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THIN CYLINDRICAL SHELLS SUBJECTED TO
CONCENTRATED LOADS*

BY

SHAO WEN YUANf

California Institute of Technology

Abstract. A single differential equation of the eighth order in the radial displacement is given for

the equilibrium of an element of a cylindrical shell undergoing small displacements due to a laterally

distributed external load. The radial deflection of thin cylindrical shells subjected to concentrated, equal

and opposite forces, acting at the ends of a vertical diameter, is analyzed by the Fourier method. Applica-

tions of the solution of the problem of the infinitely long cylinder to the problems of a couple acting on

an infinitely long cylinder in the direction of either the generatrix or the circumference are also discussed.

1. Introduction. The bending problem of an infinitely long cylinder loaded with

concentrated, equal and opposite forces, acting at the ends of a vertical diameter, is

discussed first. The equations of equilibrium of an element of a cylindrical shell un-

dergoing small displacements due to a laterally distributed external load are reduced

to a single differential equation of the eighth order in the radial displacement. In

this equation the various terms are compared as to the order of magnitude and it is

found that some of the terms are negligible.

The specified loading function is represented by a Fourier integral in the longitu-

dinal direction, and by a Fourier series in the circumferential direction. The integral

representation has the advantage that the boundary conditions are automatically

taken care of, and no subsequent determination of Fourier coefficients is necessary.

The Fourier coefficients and the undetermined function in the Fourier integral in this

case are determined simply from the loading condition. The radial displacement is

represented in a li^e manner with the aid of an undetermined function which is ob-

tained by substituting both radial displacement and loading expressions in the differ-

ential equation. The definite integrals involved in the expression for radial deflection

are evaluated by means of Cauchy's theorem of residues.

The problem of the inextensional deformation of cylindrical and spherical shells

was treated in detail by Lord Rayleigh in his "Theory of sound." The assumption

of this type of deformation underlies the solution of many problems of practical im-

portance, such as the determination of stresses in thin cylindrical shells subjected to

two equal and opposite forces acting at the ends of a diameter or to internal hydro-

static pressure. It is found that the results obtained in the case of inextensional de-

formations correspond only to a first approximation of the solution in this paper, and

the stresses in the proximity of the points of application of the forces are not given

with sufficient accuracy.

The expression for the radial deflection of a thin cylinder of finite length is ob-

tained from the corresponding solution for an infinitely long cylinder by using the

method of images. It is seen that the difference of these two radial deflections can be

given by a correction factor included in the expression for a cylinder of finite length.
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The difference is believed to result from restraining the edges at the two ends of the

finite cylinder. The results indicate that the radial deflection of an infinitely long cyl-

inder has a very long wave length along the generatrix; however, the wave length

decreases as the ratio of radius over thickness decreases. It is believed that the long

wave length phenomenon is due to the elastic reaction along the circumference of the

shell which can be explained by the radial deflection along the circumference.

Deflection curves of cylindrical shells with various lengths are calculated and the

results show that the maximum radial deflection occurs at length over radius ratio

l/a~20. The radial deflection of an infinitely long cylinder with the radius over thick-

ness ratio a/h = 100, becomes zero at about x/a = 15 and then reverses its sign. The

edges of the corresponding cylinder with finite length are so restrained that the nega-

'W

Fig. 1. Forces and moments on element of wall.

tive deflection portion of the infinite cylinder is brought to zero at the edges of the

cylinder with finite length. Hence, the maximum deflection of a cylinder with l/aca20

is greater than that of the corresponding infinitely long cylinder.

The problems of a couple acting on an infinitely long cylinder in the direction of

either the generatrix or the circumference are also analyzed by using the correspond-

ing solution for the radial deflection under a concentrated load. The action of the

couple is equivalent to that of two equal and opposite forces acting at an infinitely

small distance apart.

2. Fundamental equations. The fundamental equations of a cylindrical shell un-

der the specified loading are obtained from considering the equilibrium of an element

cut out by two diametrical sections and two cross sections perpendicular to the axis

of the cylindrical shell as shown in Fig. 1.

