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Introduction. The main body of the science of aerodynamics is based on the classi-

cal theory of frictionless, incompressible, irrotational fluids. Recently airplanes have

attained such high velocities that this fluid model has proved to be too restricted and

interest has centered on the irrotational motion of frictionless, compressible fluids.

By the term "compressible fluid" one generally means a fluid for which the density

p and pressure p are connected by the isentropic relation pp~^ = const. However, the

student of aerodynamics is frequently interested in supersonic phenomena and be-

cause of the possible occurrence of shock waves, such flows cannot be described, in

general, by isentropic, irrotational flows. Accordingly, it becomes necessary to study

the motion of gases under less restricted conditions.

Let us call a fluid barotropic when there is a unique functional relationship be-

tween the pressure and the density of the fluid. The most important examples are the

incompressible fluid where the same constant density belongs to each pressure and

the isentropic fluid where the relation pp~y = const, holds. The dynamics of friction-

less barotropic fluids is based on a theorem due to Lagrange. If a fluid particle is

irrotational at one moment, it will remain so for all subsequent time. One can generally

assume in aerodynamics that the air starts from rest. The dynamics of the flow can

then be summed up in the single statement that the motion is irrotational. It follows

that the velocity distribution admits a potential, and the comparative mathematical

simplicity of the dynamics of frictionless barotropic fluids follows from this fact.

Classical fluid dynamics deals almost exclusively with the theory of frictionless

barotropic fluids. To find an example of frictionless non-barotropic fluids, we turn to

the theory of the propagation of waves. When Newton developed his theory of sound-

waves, he assumed that the motion of air was isothermal. Later his theory was super-

seded by a better one which assumes isentropic motion. Thus, both theories assumed

that the transmitting medium was barotropic. The mathematical theory of one-

dimensional large disturbances, a much more difficult problem, was developed first by

Riemann, who again assumed that the flow is isentropic. However, the isentropic

theory of shock-waves turns out to be fallacious because it can be shown to violate

the law of conservation of energy. When shock-waves are considered the fluid model must

be extended to include non-barotropic fluids.

In this connection, let us draw attention to the thermodynamical aspect of the

general theory of compressible fluids. In the case of a three-dimensional flow there are

six unknowns: three velocity components, pressure, density and temperature. The

laws of conservation of matter and momentum together with the equation of state

yield only five equations. To get the missing sixth equation the law of conservation

of energy, i.e., the first law of thermodynamics, must be used. Flows will be isentropic

only when as a consequence of these laws the entropy turns out to be a constant.

* Received Oct. 2, 1944.
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Although the theory of one-dimensional shock-waves requires a non-barotropic

fluid model, this fluid model is a very special one. Even if there is an increase of

entropy across shock-waves, the flow remains isentropic between shock-waves. More-

over, a one-dimensional fluid motion is always irrotational But when one turns to

two or three-dimensional shock-waves, the situation becomes quite different. In this

case Hadamard1 was the first to point out in 1903, that vortices are generated suddenly

by shock-waves and, in general, the flow becomes non-barotropic after shock-waves.

Hadamard determined the sudden change of circulation across a shock-wave but

was not interested in the circulation variations occurring in the fluid behind shock-

waves. A general circulation theorem for frictionless barotropic fluids was established

by Bjerknes2 in 1900, for the purposes of his dynamical theory of meteorology. The

motion of air masses originating from non-homogeneous conditions is clearly a phe-

nomenon requiring a non-barotropic fluid model.

Crocco,3 in 1937, again took up the question of the motion of frictionless fluids

behind shock-waves. By restricting himself to the steady state he discovered a very

useful theorem. Recently, this theorem was generalized by the author of the present

paper.4

So far, we have spoken only about frictionless fluids. There are problems with

respect to the flow of gases where viscosity cannot be neglected. We mention, for

instance, the boundary layer theory and the behavior of a gas within shock-waves.

It appears probable that when considering the viscous flow of gases, the conductivity

of the gas cannot be neglected in general. Variations in viscosity might have impor-

tance also. No general theorems are available for such flows and we shall have to be

content with presenting the fundamental differential equations governing these phe-

nomena. Any investigation with respect to the flow of gases must be based on these

equations. While in the case of frictionless flows some general consequences of the

fundamental equations are available, in the case of viscous flows we must start the

investigation of each problem by examining the fundamental equations anew.

