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1. Introduction. Prandtl's theory of the lifting line gave the answer to most of the

questions in the aerodynamic design of airplane wings. Thus the three-dimensional

wing theory became a standard tool of airplane designers. One restriction involved

in the conventional wing theory is the uniformity of the undisturbed flow in which

the wing is placed. Now there are many important cases which do not satisfy this

condition. For instance, in the case of a wing spanning an open jet wind tunnel, the

velocity of the air stream has a maximum at the center of the jet and drops to zero

outside of the jet. Another example is the problem of the influence of the propeller

slip-stream on the characteristics of the wing. Here the higher velocity of the propeller

slip-stream makes the application of the Prandtl wing theory difficult. Such cases led

several authors to investigate the problem of a wing in non-uniform flow. Some in-

vestigators found a satisfactory solution of the problem for the case of "stepwise"

velocity distribution. In this case the flow in regions of uniform velocity can be deter-

mined by using Prandtl's concepts with additional continuity conditions at the bound-

aries between such regions. On the other hand, the problem of a continuously varying

velocity field seems to need an appropriate treatment. K. Bausch1 has tried to modify

the Prandtl theory for the case of small inhomogeneity in the air stream; however,

besides the restriction of slight deviation from uniform flow, his method encounters a

further difficulty in estimating the error introduced by the approximations. The

seriousness of this difficulty becomes evident when one tries to compare the results of

Bausch with that of F. Vandrey.2 Vandrey considers the problem with variable

velocity as the limiting case of a wing in a stepwise velocity field, and his result seems

to differ from that of Bausch. Recently R. P. Isaacs3 has investigated the same prob-

lem, but the authors have not yet had the opportunity to study his work.

It seems to the authors that a general and more satisfactory solution for the flow

of a wing in a non-uniform stream can be obtained by studying the three-dimensional

problem anew in this generalized case, introducing the modifications of Prandtl's

fundamental concepts. The first fundamental concept is the following: the span of

* Received September 27, 1944.
1 K. Bausch, Auftriebsverteilung und da.ra.us abgeleitete GrSssen fur Tragfliigel in schwach inhomogenen

Strdmungen, Luftfahrtforschung, 16, 129-134 (1939).

2 F. Vandrey, Beitrag zur Theorie des Tragfliigels in schwach inhomogener Parallelstr omung, Zeit-

schrift f. angew. Math. u. Mech. 20, 148-152 (1940).
3 R. P. Isaacs, Airfoil theory for flows of variable velocity, abstract in Bulletin of the American

Mathematical Society, 50, 186 (1944).
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the wing is sufficiently large compared with the chord so that the variation of the

velocities in the spanwise direction is small when compared with the variation of the

velocities in a plane normal to the span; then the flow at each sectional plane per-

pendicular to the span can be considered as a two-dimensional flow around an airfoil.

The only additional feature for the flow in this sectional plane is the modification of

the geometrical angle of attack, as defined by the undisturbed flow, on account of the

so-called induced velocity. The second fundamental concept of Prandtl is the replace-

ment of the wing by a lifting line having the same distribution of lifting forces along

the span as the wing. This concept,

with the additional assumption that

the disturbance caused by the lifting

line is small, i.e., that the wing is

lightly loaded, makes the calculation

of the induced velocity relatively sim-

ple. In this paper the authors will

study the flow around a lightly loaded

lifting line placed in a parallel stream

whose velocity is perpendicular to the

span (Fig. 1) and is assumed to vary

in both directions normal to the flow.

Due to the rather complicated char-

acter of the flow, the usual concept of

the picturesque system of trailing

vortices encountered in Prandtl's

wing theory is not very useful here.

A method, which is mathematically
Fig. 1. Lifting line in a non-uniform flow. more convenient, has to be adopted.

This method has already been used

by the senior author4 in explaining the similarity between Prandtl's wing theory and

the theory of planning surfaces. After the general theory is formulated, the problem

of minimum induced drag will be considered. Finally a general expression for calculat-

ing the induced drag of a wing in a stream of varying velocity will be presented.

