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Equation (4) shows that the remainder of the elements of the first row of #~! can be
calculated in order from each succeeding line of the table by performing the operations
indicated on columns (3) and (5) respectively. The other elements in the upper right-
hand corner of #~! then are computed from Eq. (5) which gives for instance when
2=3 and j=4,

n—2

108y, + I, X 108/GJ, Y I, = — 140.875 + 1.23396 X (34 + 34)
n=1
— 56.966.

106034

The inverse matrix now can be completed quickly by filling in the lower left-hand
corner according to Eq. (6), so that

0.0160803 — 2.4179 — 4.7183  — 140.875
0.0160803 0.1678 — 2.1326 — 98.920
uwl=10"¢X .
0.0160803 0.1678 0.4532 — 56.966
0.0160803 0.1678 0.4532 - 19.786

ON THE PROBLEM OF HEAT CONDUCTION IN A
SEMI-INFINITE RADIATING WIRE*

By ARNOLD N. LOWAN (Math. Tables Project, Nat. Bureau of Standards)

R. V. Churchill! derives the solution of the problem of heat conduction in a semi-
infinite radiating wire when the initial temperature is zero, and the boundary tem-
perature is a constant. It is the object of this paper to derive the general solution
corresponding to an arbitrary initial temperature distribution when the boundary
temperature is a prescribed function of time.

Let %, ¢, p, s, A, k and a=Fk/pc denote the thermal conductivity, specific heat,
density, perimeter, cross-sectional area, coefficient of heat transfer, and thermal diffu-
sivity of the wire, respectively. Further, let a =hs/cpA and b=aTs,, where T is the
temperature of the medium. If the wire is sufficiently thin so that the temperature
may be assumed to be constant over the entire cross section, the problem becomes
one-dimensional and the temperature T(x, ¢) must satisfy the following differential
equation, initial and boundary conditions:

(8 02 T - 0 0 1
—;3—t—a;-x—;+a) (%, 8) = (x> 0,¢>0), (1)
lm 7, ) = f(2), (2 700, 1) = (). 3

It is easily verified that the expression
T(x, ) = e*u(x, t) + v(x, &) 4)

* Received July 17, 1944,
1 R. V. Churchill, Modern operational methods in engineering, McGraw-Hill Book Company, New
York, 1944, p. 119.
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satisfies Eqs. (1), (2) and (3), provided the functions #(x, ¢) and v(x, t) satisfy the
following differential equations, initial and boundary conditions:

bu a‘~’u_0 >0,t>0) (5)
ot * dx? (2 ' '
lim u(x, 1) = f(%), (6); u(0, 1) = e*'o(8), (7
t—0
dv %
— —a—=—av+ b, (8); lim »(x, 8) = 0, (9); v(0, £) = 0. (10)
ot dx? =0

From Egs. (5), (6) and (7), it is clear that u(x, t) is the temperature in a semi-
infinite solid initially at the temperature f(x) and with its bounding plane x =0 kept
at the temperature e*'p(t). Using the expression of #(x, t) given by H. S. Carslaw,?

we obtain
e—at 0 )
e tu(x, t) = __f f(g){e—u—e)*/(m) - e—(:c+E)2l(4at)}d£
2VratV o
x t
—'*f e“"’qa(t — n)e—zzl““"q"s/zdr]. (11)
2Vra Yo

With the aid of the identity

fwe‘“ﬁ" cos B(x — §)dB = 2\/1
0

_ 2
e (z—§) /4al,

at

the first term of (11) may be written in the alternative form
2 L L]
— ot f f e“'ﬂ"f(i) sin Bx sin BdBdE.
7|' 0 0

Accordingly, an alternative form of (11) is

2e—at © 0
—ap?t; . . 18d
- fo fo e~*#"f(£) sin Bx sin BEdPdE

e 'u(x, t) =

+

t
_f e op(t — n)e== Hamy3i%dy, (11)
2V7a Yo
We proceed to the solution of the system (8), (9), (10). The Laplace transform
v*(x, p) of the function v(x, £) must satisfy the equations
%* p+a