Lagrange's theorem plays a fundamental role in our concepts about fluid dynam-

ics. Its validity is restricted, however. The art of aeronautics is now at a point where

we have to extend our fluid model and thus modify some of our basic concepts. We

must accept for instance the fact that vortices can be generated in the midst of a

frictionless fluid. Whether this extended fluid model will be able to account for all

the phenomena which we may wish to consider, only the future can tell

I. THE FUNDAMENTAL EQUATIONS

1. Continuity equation. From the law of conservation of matter it can be proved

that
A' dp
div pq = >

  dt

1 J. Hadamard, Sur les tourbillons produit par les ondes de choc, Note III, in Leqons sur la propagation

des ondcs, A. Hermann, Paris, 1903, p. 362.

2 V. Bjerknes, Das dynamische Princip der Circulationsbewegungen inder Almosphare, Meteorologische

Zeitschrift, 17, 97-106 (1900).

3 L. Crocco, Eine neue Stromfunktion fiir die Erforschung der Bewegung der Gase mit Rotation, Zeit-

schrift f. Ang. Math, und Mech., 17, 1-7 (1937).

4 A. Vazsonyi, On two-dimensional rotational gas flows, Bull, of the American Mathematical Society,
50, 188 (1944).
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where q is the velocity vector. Another useful form of the continuity equation is

given by
1 dp

div q = — — • (C)
p at

2. The Navier-Stokes equation. From the law of conservation of momentum it

can be proved that the equation of motion is given by

Jq 1 n n
— = grad p H Aq H grad div q, (M)
dt p p 3p

where it is assumed that the viscosity n is constant.

It will be useful to derive certain other forms of this equation. The specific en-

thalpy h of a gas is defined by

h = U + pp~\ (2.1)

where U denotes the specific internal energy. The specific entropy 5 is defined by

Tds = dU + pd(p~x) (2.2)

where T denotes the absolute temperature. From Eqs. (2.1) and (2.2) it follows that

Tds = dh — p~ldp. (2.3)

Using vector notation and considering only spacial variations, we may then write

T grad 5 = grad k — p_1 grad p. (2.3')

From this last equation and the equation of motion we find that

dq p. n
— = T grad s — grad h -\ Aq H grad div q. (M')
dt p 3p

Another useful form of the equation of motion can be obtained by using the

stagnation enthalpy

Ao-A+if1 (2-4)

and the identity

— = — + grad (j?2) — q X to (<o = curl q) (2.5)
dt dt

together with the equation of motion (M')- Thus one obtains

dq fx (i
 q X w = — grad h0 + T grad 5 H Aq H grad div q. (M")
dt p 3p

A fourth useful form of the equation of motion can be obtained by introducing the

rate of change of the stagnation enthalpy. Differentiating Eq. (2.4) with respect to t,

we obtain
dh0 dh 1 dq2
 = 1    (2.6)
dt dt 2 dt

From Eq. (2.3) it then follows that



32 A. VAZSONYI [Vol. Ill, No. 1

dho ds 1 dp do ds 1 dp 1 da
— = T— H — + q — = T— + — — H q• grad p + q — • (2.7)
at at p at at at p ot p at

Using the continuity equation (C')» we may write this as follows:

1 dp / 1 <Zq\
+ ——+q ( — grad/> + —). (2.8)

p at \ p dt /

dh0 ds 1 dp
 = T 1 
dt dt p dt \ p

Introducing the last expression into the equation of motion (M')> we finally obtain

dh0 ds 1 dp u
 = T—  + — q (Aq + | graddiv q). (M'")
dt dt p dt p

3. The energy equation. From the law of conservation of energy, it can be shown5

that
dU dip-1) 1
— + P-^71= -* + Q- (E)
at at p

The first term on the left-hand side accounts for the rate of change of internal energy;

the second term stands for the work required to compress the fluid. The first term on

the right-hand side represents the heat generated by the viscous forces. The dissipa-

tion function <j> is defined by

Kdu\2 /dv\* /dw\2 (dw dv\!