In this discussion the usual assumptions are made; namely, that the material is

isotropic and follows Hooke's law, the undeformed tube is cylindrical, the wall thick-

ness is uniform and small compared to the radius, the deflections are small compared

to this thickness so that second order strains can be neglected, and that straight lines

in the cylinder wall and perpendicular to the middle surface remain straight after

distortion.
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The notation used for resultant forccs and moments per unit length of wall section

are indicated in Fig. 1. After simplification, the following equations of equilibrium are

obtained :*
dNx dNtx dMx4, dM<,

a 1 = 0, a aQ# = 0,
dx d(j> dx d<jj

dN* dNx<, dMx dM<,x
—— +a— Q* = 0, a — +— aQx = 0, (1)

d<f> dx dx d<f>

dQx dQt
a + + N + qa = o, (Nx<, - N+X)a = 0,

dx d<f>

in which q is the normal pressure on the element.

If Qx and Q* are eliminated from Eqs. (1) and the relations

Xif, — N $ x , x$ = A£$x

are used, the six equations in (1) can be reduced to the following three:

dNx dNx*
a — 1 -— = 0,

dx d<f>

dN, dNx+ 31,, 1 dM,
— h a — 1 —— — = 0, (2)

d<f> dx dx a d<f>

2 d2Mx i d2Mt n*
   + +   + — + q = 0.

a dtfrdx dx2 a2 d<t>2 a

The relation between the resultant forces and moments and the strains of the

middle surface will be taken the same as in the case of a flat plate:

Eh Eh ■ yEh
Nx = - -(«* + *«♦), N+ = - -(«* + v(x), N x<t> = N<,x = ——-—-»

1 — v2 1 — v2 2(1 + ")

Mx = — D{Xx + vX+), Mt = - D{X<, + vXx), Mx<, = - M<,x = £>(1 - v)Xx+,

where D = Eh3/12(1 —1>2) is the flexural rigidity of the shell and h is the thickness.

Resolving the displacement at an arbitrary point in the middle surface during de-

formation into three components—u along the generator, v along the tangent to the

circular section, and w along the normal to the surface drawn inwards—one finds that

the extensional strains and changes of curvature in the middle surface are

du 1 dv w dv du
€x =  > ~ ) 7X« = 1 )

dx a d<t> a dx ad<f>

d2w 1 d2w 1 du 1 d2w 1 dv
X x — 1 X ̂  = — 1 —t X x<p — — 1 — •

dx2 a2 d<j>2 a2 d</> a dxd<j> a dx

Hence, Eqs. (2) can be put int the form of three equations with three unknowns

u, v, w:

d2u 1 + v d2v v dw 1 — v d2u
—- -| 1   0,
dx2 2 dsdx a dx 2 ds2

* See Ref. 5, p. 440.
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d2v 1 + v d2u 1 — v d2v 1 dw

ds2 2 dsdx 2 dx2 a ds

h2 / d3w d3w\ h2 / d2v d2v \
H ( 1 ) H 1(1 — f) 1 J = 0,

12a \dx2ds ds3 / 12a2 \ dx2 ds2)

(3)

h2 1 (dv w du\ h2 / d3v d3v\
_V% ( +v_) + ((2- „) + ) _
12 a \ds a dx) 12a \ dx2ds ds2)

1 - »2
 1 = 0,

Eh

where
5 = a<t>.

In the problem under investigation, the quantities u and v are of the order of

magnitude of \/hw/a. Consequently the last term and the third term in the second

and the third equations, respectively, in (3) can be neglected safely.

