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A CYLINDER COOLING PROBLEM*

BY

SAMUEL A. SCHAAF

University of California, Berkeley

1. Introduction. The linear cooling problem for non-homogeneous solids has been

investigated extensively by Rust,1 Churchill,2 Carslaw,3 Mersman,4 and others. It is

the purpose of this paper to obtain a solution for the corresponding cylindrical prob-

lem. The method used is that of the Laplace Transform.

2. The Problem. Let us consider an infinitely long circular cylinder of radius a

and initial temperature To, instantaneously immersed in an infinite medium initially

at zero temperature. Let the heat conductivities and diffusivities of the cylinder and

external medium be respectively K, and h2v (»» = 1, 2). Then if r is the distance from the

axis of the cylinder and t is the time, the following differential system is satisfied5 by

the temperature functions T,(r, t):

2 (d*Ti 1 dTA dTi
M 1 > =   0 2a r < a, / > 0, (1)

I dr2 r dr) dt

2 (d*T2 1 dT2) dTt
*■{17 + 717} "IT '>'■•>"■ <2>

lim Ti = lim Ti t > 0, (3)
r—»«— r—»a+

dTx dTi
lim iEi = lim K2  t > 0, (4)

r—*a— df r-»a+ dt

lim Ti = T0 0 ^ r < a, (5)
I->0

lim T2 = 0 r > a. (6)
«->o

3. Solution. Let the Laplace transform of T,(r, t) be Tv*(r, s), i.e.,

/> 00

e~"T,(r, t)dt s > 0.
0

Applying this transform to (1)—(6), we obtain the corresponding set of ordinary dif-

ferential equations containing s as a parameter;
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2 (d2T* 1 dT?)
M-7T-+ >--r0+5ri* 0^r<a, (1*)

dr2 r dr J

1 dr?)

dr2

1 dT?\

r dr ] ~
sT* r> a, (2*)

lim Tf = lim T?, (3*)
r+a— r-*a+

dTj* dT}
lim Ki = lim K2   (4*)

T-*a— dr t—»a+ dr

The solution' of this system is

„„ , r„r. . K{(«,Vs) h(rVs/k,)-\
Tf"-s)" tL1 + Sm J- <7)

where

m*, \ T° ot3Io (a1Vs) K0(rVs/h2)
T *(r, s) = —  —-=- , (8)

s D{\/s)

011 = a/hi, ot2 — ctjhi, a 3 = K\hi/ Kih\, (9)

D(x) = (X3I0 (aix)Ko(otix) — To(aix)Ko (a^x). (10)

The functions T,(r, t) may now be obtained by use of the complex inversion

formula7
I /» e+tX

T,(r, t) = lim  I e"T?(r, z)dz, c > 0. (11)
*-.» 2ri J c—tX

In order to reduce these contour integrals to real integrals we must first establish

the following lemma.

Lemma. D(z) does not vanish for \ arg z | ^ |tt.

Proof. We choose two numbers A and B, arbitrary except that

0 < A < 1 < B. (12)

Then since a, is positive (v = 1, 2, 3), it will be sufficient to show that, when |argz|

51 D(z) does not vanish for any values of ay such that A 5= a, ^B (v = 1, 2, 3). The

proof now follows in four parts.

i) There is a number i?i>0, such that D(z) does not vanish for

A ^ a, g B, | arg 21 g 5ir, | z ] < Ri.

This is true because we may use the ordinary series expansions of the Bessel function8

to write
1 z a#

D{z) = f- (a2 — ai-as) log 1- B(z),
atf, 2 2

6 G. N. Watson, Theory of Bessel functions, Cambridge University Press, Cambridge, ed. 2, 1944,

p. 79.
' D. V. Widder, The Laplace transformation, Princeton University Press, Princeton; Oxford Uni-

versity Press, London H. Milford, 1941, p. 66.

8 G. N. Watson, loc. cit., pp. 77, 80.
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where B{z) is bounded in the neighborhood of z = 0. The result is then evident.

it) There is a number i?2>0, such that D(z) does not vanish for

A ^ a, g B, | arg z | ^ jt, | z | > R2.

To see this we use the well-known asymptotic formulae for these Bessel functions9

to write

g(«l— "l) i

D(z) = —   { (a3 + 1 + «l) — i(<*3 — 1 + ti)e~2a1'},
2 zv aia2

where e*—>0 as z—> for k = 1, 2, uniformly in the a, providing A ^B (v = l, 2,3).

Clearly, X>(z) can vanish only if

CC3 — 1 + «2

c i* = t.
«3 + 1 + «1

But for sufficiently large |z|, say |z| >i?2, the right member is less than unity in

absolute value. Hence for |z| >R2, this relation cannot hold with |arg z|

Hi) D(z) does not vanish for |arg z| =\ir. To see this, we let z = eiixy (y real).

Then10

Io(eiiry) = J9(y), (13)

Ko(e^y) = - iiirlMy) ~ *F0(y)]. (14)

Hence

D(yeiiT) = [aJi (ony)Y 0(a2y) — Jo(aiy)Yi (£*2>l) J

+ i {oc$Jo (aiy)Jo(a2y) — Jo(<*iy)Jo (a2y)}.