Of course, the complete solution of the problem of a wing in a non-uniform stream

requires a knowledge of the "section characteristic" or the two-dimensional properties

of the airfoil sections of the wing. If the velocity of the main stream is varying only

in the direction of the span, the required section characteristics are those of an airfoil

in a two-dimensional uniform flow, and are common knowledge in applied aerodynam-

ics. However, if the velocity of the main stream is also varying in a direction perpen-

dicular to the span and to the velocity itself, the required section characteristics are

those of an airfoil in a two-dimensional non-uniform flow. Such flow problems have not

yet been studied extensively.6

2. General theory of a lifting line. Let the x-axis be parallel to the direction of

the main flow, the y-axis coincide with the lifting line and the z-axis be normal to the

4 Th. von Kdrmdn, Neue Darstellung der Tragfliigeltheorie, Zeitschrift f. angew. Math. u. Mech. 15,

56-61 (1935).

6 H. S. Tsien, Symmetrical Joukowsky airfoils in shear flow, Quart. Appl. Math. 1, 130-148 (1943).
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lifting line (Fig. 1). If p is the pressure, p the density, and Vi, vi, v3 the components of

the velocity, the dynamical equations for the steady motion of an inviscid, incompres-

sible fluid without external forces are

dvi dvi dvi 1 dp
»1 1- d2 1- V3  = > (1)

dx dy dz p dx

dVi dvi dVi 1 dp
Vi h »2 b »3  = > (2)

dx dy dz p dy

dv3 dv3 dv3 1 dp
», 1- jj2 [- ti3  =   (3)

dx dy dz p dz

The equation of continuity is

dvi dv2 dv3
— + — + — = 0. (4)
dx dy dz

Equations (1) to (4) constitute a system of four simultaneous equations for the four

unknowns Vi, i>2, v3 and p.

For the particular problem of a lightly loaded lifting line, the velocity components

can be expressed in the following forms:

»i = V + w, (5); v2 = v, (6); v3 = w. (7)

Here u, v, w are the velocity components due to the presence of the lifting line and U

is the main stream velocity assumed to be a function of y and z but independent of x.

Since the lifting line is assumed to be lightly loaded, u, v and w are small compared

with the main velocity U. By substituting Eqs. (5) to (7) into the dynamical equa-

tions and neglecting higher order terms, a set of linear equations for u, v and w is

obtained. Thus

dU dU dU 1 dp
U b » — + w = (8)

dx dy dz p dx

dv 1 dp dw 1 dp
U-= (9); u — = - — -f- (10)

dx p dy dx p dz

Then the equation of continuity becomes

du dv dw
- + -+ = 0. (11)
dx dy dz

If Eqs. (8), (9) and (10) are differentiated with respect to x, y and z respectively and

the results added, the sum can be simplified by using Eq. (11) and can, finally, be

written in the form

±>Jt + ±(±°2) + ±(±?t)„0. (12)
U2 dx2 dy\U2 dy) dz\U2 dz)

This is now an equation for the pressure p only and can be used conveniently as the

starting point of the solution. If the pressure of the undisturbed main flow is chosen
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as the reference pressure and set equal to zero, one of the boundary conditions to be

satisfied by p is

p = 0, for | x | —> co, | y | —■► oo, or | z | —» w. (13)

The condition at the lifting line, or y-axis, is that the lifting force is represented by a

suction force on the "upper surface" of the lifting line and a pressure force of equal

magnitude on the "lower surface" (Fig. 2). Hence the pressure p must satisfy the

following expressions

PRESSURE on Lowre
SURFACE

SUCT/ONOH l/PPER^
SURFACE

J* pdx = — %l(y), for z = + 0, (14)

and

T f pdx = %l{y), for z = - 0, (15)
l/fi J~'

where l(y) is the lift per unit length of the

lifting line at the point y. Furthermore, on

account of the symmetry of the flow,

t/H

1
p = 0 for z = 0, | at | > e. (16)

To solve Eq. (12) together with the

boundary conditions given by Eqs. (13) to

(16), the Fourier integral theorem can be

used to build up the solution of the problem

from the elementary solutions of Eq. (12)

Fig. 2. Representation of lift as pressure forces the form

acting on the two "surfaces" of the lifting line. g ^ cog ^

The equation to be satisfied by P is

t)_X!P = 0- (17)
dy \ U2 dy ) dz \ U2 dz )

To determine P uniquely, it is convenient to impose the following conditions

P = 0, for ' v | —> oo, | z | —> oo, (18)

P = - hKy) for z = + 0, (19)

P — hKy) f°r z = — 0. (20)

The required solution for p can then be written as

1 r ™

T J 0
cos \xP(y, z, \)d\. (21)

By substituting Eq. (21) into Eqs. (9) and (10), the "induced velocities" v and w

are obtained;

1 1 r" sin \x d
v(x, y, z) = »(0, y, z) — — I —  — P(y, z, \)d\, (22)

pL ir J o X dy
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1 1 /•" sinXi fl
w(x, y, z) = w(0, y, z) I P(y, z, \)d\. (23)

pU TV J o X dz

Because the integrals are odd functions of x, the following relations hold for velocities

far ahead of the lifting line and far behind the lifting line:

i[»(- °0, y, Z) + !>(°°. y, z)] = "(0, y, z), §[w(- oo,y, z) + w(<x>, y, z)] = w(0, y, z).