= — -i: (12); v*(0, p) = 0. (13)

dx? a pa

The solution of the system (12) and (13) is

b N
v*(x, p) = ——— (1 — =@+l = o*(p) — *(p)w*(p) (14)
- p(p+a)
2 H. S. Carslaw, Mathematical theory of the conduction of heat in solids, Macmillan and Co., London,
1921, §81, p. 172.
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whence, by a well-known theorem,?

t

oz, ) = o) = [ ot = myutr)in (15)

0

fwe—lll (t)dt_ *(p)=#—i(._l__ 1 )
0 pp+a) a\p p+a

From

it follows that

b
o) = — (1 — e°). (16)
a

w Y —
f e—pl/‘/_ e—)‘/lt—zﬂdt = p—2VAp
0 w

we put A =x?/4a and replace p by p+a, we obtain

If in the known identity*

x f ® e—Ple—atg—2 14aty=3/2jy — g—=V(pta)la ,
2¢/ma V0
whence
w(x, 1) = ematem= a3l (17
2¢/7a
In view of (16) and (17), (15) becomes
b ¢ . b
o(x, ) = — f {1 — got-n}eorgslhan—3i2gy + — (1 — e2t).  (18)
2aVra Yo a

Making use of the identity®

) —
f e~ (M N = \ﬁ cosh 2ab
¢ 2a

— 5 _ ,
+ % ~29Erf <_ - ac) — ﬁ 2Erf (_ + ac)
c

a c 4a

and some elementary transformations, we may write (18) in the alternative form

v(x, b)) = —z—{l - e‘“Erf(zja_)}

b o — — x
- —{2 cosh x,‘/— + e“"/“/“Erf(\/at - )
20 a 2V at

_ oaTeERf (\/J+ 2:‘/‘7‘)} . as)

3 See, for example, J. R. Carson, Electric circuit theory and operational calculus, McGraw-Hill Book
Co., New York, 1926, p. 41.

4 J. R. Carson, loc. cit., p. 39.

8 This is a slight generalization of Churchill’s formula (4), page 120.
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where

2 z
Erf(x) = — f e'dg.
vl

It should be noted that in (18’) the function v(x, £) is expressed in terms of tabulated
functions.

The final solution of our problem is given by (4) in conjunction with (11) and (18)
or (11’) and (18’).

THE SPHERICAL GYROCOMPASS*
By WALTER KOHN (University of Toronto)

In the existing literature on gyroscopes! the theory of the gyrocompass is de-
veloped for the case of a rotor whose ellipsoid of inertia is an ellipsoid of revolution.
The mathematics of this treatment is somewhat involved and, in deducing the differ-
ential equations of motion, approximations based on the smallness of the earth’s
angular velocity are made. In the present communication we shall treat a gyrocom-
pass the rotor of which has a spherical ellipsoid of inertia. The motion of such a
gyrocompass is, of course, covered by the more
general theory usually given, but owing to the
symmetry of the sphere this case allows a con-
siderably simpler, separate treatment in which,
moreover, no approximations are necessary. At
the same time the essential features of gryo-
scopic motion are preserved.

The following system will serve as a simple
model of a spherical gyrocompass. The rotor is a
rigid homogeneous sphere rotating freely about
a light axle which passes through its centre. The
ends of this axle can slide in a smooth horizontal
ring which is concentric with the rotor and
rigidly attached to the earth. When the rotor is
set in rapid revolution about its axle the latter |
executes oscillations about the meridian which !
will now be examined. ' Fic. 1.

In the figure theright-handed unittriad, i, j, k,
which is fixed relative to the earth is defined as follows: O is the center of the rotor;
k lies in the direction of the upward vertical; i lies along the meridian and points
north; j, pointing west, completes the triad. The unit vector, a, lies along the axle
of the gyrocompass and the unit vector, e (in the i, k plane), is parallel to the earths’
axis; thus the angle A, between i and e, is the latitude of the observer.

k

* Received July 10, 1944,

1 Cf. T. Levi Civita and U. Amaldi, Lezioni di meccanica razionale, vol. 2, Zanichelli, Bologna, 1927,
pp- 191-195; or J. L. Synge and B. A. Griffith, Principles of mechanics, McGraw-Hill Book Co., New
York, 1942, pp. 430—433.