In order to solve the simultaneous equations (3), one can apply first the opera-

tion d2/dx2, and then d2/ds2 to the first Eq. (3). Solving in each case for the term con-

taining v, and substituting these expressions in the equation obtained by applying

d2/dxds to the second Eq. (3), one obtains an equation from which v has been elimi-

nated :

d3w d*w 1 + v h2 ( dsw d6w \
aV4u = v 1 ( 1 J. (4)

dxs dxds2 1 — v 12 Vdai'dj2 dxdsV

Similarly, applying d2/dx2 and d2/ds2 to the second Eq. (3) and solving for the terms

containing u, and substituting in the first Eq. (3) after applying d2/dxds to it, one

obtains an equation from which u has been eliminated:

d3w d*w h2 / 2 d6w 3 — v d*w d*w\
aV4v = (2 + e) 1- 1 + 1 ). (5)

dx2ds ds3 12 \1 — v dx*ds 1 — v dx2dsl ds6 /

Applying d/dx to Eq. (4) and d/ds to Eq. (5) and substituting these two equations

into the third Eq. (3), after applying V4 to it, one obtains an equation from which

both u and v are absent:

12(1 — v2) d*w 1 /dew d6w d6w \ 1
V8w + +—( h (2 + x) + (3 + v) ) V*q = 0. (6)

a2h2 dx4 a2\ds6 dx4ds2 dx2dsV D

It is evident that the third term in Eq. (6) is neligible in comparison with the other

terms. Equation (6) is reduced to

12(1 - v2) d*w 1
Vsw H V*q = 0. (6a)

a2h2 dx* D *

Equation (6a) differs from the differential equation of the flat plate only by the

second term. The flat plate equation can be obtained from equation (6a) by the sub-

stitution of a = a>. Consequently, this second term represents the effect of curvature

in the problem of the cylindrical shell.

3. Infinitely long cylinder loaded with two equal and opposite forces. The above

equation will now be applied to an infinitely long thin cylinder loaded, as shown in
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Fig. 2, by two equal and opposite compressive forces P acting at the ends of a vertical

diameter.

P

Fig. 2. Loads and components of displacements of an infinitely long cylinder.

The difficulties of integrating Eq. (6a) for this type of loading can be circumvented

by replacing the concentrated force P by a distributed load q expressed as function

of the longitudinal and circumferential coordinates, and applied to a small area which

subsequently is reduced to an infinitesimal. This is made possible by representing

the function in the longitudinal direction, by a Fourier integral and in the circum-

ferential direction by a Fourier series. Since q is an even function of both x and s, it

can be expressed by

[~?o " ns-l r °° x\
q(x, s) = — + 2- COS — I /(X) cos — d\.

L 2 »-2,4- • • a J J o o
(7)

The displacement w can be expanded in a similar manner in terms of a function

w(X) as yet undetermined:

\x
w = cos— I cos — (8)

" ns rw Xx
= 2s cos— I cos —

n=o,2- •. a J o a

It can be shown that the above expression for w satisfies the following requirements:

at the point where the load is applied, the deflection and moment are continuous, and

the slope of the deflection curve vanishes. Furthermore, the deflection vanishes at

infinity. Substituting Eqs. (7) and (8) in the differential equation (6a) one obtains

the following relations. For n = 0,

therefore,
(qo/2D)f(\)

\x
cos — d\ = 0;

a

w{\) =

Similarly for n — 2, 4, • • •

w(\) =

(X/o)4 + Eh/a2D

(?»/(X)/-D) [(X/a)2 + (n/a)2]2

[(X/a)2 + (n/aYY + {Eh/a*D)(\/DY

Hence, the solution of Eq. (6a) is
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1 r°
~ 2D J0 ?o/(X) \x

w =  |  cos — aX
(X/a)4 + (Eh/a2D) a

1 « ns r- ?„/(X) [(X/a)1 + («/a)2]2 X*
H >, COS  I 7 r COS (/X. (9)

D n-iA -- a Jo [(X/a)2 + (»/a)2]4 + (Eh/a*D)Wa)* a

It is next desired to find g„ and/(X). In order to accomplish this the functions qn

and /(X) must be determined from the loading condition. This is shown in Fig. 3.

Since the cylinder is loaded symmetrically with respect to the generatrix and with re-

spect to the circle passing through the origin, only the positive direction need be

considered.

CO

■x

Fig. 3. Loading of the cylinder.

From Eq. (7),

and

/ x\ C" \x 1 C (x\ \x / x\
q ( —) = I /(X) cos — d\, f(\) = — I ql — ) cos — d[ — ),

\a/ J o a ir J —oo \a / a \a/

q ̂ ^ = 1 when — 8 ^ x ^ 5, q ̂ ^ = 0 when x > 8 and x < — 8.