However, it is evident that the induced velocities far ahead of the lifting lines must

be zero. Hence

»(0, y, z) = $»(°°. y< z). (24); w(0, y, z) = |w(<*>, y, z). (25)

The induced velocities v and w at the lifting line are then one-half of those far down-

stream. This is in accordance with the usual wing theory based upon the concept of

trailing vortices.

One meets an apparent difficulty if the x component of the induced velocity is cal-

culated; integration of Eq. (8) with respect to x furnishes the ^-component of the

induced velocity:

1 1 dU rx 1 dU rx
u = p I vdx I wdx. (26)

pU U dy J x U dz

Since p tends to zero, v and w tend to finite quantities as x tends to infinity, and u in-

creases indefinitely as x tends to infinity. This is in contradiction to the assumption

of small disturbances introduced at the beginning of the present investigation. How-

ever, it is believed that this difficulty does not prevent the application of the theory to

practical cases, since the apparent large value of the u component is due to the dis-

tortion of the variable main stream by the induced cross flow and the infinite value

for x—»oo is due to the linearization of the differential equations. Some further re-

marks on this point are given in Section 4.

3. Conditions far downstream. For the application of the lifting-line theory to the

wing problem, the quantity of primary interest is the z component of the induced

velocity at the lifting line. The simple relations given by Eqs. (24) and (25) suggest

a possible simplification of the calculation by considering conditions far downstream,

or the "Trefftz plane" according to the terminology of the conventional wing theory.

To abbreviate the notation, we let

(27)
Do = !>(0, y, z), Wo = w(0, y,z), ^

vi = »(«, y, z), wi = w>(°°, y, z). f

Then, according to (24) and (25), fa = ^i, wo — ̂ wi. Therefore, Eqs. (22) and (23) give

1 1 r00 sin \x d
vi = Lim — | P(y, z, \)d\,

PU X—*°o TC J o X dy

1 2 r" sin X* d
wi = lim — I P{y, z, \)d\.

pU x—»» T J o X dz

Let us consider P(y, z, X) as a regular function of X; then
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P(y,z,\) = P(y,z,0) + x[~^-l +•••■
L OA Jx=o

By using the variable t =\x, the expressions for i>i and w\ can be rewritten,

1 2 r°° sin t d T t /9P \ 1
vi = — lim — |  — \P{y, z, 0) H ( — ) +••• \dt,

pU i->« ir J a t dy L x \ dX A=o J

1 2 r00 sin t d r t /dP \ "I
Wi = lim — I P(y, z, 0) H 1 ) + • • • dt.

PU x—»oo 7r J o t dz L x \d\ /x_o J

At the limit, only the first terms of the integrands are significant, and furthermore

sin t

Hence

2 rx

TT J 0
dt = 1.

t

Vi =   — P(y, z, 0), (28); wi = — — P(y, z, 0). (29)
p(7 pC/ oz

Equations (28) and (29) simplify the problem of calculating the induced velocities

at the Trefftz plane considerably. In fact, by introducing a "potential function" 0 de-

fined by the relation

</>(y, z) = — P{y, z, 0), (30)

the problem can be formulated as follows: the differential equation to be satisfied

by <f> can be deduced from Eq. (17) by setting \ = 0; thus

d ( 1 d</>\ d / 1 d<f>\— ( -) + —( -J-0. (31)
dy\U2 dy) dz\U* dzj

The boundary conditions to be satisfied by </> are

0 = 0 for |y|—> |z|—»<*>, (32)

0 = l(y)/2 for z = + 0, (33)

