 0, (9); »(0, t) = 0. (10)
dt dx2 <->o

From Eqs. (5), (6) and (7), it is clear that u(x, t) is the temperature in a semi-

infinite solid initially at the temperature/(x) and with its bounding plane x = 0 kept

at the temperature eat<p(t). Using the expression of u{x, t) given by H. S. Carslaw,2

we obtain
g—a t /» oo

e-°'u(x, t) =  33 I /(£){e-C*-{>S/(4aO _

2y/irat J o

X (* *
H 33 I e~a"<p(t - (11)

2 V t a " o

With the aid of the identity

/» V* 2
e-afi t cos _ Qjp _ _ _£-(*-{) Hatt

o 2

the first term of (11) may be written in the alternative form

2 /» 00 /• 00

— e~ai I I e~a^''f(0 sin Px sin
TT J Q J Q

Accordingly, an alternative form of (11) is

2e~at (*00 f*00

e~atu(x, t) =  I I sin fix sin
7T •/ o ^ 0

# r1
-I — I r°v(' ~~ i\)e~xlliavt)~3l2di]. (11')

2y/wot ^ o

We proceed to the solution of the system (8), (9), (10). The Laplace transform

v*(x, p) of the function v(x, t) must satisfy the equations

dV p + a b
—— -   v* = , (12); »*(0, P) = 0. (13)
ox a pa

The solution of the system (12) and (13) is

b
v*(Xj p) = (1 _ e-^(P+«)/o) = a*(p) - <r*(p)w*(p) (14)

  P(P + a)

2 H. S. Carslaw, Mathematical theory of the conduction of heat in solids, Macmillan and Co., London,

1921, §81, p. 172.
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whence, by a well-known theorem,3

From

v(x, t) = <r(t) — f o(t — T])w{T])dt]. (15)
J 0

b b /1 1 \
I e p'a(t)dt = cr*(p) =  = —( ),

J o PiP + a) a\p p + aj

it follows that

cr(t) = — (1 - (16)
a

If in the known identity4

rx /T  
2VXpJ" e P'^—e 3l2dl = e

we put X = x2/4a and replace p by p+a, we obtain

x p«  
  I g-plg-itg-x'/AclfSndl — g—rV(p+a)/a

/Ira " o2\Zra
whence

w(x, /) =   e-o(c-x,/4«^-3/2_ (17)

2\/ ira

In view of (16) and (17), (15) becomes

b r', , 6
»(*, 0 = I {l — je-"'erx lia^~^l2dri H (1 — e~at). (18)

r).n.'\/trrt * 0 #2a Vira o

Making use of the identity5

fJ c

y/ir
e-(o»x4+n)/x«^ = _— cosh 2a&

2a

\/t / b \ \Zir / 6 \
H e-2a6Erf I ac ) e2a6Erf ( J- ac)

4a \ c /4a \ c /

and some elementary transformations, we may write (18) in the alternative form

 (2 cosh x\/ h e~WalaEil(\/at ^
2a I V a \ 2vW

- e^^Erf ( v/oT + —, (18')
\ 2\/ai/7

3 See, for example, J. R. Carson, Electric circuit theory and operational calculus, McGraw-Hill Book

Co., New York, 1926, p. 41.

4 J. R. Carson, loc. cit., p. 39.

6 This is a slight generalization of Churchill's formula (4), page 120.
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where

Erf(z) = — f e-e'dp.
\/ 7T 0

It should be noted that in (18') the function v(x, t) is expressed in terms of tabulated

functions.

The final solution of our problem is given by (4) in conjunction with (11) and (18)

or (11') and (18').

THE SPHERICAL GYROCOMPASS*

By WALTER KOHN (University of Toronto)

In the existing literature on gyroscopes1 the theory of the gyrocompass is de-

veloped for the case of a rotor whose ellipsoid of inertia is an ellipsoid of revolution.

The mathematics of this treatment is somewhat involved and, in deducing the differ-

ential equations of motion, approximations based on the smallness of the earth's

angular velocity are made. In the present communication we shall treat a gyrocom-

pass the rotor of which has a spherical ellipsoid of inertia. The motion of such a

gyrocompass is, of course, covered by the more

general theory usually given, but owing to the

symmetry of the sphere this case allows a con-

siderably simpler, separate treatment in which,

moreover, no approximations are necessary. At

the same time the essential features of gryo-

scopic motion are preserved.

The following system will serve as a simple

model of a spherical gyrocompass. The rotor is a

rigid homogeneous sphere rotating freely about

a light axle which passes through its centre. The

ends of this axle can slide in a smooth horizontal

ring which is concentric with the rotor and

rigidly attached to the earth. When the rotor is

set in rapid revolution about its axle the latter

executes oscillations about the meridian which

will now be examined. Fig. 1.

In the figure the right-handed unit triad, i,j,k,

which is fixed relative to the earth is defined as follows: 0 is the center of the rotor;

k lies in the direction of the upward vertical; i lies along the meridian and points

north; j, pointing west, completes the triad. The unit vector, a, lies along the axle

of the gyrocompass and the unit vector, e (in the i, k plane), is parallel to the earths'

axis; thus the angleA, between i and e, is the latitude of the observer.

* Received July 10, 1944.

1 Cf. T. Levi Civita and U. Amaldi, Lezioni di meccanica razionale, vol. 2, Zanichelli, Bologna, 1927,

pp. 191-195; or J. L. Synge and B. A. Griffith, Principles of mechanics, McGraw-Hill Book Co., New

York, 1942, pp. 430-433.