Therefore
2 r6 \x (x\ 2 8

/(X) = — I cos — d I — ) = — sin X —
7r J o fl \ fl / tX a

Similarly q„ can be determined from the expansion of the loading function along the

circumference in a Fourier series. With

2 f'2
?o = — I ?(*)<&,

T •/ _x/2-t/2

where z=s/a, and if z=ir/2, s = im/2, one obtains

2 /■c 4c 2 rc s 4 q , c
q0 = — I = — <?, <7„ = — I ? cos « — ds = — sin w — >

ira J ita waJ-e & a

where c is as shown in Fig. 3. Substituting g„ and/(X) in Eq. (9), one finds that



1946] CYLINDRICAL SHELLS SUBJECTED TO CONCENTRATED LOADS 19

1 r"

2D J o

1 " ns (8g/ir2wX) sin nc/a sin X5/a[(X/a)z + (n/a)''\ Xx
H V cos — I  7   cos — d\.

D Jri... a J* (X/a)2 + (n/a)2 4 + Eha2D{\aY a

(8qc/ir2aX) sin \S/a \x
w =  |  cos — d\

(X/a)4 + Eh/am a

Next, the case of a concentrated load applied at the origin may be considered.

Such a load can be obtained by making the lengths 25 and 2c of the loaded portion

infinitely small. Substituting

X5 X5 nc nc
P = 4 qch, sin — « —, sin — ~ —

a a a a

in the above equation, one obtains

Pa2 r°° cos \(x/a)d\
w = J"J 0Dt2 Jo X4 + J2

2 Pa? ^2, Yi

~^D „h- ■ -C°S ~a Jo [X2 + «2]4 + /2X4

2Pa2 " ns r " [X2 + »2]2 cos (\x/a)d\
H—~ 2^ cos— I —F77-;—rn . ,—' (10)

2,4- . . Ci J 0

where
Eha2 /°\2

In order to evaluate the definite integrals in Eq. (10) Cauchy's theorem of residues

will be applied. Let us consider the integral

cos \(x/a)d\

o X4 + J2

where the characteristic equation X4+J2 = 0 has four complex roots

X = /«*(- l)1'4.

Cauchy's theorem yields

cos \(x/a)d\ r .— / J J x / J x\
 A/ + sin \/ J. (11)

o X4 + P 2y/2 \ V 2 a v 2 a /

The rational function in the integrand of second definite integral in Eq. (10) can

be expressed in the form of partial fractions,

(X2 + »2)2 1 ( 1

[X2 + n2Y + /2X4

1 | 1 1 )

2 l(X2 + »2)2 + i/X2 + (X2 + »2)2 - t/X2/

1 1

a2 — a2 X2 — a2 a2 — a2 X2 — a2
12 12 1 2

11 11
+ -1- , (12)

a2 - a2 X2 - a2 a2 - a2 X2 - a2
2 4 3 4 3 4
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where ±ai, +ct2, ±a3 and + «4 are the roots of the denominator,

+ <*i = i 0:4* = i A + iB

= ±\/2 [l/+ ^ + (~ ~2 + *) ~ ("2 ~

± (- «2 + 9)2 + (-y + *) + ^ ~ •

+ a2=i a* = + C + iG
(13)

± 7^(«2 + vy + (y++ (»2 + ,

where the asterisk denotes the complex conjugate, and

<f> = ViW+ln, v = vi(*»-ys). ^2 = »w1 + u/4«2)j. (i3a)

Hence
(X2 + nt)teAx,ad\-s:(x2 + »2)4 + y2x<

2iri ( «2 aj
 < (tj — i<t>)eixa (y — i<p)eixa'la

&Rt (. OflO!2 flf!2

«4 a 3 "J
 (?J + i4>)eixa*,a H (ij + i<t>)eila*'a > . (14)

Q!3a4 <*3«4 '