<t> = — l{y)/2 for z = — 0. (34)
Then

1 dip 1 d<p
Vi = > (35); Wi =   (36)

pU dy pU dz

By substituting Eqs. (35) and (36) into Eq. (31), one has

d fvi\ d /wi\

7y(u) + 7Xu) = "- (37)
This equation has a very simple physical meaning. Since i>i and W\ are considered to

be small quantities, the ratios V\/ U and Wi/ U are the angles of inclination, /3 and y,

of the stream lines with respect to the zx and xy planes. Consider parallel planes

perpendicular to the z-axis and dx apart (Fig. 3). If the width of the stream tube

at the section x is then at the section x+dx, the width of the stream tube is
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5„[l -\-dx d0/dy]. If the height of the stream tube at the section x is 52, then at the

section x-\-dx, the height of the stream tube is 6*[l-\-dx dy/dz]. The total increase in

the cross-sectional area of the stream tube from x to x+dx is then approximately

Sy(lf3J.

■AH)

Fig. 3. Stream tube far downstream from the lifting line.

/a/3 dy\
SvS'\7~ + ~x)dx'

\dy dz/dy dz/

Now at the Trefftz plane, the flow field can be considered as settled into a uniform

condition; i.e., the pressure is constant in the ^-direction. Hence, the velocity of the

flow along any stream tube is constant. Then the cross-sectional area of the stream

tube must be also constant. Therefore,

d/3 dy
~ + T~ = °>

dy dz

which is simply Eq. (37). From this point of view, Eq. (37) is really the equation of

continuity, simplified under the conditions prevailing at the Trefftz plane.

On the other hand, <f> can be eliminated from Eqs. (35) and (36). The result is

d d
— (VvO (UwO = 0. (38)
dz dy

This equation can be considered as the modified vorticity equation. It actually holds

for all values of x under the approximation assumed in the present investigation. This

can be seen in the following way: since U is a function of y and z but independent of x,

Eqs. (9) and (10) can be written in the form

d 1 dp d 1 dp
— Uv   > — Uw =  
dx p dy dx p dz

By differentiating the first equation with respect to z and the second equation with

respect to y and then subtracting, the result is
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]"°-

d r d d
~\-(Uv)--{Uw)
dxLoz ay

Thus
d d

— (Uv) (Uw) = a function of y and z.
dz dy

But for points far upstream, or for x = — <x>, v and w vanish; therefore the function

of y and z on the right of above equation must be identically zero. Hence for all

values of x,
d d
— (Uv) (Uw) = 0. (39)
dz dy

It should be noted here that Eqs. (37), (38) and (39) are obtained without any

reference to the lifting line and hence they are true for more general cases. However,

the complete determination of V\ and w\ requires a knowledge of the relation between

the induced velocities and the lift on the wing. This relation depends upon the type

of lift distribution. For the particular case of a lifting line, this relation is supplied

by Eqs. (33) and (34).

Equation (37) can be identically satisfied by introducing the "stream function"

^ defined by
d\ff dip

Vl = U —, wi = - U —• (40)
dz dy

Then Eq. (38) gives the differential equation for \p:

d

dy \ dy.

Both Eq. (31) and Eq. (41) reduce to the Laplace equation for the conventional wing

theory when U is a constant.

4. Minimum induced drag. The induced downwash angle at the lifting line is

equal to Wo/U or \w\/U, according to Eq. (25). Therefore, Eq. (36) gives the down-

wash angle at the lifting line as [l/2pU2\(d<f>/dz)l-0, and the induced drag Z>, can then

be expressed as

1 f r n 1 1 f <t> d<t>

A - - -/ be* + 0, - - «]-(-) J, - -fc - s A. (42,

The first integral is evaluated across the span of the lifting line. The second integral

is calculated along a contour following the upper and lower "surface" of the horizontal

strip shown in Fig. 4. Since </>—>0 for points far from the lifting line, the contour in-

tegral can be transformed into an area integral by Green's theorem, and

a.irr a(±i«) + • <43,
2pJ J Idy\U* dy) dz\U2 dzjf

This integral extends throughout the region outside of the lifting line. Since 0 satisfies

the differential equation (31), Eq. (43) reduces to
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Therefore, the induced drag is represented by the kinetic energy corresponding to the

velocity components »i and w\ at the Trefftz plane. It is seen that the u component

of the velocity does not appear in the expression for the induced drag. This is due to

the fact that the increase of u with increasing x does not represent a real acceleration

Z*

US,

u*
PROJECT/ON Of LIFTING HM£

CW TRtFFTZ PLAA/L

Fig. 4. Contour integration in the Trefftz plane.

of a fluid element in the x direction. Rather, it is due to the fact that the cross flow

transports fluid elements from regions of lower main velocity to regions of higher

main velocity and vice versa. This is in accordance with the modified continuity

equation (37) which clearly indicates that the cross section of the individual stream

tubes has a definite limiting value for x—> oo, and therefore the velocity component

in the direction of the stream tube tends to a finite value.