J + 2(r,)+2(ir)+(^+J
/ du 3w\2 /dv du\2 2 I

+t+^)+(r,+i;)-7,divn <3I)

Finally, the last term on the right-hand side accounts for the heat added to the fluid

per unit of time per unit of mass. For instance, when all the heat transfer is due to the

conductivity of the fluid (no external heat sources, no radiation), Q is given by

Q = p-1 div (k grad T). (3.2)

The energy equation can be simplified by introducing the entropy from Eq. (2. 3);

thus we have
ds 1

r-= () + -*. (E')
at p

The interpretation of this last equation is particularly simple. The right-hand side

represents the total heat increase of the fluid, while the left-hand side gives the corresponding

product of the temperature by the entropy change. By combining the equation of motion

(M'") with the energy equation (£')> we obtain the following important relation,

dho 1 dp 1 p.
— = — — + 0 + — <M q (Aq + $ grad div q). (E")
at p ot p p

In the literature, the energy equation is frequently given in this last form.

6 See J. Ackeret, Handbuch der Physik, vol. 7, Berlin 1927, chap. 5, p. 293, or H. Lamb, I.e. pp. 575
and 637. In the energy equation it is not assumed that n is constant.
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II. VORTEX THEOREMS FOR FRICTIONLESS FLUIDS

4. The circulation theorems. The circulation is defined by

-/
q-rfl. (4.1)

where the integration is to be taken along a closed curve formed by fluid particles. It

is easy to show that the rate of change of the circulation is given by

da
■dl. (4.2)

dt J dt

Let us combine the last relation with the equation of motion (M). If the viscous

terms are omitted, we have

<*r r l r dp
 = — <b — grad p-dl = — ® —.
dt J p J p

(4.3)

By means of the identity

0=/d{p-ip) =y pd(p->) +£ p-'dp, (4.4)

= - j> P(grad p-1) d\ = pd(p~l). (4.3')

Eq. (4.3) can be transformed into

dT

~dt

Instead of using Eq. (M), we can use Eq. (M') and thus obtain

dT

dt
=j) r(grad s) dl = j) Tds. (4.3")

Sometimes it is preferable to transform the line integrals into surface integrals with

the aid of Stokes' theorem. Thus it follows from the last two equations that

— = — [grad p-1) X grad p]dA, (4.5)

~d~ =ffff ^ ^ ̂ ra(^ (4-5 )
We now come to the interpretation of the equations for dT/dt. When the fluid is

barotropic, the right-hand side is zero in all of these equations, and the theorem of

Lord Kelvin is then obtained. The circulation along a closed "fluid line" in a barotropic

fluid is constant for all time. In particular, when the circulation is zero at a certain

instant, it will remain so for all subsequent time. By applying Kelvin's theorem to

an indefinitely small closed line, Lagrange's theorem is obtained.

In the case of non-barotropic fluids, the situation is quite different. The right-hand

sides in the equations are not zero in general and Kelvin's theorem does not hold.

Bjerknes2 gave a simple geometrical interpretation of Eq. (4.5). Let us draw equi-

distant members of the families of surfaces p = const, and p_1= const, and so obtain
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a series of tubes bounded by these surfaces. The theorem of Bjerknes states that the

rate of change of circulation per unit of time along a fluid line C is proportional to the

number of tubes surrounded by C. (In the case of a barotropic fluid the surfaces

p = const, and p-1 = const, are identical.)

A very similar interpretation can be given to Eq. (4.5') by considering tubes

formed by the families of surfaces T = const, and j = const. In the case of a barotropic

fluid, these two families of surfaces are identical, unless the flow is isentropic in which

case the surfaces s= const, are no longer defined. Bjerknes' theorem, in this modified

form, will be useful in a later part of this paper.