Since
ai«2 = — «2 = «3a4,

Eq. (14) can be simplified as follows. Now

f 00 (X2 + »2)2 cos x\/ad\

Jo (X2 + ny + /2X4

ir (r, _ Ax Axl
= < (4>C + ^ COS 1- (0G — ?)C) sin  <,-**/«

4i?2»2 IL o a J

. I", . \ Cx , Cxi )
+ | (<f>A — i)B) cos b (yA + <j>B) sin L-g*/o|. _ (15)

Simplifying the integrals (15) and (11) in Eq. (10), one obtains

w/h ^3(1 - r2) / a V'2/

P/Eh2 2ir
(T)'(t"f/T7 + ,i"/7;)r V//2(i/o)
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A x "1 r Cx
+ — i]C) sin  e-Bx/a _|_ _ ^u) cos 

a J L a

+ (ijA + 4>B) sin J e~f,,:r/<*j- . (16)

It is seen that the first term of the above expression is very small as compared

to the second term, and therefore can be neglected without appreciable error. For a

40x I03

35x O3

30xl03

25xl03

20x0s

6x0s

KD4

5 x O3

MAXIMUM DEFLECTION PARAMETER
OF CYLINDRICAL SHELL

Vs
RADIUS

THCKNESS
RATIO

100 500 1000 Q 1500 2000

h"

Fig. 4

certain value of the a/h ratio, G is found to be very large as compared to B. The terms

containing e~Gx/a can then be completely neglected, provided that x/a is not near zero.

In the case when x/a — 0 Eq. (16) can be simplified as follows:

r w/h 1 3\/2(l — v2) / a \2 ^ cosK5/a\/l + S

lP/Eh2\z/a,0 ~ 7r \h) JX... n3 S
where

3(1 - v2)a2
S2 = 1 + — — •

4 m4A2

The left side of (17) has a maximum at 5=0. Figure 4 shows the variation of this

maximum with the ratio a/h. Figure 5 shows the variation of w along the generatrix

through a point of loading, and Fig. 6 shows the projection of lines of constant w on
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the plane through the axis of the cylinders and perpendicular to the line of action oi

the two forces P.

4. A cylinder of finite length loaded with two equal and opposite forces. The ex-

pression for the radial deflection in a thin cylinder of finite length can be obtained

from Eq. (16) by using the method of images.* If one imagines the cylinder of finite

length prolonged in both the positive and the negative x-directions, and loaded with

a series of forces, P, of alternating sense, applied along the generatrix (s/a = 0) at a

distance I from one another (see Fig. 7), then the deflections of the infinite cylinder

-4 x I05

-2 x10s

2xO*

4 xlO3

6 xD5

8x0*

O4

12 xlO3

WxO3

16 x D5

6x10*

-K)0 -too

REFLECTION CURVES OF CIRCULAR CYLINDRICAL

SHELLS ALONG THE GENERATRIX

(INFINITE length)

-40 20 -ID

l-o

ID 20

&3Q?

jL

40 60

r-g.io3

©o

Fig. 5

are evidently equal to zero at a distance 1/2 from the applied loads P. Hence one may

consider the given cylinder of length I and radius a as a portion of the infinitely long

cylinder loaded as shown in Fig. 7. From Eq. (16) one finds that the deflection of

any point, |3, (at a distance J" from the s-axis) on the shell due to the load P acting at

the center is

Pa2 ^2, cos ns/a / ^ f
Wa =

2ltD n— 2.4-•• Rtfl
||^($C + tiG) cos A — + (<{>G — rfi) sin A —J e~Blla

+ j~ V&) c°s C + (rjA + <j>B) sin C —J e-0""! . (18a)

The deflection produced by two adjacent forces a distance I apart is

* This method was used by A. Nddai, Z. angew. Math. Mech. 2, 1 (1922), and by M. T. Huber,

Z. angew. Math. Mech. 6, 228 (1926).
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Pa2 ^ cosns/afl" Al~t
wb = 2^ — ^ (0C + *£) cos ^4 

27rZ) n-»2,4 • • • 2^2^ (L #

+ (0G - vC) sin 4 e-B<'-r)/. + I" foe + ,G) cos ̂  -^1.
a J L o

+ (4>G - VC) sin A . (18b)

Since the terms containing e~0(!+f),a are all small compared to the other terms, they

