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1. Introduction. It has been shown by J. Schwinger that a special class of bound-

ary value problems in electrodynamics can be formulated mathematically as Wiener-

Hopf* integral equations. These problems may be described as follows. A plane wave

is incident upon a number of semi-infinite parallel metallic structures of zero thickness

and perfect conductivity. By parallel structures we mean parallel planes or cylinders

with parallel axes. It is then possible to express the electric or magnetic field at all

points in space in terms of the surface current density on the metal with the aid of an

appropriate Green's function. The vanishing of the components of the electric field

which are tangential to the semi-infinite cylindrical metallic surfaces, leads to a sys-

tem of inhomogeneous integral equations for the various surface current densities.

This system of integral equations assumes the general form

n r00

«.(*) = £ I Ki,{x - y)fj(y)dy, X > 0, i = 1, • • • , n,
i-iJ o

where the fj(y) are unknown functions, while the Ki}(x) and g((x) are known. The

particular problem which we shall discuss below possesses certain periodicities, and

for this case we find it possible to reduce the system to a single integral equation of

the form

g(x) = f K(x - y)f(y)dy, x > 0, (1.1)
J 0

that is, an inhomogeneous Wiener-Hopf integral equation. Here f(y) is unknown,

while K(x) and g(x) are known functions.

The advantage of formulating this particular class of boundary value problems as

Wiener-Hopf integral equations is that such equations are susceptible to a rigorous
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solution. We may thus find the functional form of the various surface current densi-

ties as well as the electric field. However, in such problems as we have described above,

the physically interesting quantities may be calculated from the far field and these

quantities in turn are closely related to the Fourier transform of the surface current

densities. Since Eq. (1.1) is solved by transform techniques, these quantities can be

obtained immediately.

The problem which we treat here is the following. A plane monochromatic electro-

magnetic wave whose direction of propagation lies in the plane of the paper, is inci-

dent upon an infinite set of staggered, equally spaced, semi-infinite metallic plates

of zero thickness and perfect conductivity. These plates extend indefinitely in a direc-

tion perpendicular to the plane of the paper. (See Fig. 1 for a side view.) The angle of

stagger with respect to a fixed direction (that of the cross section of the plates in

Fig. 1) is a, while the direction of propagation with respect to this fixed line is 6,

where a — ir <0 <a and 0 <a^ir/2. This structure has some properties which are analo-
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Fig. 1.

gous to those of metal mirrors and gratings. Thus when it is excited by a plane wave

with arbitrary direction of propagation, there will be reflected plane waves in certain

directions depending on the relative dimensions, the wave length and the direction

of incidence.

2. Formulation of the problem. We assume that the electric field of the incident

wave has only one component, namely, the component which is perpendicular to the

plane of the paper. Since the incident electric field is independent of y and the bound-

ary conditions on the plates must be fulfilled independently of y, no other components

of the electric field will be excited. Thus all components of the magnetic field can

be derived from this single component of the electric field Ev(x, z) =<f>(x, z). For this

case both of the components of the magnetic field lie in the plane of the paper and

we shall refer to this problem as an "H plane" problem.

If we now write the Maxwell equations5 in the form

V X E = ikH
and

V X H = - ikE,

where k = 2ir/\, and X is the free space wave-length, we see immediately that the only

components of the magnetic field are

5 The time dependence of all field quantities is taken to be e~itci and may therefore be suppressed.

c is the velocity of light. In the engineering literature, the time dependence is written as exp(ikct). In

order to convert our final results to standard engineering form, one merely replaces i by —j.
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d<f>
ikHx = 

dz
and

d<f>
ikH c = — •

dx

Upon eliminating Hx and Hz from the above equations we obtain the two dimensional

wave equation,

d2<t> d2<t>
— + — + = 0
dx2 dz2

which is to be solved subject to the boundary condition, 0 = 0 on the metal plates

since <t> is the tangential component of the electric field. There are also conditions at

infinity on the function z) which we shall discuss later when we have need of

them.