5. Theorems with respect to the rotation. Helmholtz's theorem. With the aid of

Eqs. (2.5) and (C') it can be easily proved that

da d(p~lui)
curl —   (wV) • q. (5.1)

dtdt

Applying the operator curl to both sides of the equation of motion (M) or (M'), we

obtain in the frictionless case

d(p 1<o)

dt
or

d{p~lu>)

dt

— (wV)-q = — grad p~l X grad p, (5.2)

— (wV) • q = grad T X grad s. (5.2')

In the case of barotropic fluids, the right-hand side equals zero. (For two-dimensional

flows the second term on the left-hand side equals zero because w is everywhere nor-

mal to q.) Thus, for barotropic fluids,

-i—— = (p-'«V)-q. (5.2")
at

A geometrical interpretation of the last equation led Helmholtz to the discovery

of his famous vortex theorems. Vortex lines are material lines. The product of the cross-

sectional area and of the vorticity co of a vortex filament is constant both in space and time*

(Holmholtz unnecessarily restricted his investigations to incompressible fluids.) In

the case of non-barotropic fluids, (5.2") must be replaced by the more general Eq.

(5.2) and the Helmholtz vortex theorems do not hold any more. Friedman6 derived

certain theorems for non-barotropic fluids which are somewhat analogous to the

Helmholtz theorems.

6. The theorem of Crocco and its generalization. In the case of steady, frictionless

flows the equation of motion (M") simplifies to the important relation

q X u = grad h0 — T grad s. (6.1)

We will see later that for a very important type of flow ho is constant throughout the

field. In this case Eq. (6.1) reduces to

* A line which at each point is tangent to the vorticity vector o>, at this point, is called a vortex line.

An infinitely thin tube formed by vortex lines is called a vortex filament.

6 A. A. Friedmann, Uber Wirbelbe-wegung in einer kompressiblem Flussigkeit, Zeitschrift f. Ang. Math,

und Mech., 4, 102-107 (1924).
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q X w = — T grad s. (6.1')

This last relation was discovered by Crocco.3 When both h0 and s are constant the

right-hand side of Eq. (6.1) is zero and so the motion must be irrotational. The im-

portance of Eq. (6.1) lies in the fact that it relates the rotation of the fluid to the rates of

change of ho and s.

III. ADIABATIC, STEADY, FRICTIONLESS FLOWS

7. General relations. For the flows considered in this chapter the energy equa-

tions (E') and (E") reduce to

ds dho
- = 0, (7.1) ; — = 0, (7.2)
da dtx

where d/d<r indicates differentiation along a streamline. Accordingly, both the entropy

and the stagnation enthalpy are constant along each streamline (but they might vary

from one streamline to another). Because of its great importance, we shall write out

the integral of Eq. (7.2) in detail for a perfect gas with constant specific heats. One

obtains

1 1 1 p x
ho = — <72 + h = — <j2 + cvT = — <72 H = const, along a streamline, (7.2)

2 2 2 R p

where the equation of state

p/p = RT (7.3)
is used.

The modified Bjerknes theorems simplify somewhat for the flows considered in

this chapter, because the lines of constant entropy coincide with the streamlines.

Similarly the generalized Crocco theorem [Eq. (6.1)] simplifies, because the stream-

lines coincide with both the lines of constant entropy and the lines of constant stagna-

tion enthalpy.

An example illustrating these theorems will be useful.* Consider the discharge of

a perfect gas from a container. We assume that the gas is originally in equilibrium,

that is, that the pressure p0 is constant, but do not assume that the temperature T0

is constant. In order to use Bjerknes' theorem (in its modified form) we construct

the net formed by the lines of constant entropy and the lines of constant temperature.

At the beginning of the experiment the pressure is constant and these lines coincide.

Thus it follows from Bjerknes' theorem that dT/dt = 0. However, at a subsequent

instant, the lines become distinct and so the motion becomes rotational. Let us pro-

ceed now to determine the rotation. In order to use the generalized Crocco theorem

we consider only steady state flow (infinite container). According to our energy theo-

rem, the entropy and the stagnation enthalpy (and consequently the stagnation

temperature) are constant along each streamline. Furthermore, since po is a constant,

it follows from the thermodynamical relation (2.3') that

grad ho = To grad s. (7.4)

Thus from Eq. (6.1)

* The author is indebted to Professor H. W. Emmons of Harvard University for this example.
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q X u = |l - — ̂  grad ha (7.5)

or, after simplifications,

qXu = %q2■ grad (In To). (7.5')

We observe again that although the flow originates from a resting gas, the motion is

rotational in general.