Fig. 6

fi

I —

Fig. 7. Series of equidistant opposite forces acting on an infinitely long cylinder.

can be neglected without causing appreciable error. One obtains similarly wc, Wi,

The total radial deflection at any point /3 is given by the sum

W = Wa + Wb + Wc +

Pa2 " cos ns/a (T f f ~|
  £  — <\ (<{>A - VB) cosC — + (VA + 4>B) sin C— I
2-kD n=2,4 ■ • • Rtfi IL a, a J

cos ^4 — — 2 cos A — cosh B — I cos A — e~'
a a a \ a)

2AI I
— cos e w'ia cos 3A — g-wiia _

a a
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— 2 sin A — sinh B — ('sin A — e~Blla — sin 2A — e~2A"a + • • ■ ̂ ~|
a a \ a a /J

r r r r / i
+ ($G — rjC) sin A — e~Bi,a — 2 cos A — cosh B — ( sin A — e~Blla

La a a \ a

I I \
— sin 2A — g-iBi/a sjn 3^4 — e-wna _ . . . J

a a /

+ 2 sin A — sinh B — (cos A — e~Blla — cos 2A — e~2B,la + • • • ^11 .
a a \ a a /J)

(19)

We sum the series in the above expression, obtaining

« i i to

e~mB"a cosmA— = - Z [e-m<-B-iA)li" -f e-m(B+u)//a]

m-1,3-•• a 2 m=l ,3 ■ • •

1 T sinh (Bl/a) cos (Al/a)

2 Lsinh2 (Bl/a) cos2 (Al/a) + cosh2 (Bl/a) sin2 (Al/a)}'

" I e~lBla [sin (Bl/a) cos2 (Al/a) — cosh (Bl/a) sin2 (Al/a)]
} . e~mBl,a cos mA — =

m—2,4**■ a 2 [sin2 (Al/a) cosh2 (Bl/a) + cos2 (Al/a) sinh2 (Bl/a)\

o° I 1 00

^ e-mBUa gjn mA   _ _ ^ [e-m(B-iA)Ua _

w—1,3* •• ^ m—

cosh (Bl/a) sin (Al/a) "j

sinh2 (Bl/a) cos2 (Al/a) + cosh2 (Bl/a) sin2 (Al/a)j

" I e-BUa cos (yl//0) sin (Al/a) [sinh (Bl/a) + cosh (Bl/a)]
\ e-mBlla gjn   —        .

a 2[sinh2 (Bl/a) cos2 (Al/a) + cosh2 (Bl/a) sin2 (Al/a)]

Thus Eq. (19) is reduced to

w/h 6(1 — v2) / a\2 " cos»s/a IV f
   = - -(— ) Z  —Ww + vOcos — A
P/Eh2 ir \ /? / „_^7... R2n2 \l a

+ (<t>G - vC) sin A —I e~B*la
a J

+ £(<M — i)B) cos C — + (^ + <f>B) sin C —J e~°tla

sinh (Bl/a) cos (Al/a) — e~s'/o[sinh (Bl/a) cos2 (Al/a) — cosh (Bl/a) sin2 (Al/a) ]

sinh2 (Bl/a) cos2 (Al/a) + cosh2 (Bl/a) sin2 (Al/a)

X [" (<t>G — tjC) sin A — sinh B —— (<f>C + rjG) cos A — cosh B —1
L a a a a J

cosh (Bl/a) sin (Al/a) — e~Blla cos (Al/a) sin (Al/a) [sinh (Bl/a) + cosh (Bl/a) ]

sinh2 (Bl/a) cos2 (Al/a) + cosh2 (Bl/a) sin2 (Al/a)

X [" (<f>G — vP) cos A — cosh B — + (<t>C + ijG) sin A — sinh B —li .
L a a a a J)

(20)
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It is obvious that the first two terms of Eq. (20) are equivalent to the solution of

the infinitely long cylinder given by Eq. (16). The remaining terms are evidently the

correction factors due to the restrained edges at the two ends of the cylinder of finite

length. The radial deflection under the applied force can be obtained by putting

r/o- o,

w/h

(P/EW)