The problem of minimum induced drag requires the determination of the mini-

mum of Di as given by Eq. (44) together with the condition that the total lift L

remains fixed. Thus

L = J*Idy = J* [<t>(y, + 0) — — Qi)]dy = — J* <l>ds - constant. (45)

By using the method of Lagrange's multiplier, the above problem can be reduced to

that of finding the minimum of Di-\-K/pL, where K is a constant. Hence,

K
hDi H 5L = 0. (46)

P

The variation of the induced drag can be obtained from Eq. (44),

1 r r ( 1 d<t> 1 350 1 1 65<t>)
hi), = ~ I I <!     + — — \dydz.

p J J (U dy U dy U dz U dz )

However, </> must satisfy the differential equation (31) ; thus

1 r r (d ( I d<t> \ d / l d<t> \) l r l d<j>

SD' -jJJ v + - -JjF
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On the other hand,

SL = — J 5<f>ds
J c

By substituting these results into Eq. (46), the condition of minimum induced drag

is obtained in the form

<47)

The variation of 5<£ on the lifting line is arbitrary; therefore the minimum induced

drag is given by the condition that the induced downwash angle must be constant

along the span. If the main stream velocity U is constant, the above condition is

reduced to the requirement of constant downwash. This is in agreement with the

well-known result of Prandtl's wing theory.

5. Flow with velocity varying in the direction of span only. If the stream velocity

varies only in the y direction, i.e., in the direction of the wing span, the calculation

of induced velocity and induced drag can be simplified with the aid of characteristic

functions connected with the differential equation for the potential function <j>. In this

case Eq. (31) becomes
dU

d*<f> dl<j> dy d<(>
— + — - 2 —— — = 0. (48)
dy* dz1 U dy

To satisfy the boundary condition given by Eq. (32), <f> is expressed by the following

integral

*(*«) = f/(\)s-x'Yx(y)d\ (49)
J 0

for 2>0./(X) is an unknown function to be determined. For z<0,

z) - - <{>{y, - z). (50)

By substituting Eq. (49) into Eq. (48), the differential equation for Y\(y) is ob-

tained,
dU

d*Yx dYx
— ~ 2 —— + X'Fx = 0. (51)
dy1 U dy

This equation will determine Y\{y) uniquely if proper normalizing and boundary con-

ditions are imposed.

At the span, the condition (33) must be satisfied. Thus

Ky)
= f/(X)Yx(y)d\. (52)

J 0

This relation can be considered as the equation for determining /(X) with the given

lift distribution l(y). For example, in the case of constant stream velocity U or

Prandtl's case, Fx(y) is a trigonometric function and therefore /(X) can be deter-
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mined easily by means of Fourier's inversion theorem. Equation (50) shows that with

/(X) so determined, the condition (34) will be automatically satisfied.

The downwash velocity w0 at the wing can then be easily calculated by using

Eqs. (25), (36) and (49). The result is

My. 0) = - — f \/(\)Y\(y)d\. (53)
IpU J o

The induced drag Di is given by

wo(y, o)r " w0(y, 0)
A=- l(y) -j- dy.

* —0O c/

Therefore, in terms of Fx(y), the following general expression for the induced drag

is obtained:

Di = f —dy[ f(\)Yx(y)d\ f v/(v)Y,(y)dv. (54)
J pU J 0 J 0

Thus the problem of calculating the induced drag with a given distribution of lift

l(y) is reduced to the problem of solving the integral equation (52) for /(X) and then

evaluating the integral given by Eq. (54).

If the chord c, the geometrical angle of attack a and the slope k of the lift coeffi-

cient are given instead of the lift distribution l{y), then

l{y) = hpU'ck ja + Wo(^ 0)| . (55)

Thus Eq. (52) is replaced by the following equation

\PU*ck{x/(x)rx(y)rfxj = J /(X)Fx(y)dX,

or

lPU>cka=f (l + j\)f(\)Yi(y)d\. (56)

This is now the integral equation for/(X). When/(X) is determined, the induced drag

Di can be again calculated by using Eq. (54).