Therefore Z?(yeJ<T) can vanish only if

aj/o («iy)Fo(«iy) — Jo(aiy)Fo (a2y) = 0C3Jo (ony)J0(a2y) — Jo(aiy)Jo (a2y) = 0.

But this is impossible since it would imply either the existence of a common root for

at least two of these Bessel functions,11 or the vanishing of the Wronskian

W[ja{a2y), Ya(a2y)] = — •
ira2y

iv) We consider now the integral (see Fig. 1)

1 r D'(z)

From i), ii), and Hi) it follows that D(z) does not vanish on C for all a, such that

A^a,^B (j» = 1, 2, 3). Now these Bessel functions are all analytic except possibly

at z = 0. Hence f(<xlt a2, a3) is continuous.

9 G. N. Watson, loc. cit., pp. 202, 203.

10 G. N. Watson, loc. cit., pp. 77, 78.

u It is a well-known result that these Bessel functions have no common roots. See G. N. Watson,

loc. cit., pp. 479, 480, 481.
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Since D(z) has no singularities inside C, /(ai, «2, a3) gives the number of zeros of

D(z) inside C. It can therefore take on only integral values; but this implies that

/(ai, a2, a3) is constant.

Finally

H" [/„(«), tfo(s)]
/(1,1, o - -L f "" '«>• a ■ 0.

2triJr W \lB(s). tfo(z)2 TiJc W[h{z),Ka(z)\

Hence/(«!, at, a3)=0, for all ay satisfying the relation A ^ay^B. Therefore D(z) has

no roots inside C. Since the radii R3 and Rt (see Fig. 1) are arbitrary, except that

Fig. 1 The contour C, consisting of the circu- Fig. 2. The contours I, r,, rt, r,, £, and £,.

lar arcs |z| = R, and \z\ = Rt and the line seg- xhe radius of r3 ;s p

ments on the imaginary axis joining them. The

only restriction is that R$<Ri and Rt > R-i.

R)<Ri and RA>R2, it follows that D(z) has no zeros in the entire right-half plane,

which concludes the proof of the lemma.

We now transform the contour integrals of (11) into real integrals. Let us consider

Ti(r, t) first. According to the lemma just established, D(y/z) does not vanish

for |arg Vz| Si.e., for |argz|^ir. Hence the integrand in (11) is analytic

for | arg z| ^ir, and we may (see Fig. 2) replace the integral along I by the sum of

the integrals over r1( r2, Tj, Lu and Z2. Using the asymptotic developments, we

easily see that for large z,

K& (ais/^IoirVz/hJ

D(Vz)

Therefore as X—>», the integrals over Ti and T2 vanish, since <>0.
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Near the origin, the term K& (a2Vz)/o(aiVz) dominates the denominator, and

hence

Ki (a2Vz)Io(rVz/hi)
lim = — 1.
*-*° D(\/z)

Therefore the integral over T3 vanishes with p (see Fig. 2).

On Li, we set z = <rieiT, <r>0. Then, using (13) and (14), we obtain

i r To rvi
— I e"Tf(r, z)dz=— I
2trt J l, iriJ y/.Li

( ^  Jo(>^g^/h\)Y& (a2<T) + iJo(r<T/hi)Jo (a2a) "l ^ ^

v [«s/o (oci<r)Yo(a2<r) — J0(ai<r)Yo (a2a) ] + i[a^J& (a]_a)J 0(a2a) — Ja(otia)Jo {ot2a) ] /

On Li, we set z = cr2e~<T, tr>0, and obtain the conjugate of (15). Adding these and

taking the limit as X—> oo and p—>0, we obtain finally,

— 4T0a3 e J0(ra/hi)Jo (cua)
i i\r, i) =   

71" 0

where

A    f°° e ' Jo{r<T/ hi)Jo (oti<r)
T\(f,t)= ;  I —— ■  da, (16)

o o A(<r)

A(<t) = [a3/o (aitr)Fo(a2a-) — Jt>{a\o) Yq (a2a) ]2
(17)

+ [a^Ji {axa)Jo{a2a) — Jo(a\<r)Jo (a2a) ]2.

Similarly

2T0a3 rx e~'1' Ji(aia)[Ja{aia)Ci{a2a,ra/h^)—aJo(a\a)C{a2a,ra/h^\
T2(r,l) =  I      — da, (18)

■jr J o c A (a)

where

C(x, y) = Mx)Y0(y) - Y0(x)J0(y), (19)

C,(*, y) = Jo (x)Yo(y) - Y{ (x)J0(y). (20)

These formulae constitute the solution of the differential system (l)-(6).

4. Remarks. Since the Laplace Transform method is essentially a formal one, any

solution obtained in this manner must always be verified. In the present case this is

easily done.12

It may also be shown, under certain conditions as to boundedness and continuity

necessarily satisfied by any physical temperature distribution, that expressions (16)

and (18) constitute the unique solution of the system (l)-(6).13

In conclusion, the author would like to express his thanks to Professor G. C. Evans

for his help in the preparation of this paper.

n For an example of the method see H. S. Carslaw and J. C. Jaeger, A problem in conduction of heat,

Proc. Cambridge Philos. Soc. 35, 394-404 (1939).
13 For an example of the method see W. M. Rust, Jr., ioc. cit., p. 196.