- (<t>C + tjG)

6(1 — i^) / a \® JS, cos ns/ai,
 ( — ) £ —^—, ] (<t>C + ijG) 4- (<t>A — t)B)

t \ h / n-2,4-.. ^n® I

sinh (Bl/a) cos (Al/a) — e~B"a [sinh (Bl/a) cos*'Al/a) — cosh ([Bl/a) sin1 (Al/a)]

— (4>C — VC)

— (<^>^4 — ij B)

sinh® (Bl/a) cos® (Al/a) + cosh* (Bl/a) sin® (Al/a)

cosh (Bl/a) sin (Al/a) — e~Blla cos (Al/a) sin (Al/a) [sinh (Bl/a) + cosh (Bl/a))

sinh® (Bl/a) cos® (Al/a) + cosh® (Bl/a) sin® (Al/a)

sinh (Gl/a) cos (Cl/a) — e~olla [sinh (Gl/a) cos® (Cl/a) — cosh (Gl/a) sin® (Cl/a)]

sinh® (Gl/a) cos® (Cl/a) + cosh® (Gl/a) sin® (Cl/a)

_ cosh (Gl/a) sin (Cl/a) — e~°,/a cos (Cl/a) sin (Cl/a) [sinh (Gl/a) + cosh (Dl/a) ] J

sinh® (Gl/a) cos® (Cl/a) + cosh® (Gl/a) sin® (Cl/a) i'

Some applications of the solution of the problem of the infinitely long cylinder.

The problems of a couple acting on an infinitely long cylinder in the direction of

either the generatrix or the circumference can be analyzed by using the solution given

by Eq. (16) for a single load. The action of the couple is equivalent to that of the two

forces P shown in Fig. 8, where limAi»o -PAx = Tc.

4

1 ^ 1 —

Fig. 8. Two couples acting on an infinitely long cylinder.

It is easy to see that the deflection for the case when the force P is applied at the

point 0\, at a distance Ax from the origin, can be obtained from the deflection w,

given in Eq. (16), by writing x— Ax instead of x and also —P instead of P. This and

the original w are then added. The radial deflection due to the two equal and opposite

forces applied at 0 and 0\ is now obtained in the form

— wt = w(x, s) — w(x — Ax, s).

When Ax is very small, this approaches the value

dw(x, s)
wt = Ax.

dx

As Tc is the moment of the applied torque and is equal to PAx, the radial deflection

due to this torque is

Tc dw on
Wt i = —  j

P dx

where w is the radial deflection due to the concentrated load P.
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For the radial deflection due to the couple acting along the circumferential direc-

tion one finds similarly (Fig. 8) that

Tc dw
wTi = — — • (23)

P as

Substituting w from Eq. (16) in Eqs. (22) and (23) one obtains for the couple act-

ing along the circumferential direction,

■wrJh 6(1 — v2)/aV ^ cosns/a. r .
—7^- = - -(-) Z -—f-{«-'"• cosAx/a[A(^G-vC)-B(4>C + vG)]
1 e/Jih T \h/ n-2,4---

— e~Bx,a sin (Ax/a) [(<j>C + r0)A + B(<jiG — rjC) J

+ e~°*'a cos (Cx/a) [C(r,A + <$>B) - G(<t>A - VB)]

- sin (Cx/a) [C(<f>A - VB) + G(yA + <t>B)]} (24)

while for the couple acting along the generatrix direction,

wrJh 6(1 — v1) / o\2 " sin ns/a/ a \2 " sin ns/a . .
(—) X) —   {[(4C + riG) cos (Ax/a)
\ k / n=2,4 • • • R-lflTc/Eh* tc

+ (0G — t]C) sin (Ax'a)\e~Bz,a + [(<t>A — rjB) cos (Cx/a)

+ (VA + <t>B) sin (Cx/a)\e~<3xla\. (25)

In the case when x/a = 0,
WrJh

 = 0, at any s/a.
TJEh*

Hence the condition that the slope of the deflection curve dw/dx must vanish under

the concentrated load (x/a = 0) is satisfied.
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