8. Two-dimensional flow. The continuity equation shows that in this case there

exists a stream function such that

u — p~ldil//dy, v = — p~ld\j//dx. (8.1)

From the definition of the rotation, it follows that the stream function must satisfy

the following equation

d(p~1\//x)/dx + d(p~1\/'y)/dy = — co (= — dv/dx + du/dy). (8.2)

In order to determine u we use Eq. (6.1). Because s and ha are constant along a

streamline,
3s dho

qw = T , (8.3)
dn dn

where d/dn indicates differentiation normal to a streamline. Both the entropy and

the stagnation enthalpy are functions of alone. By using the relation

d d
~ = qp-' (8.4)
dn dy/

(8.3')

we find from Eq. (8.3),

\ di d*}
For a perfect gas this reduces to

p ds dho
o> = — p  (8.3")

R d)p dt

Noting that dh0/d\f/ and ds/d\j/ are constant along any given streamline, one observes

that the rotation on each streamline is a linear combination of the density and the pres-

sure. If ha is constant, throughout the flow the rotation is proportional to the pressure.3

If s is constant, throughout the flow the rotation is proportional to the density.7

(The constant of proportionality is given by the rate of change of entropy or stagna-

tion enthalpy normal to the streamline.)

It is of some interest to develop Eq. (7.5') for the two-dimensional case. Here we

find that
pq1 3 (In T0)

co = — — (8.5)
2 di

and the rotation is thus seen to be proportional to pq2 along each streamline.

Finally we mention that after rather lengthy computations the differential equa-

tion for xf/, Eq. (8.2), can be transformed into

7 K. O. Friedrichs (and R. von Mises), Fluid dynamics, Brown University, Providence, R. I., 1941,

p. 229.
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/ m2\ 2uv / t>2\ fdho k—\/ q~\ dsl

('" 70*" " +V ~ 70*" " 4# " -JTV"+ t)^J' (8'6)
When both the entropy and the stagnation enthalpy are constant throughout the

field, the right-hand side of Eq. (8.6) becomes zero and one obtains the familiar equa-

tion of a steady isentropic irrotational flow.

9. Flow around an obstacle with shock-waves. Shock-waves can be included in

our theory by admitting such discontinuities in the flow pattern as are compatible

with the laws of conservation of matter, momentum and energy. Thus, the previous

theory can be applied for flows between shock-waves For most purposes one can as-

sume that the air comes from a homogeneous condition and in particular that ho

and 5 are constant far ahead of the obstacle. It follows from Eqs. (7.1) and (7.2)

that both ho and 5 are constant at least up to the first shock-wave, and then again along

each streamline between consecutive shock-waves. Hence co = 0 on each streamline up

to the first shock-wave. In particular, if a streamline is not intersected by a shock-wave,

to remains zero all along this streamline. From the law of conservation of energy it can

be deduced that h0 must be continuous across a shock-wave and thus h0 must be a

constant throughout the field. Hence from Eq. (8.3")

p ds
0) = — —, (9.1)

R drfr

and the rotation is proportional to the pressure along each streamline between shock-

waves. Furthermore it is known that the entropy increases across a shock-wave and

the increase depends on the magnitude of the shock. Hence ds/dip is not zero in general

after a shock-wave and the motion is rotational. Generally speaking there is always a

sudden increase of the rotation across shock-waves (see Hadamard), and then the rotation

remains proportional to the pressure (see Crocco).

10. Flow with axial symmetry. Let the x axis be the axis of symmetry of the flow.

Then there is a stream function such that

u = r^p^d^/dr, v = — r~lp~ld\l//dx, (10.1)

where

r = \/y2 + 32 (10.2)

and v is the velocity component normal to the x axis.

Quite similarly to the two-dimensional case, it follows from Eq. (6.1) that, in the

present case,
/ ds dh 0\

a> = rp\T ). (10.3)
\ dip d\fr)

For a perfect gas, we have

t*-.rfa±. do.?)
R d\f/ dip

When ho is a constant throughout the field, one recognizes in Eq. (10.3) a relation

discovered by Crocco.3