We now formulate the equation which expresses the electric field in terms of the

surface current density on the metal plates. To this end, we start by modifying the

structure in Fig. 1, so that there are now only a finite number of parallel plates, each

of which is taken to be finite in length. The length of each plate is such that the ampli-

tudes of the attenuated modes are negligibly small relative to the amplitude of the

propagated mode in the parallel plate region before the end of the structure is

is
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reached. (See Fig. 2 for a side view.) If we employ the free space Green's function, we

may express cf>(x, z) in terms of d<f>/dn, the normal derivative on the metallic plates.

We have from Green's theorem

r / 3<t> dG\
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where the contour C is the one indicated by the dotted line in Fig. 2, ds' is the element

of arc length along it and G(x, z, x', z') is the free space Green's function. The outer

boundary of the contour C is taken to be a circle of large radius. This is merely for

convenience and the outer boundary might have been any other closed curve.

G(x, z, x', z') satisfies the homogeneous wave equation

d2G d2G
 1 b k*G = 0
dx2 dz2

save for the point x=x', z=z'. At this point

dG

dx

and

dG |2-='+°
dx' = — 1.

r=x'+0

dz' = - 1
x= x'—0

r" dG

J -oo dz z=z'-0

This may be expressed symbolically by saying that G(x, z, x', z') satisfies the inhomo-

geneous wave equation

d2G a2G
— H 1- k*G = — b(x — x')8(z — z'),
dx2 dz2

where 8(x — x') is the Dirac delta function and is zero everywhere save at x = x', where

it becomes infinite in such a fashion as to make the integral

b(x — x')dx' = 1.

On the plates 4>(x, z) =0, while d<t>/dn' is the tangential component of the magnetic

field on the plates. Since the tangential component of the magnetic field suffers a dis-

continuity which is proportional to the surface current density when we go from one

side of a given plate to the other side of it, the only contribution we get from the in-

tegration along the metallic plates is

f G(*, z, ma, z')Im(z')dz',
m=. r J

and the limits of integration are those which cover the full length of each plate. The

sum is carried out over the finite number of plates as shown in Fig. 2. Jm(z) is propor-

tional to the surface current density on the mth metal plate. There is complete can-

cellation of the integrals taken along the paths which lead from one plate to the next

or which lead from the end plates to the large circle enclosing all of the plates.

We now calculate the contribution from the large circle. In the first place, the free

space Green's function which represents an outgoing wave for Vx2+z2» \/x"l-\-zn

is G(x, z, x', z') = {i/\)H^ [£%/(*:—x')i+{z—z')2] where H^l) is the Hankel function

of the first kind. The contribution from the large circle is

r 2x r Mr', 0') dG(r, r', 0, 0')1
| G(r, r', 0,00 ' - *(/' ^ (2 • *)

J o L or or J
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where

G(r, r', P, p) = — HTiWr1 + r'* - 2rr' cos (0 — /S')]
4

and a: = r sin /3, z = r cos /3. If we now expand G(r, r', /3, /3') in terms of cylindrical waves

we have
oo

G(r, r', /3, 0') = — £ H^(kr')Jm(kr)eim^'\ r < r'.
4 m

m<=—oo

Furthermore, for any point outside of the region of the plates

oo

<£(*, z) = «>•»+*•!■>«> -f V anHm(kr)einB, (2.2)
rn=—oo

where the first term represents the incident plane wave whose direction of propaga-

tion is 9, while the second term represents the scattered wave. We shall not be inter-

ested in the explicit form of the aB's and indeed, we shall show that they do not enter

explicitly into the formulation of the integral equation. The expression for the plane

wave, eiir[z cos e+x sin 91 may be expanded in terms of cylindrical waves by noting that

oo

gik(z cos 0-f-x sin 0) — gikr cos (,9—fi) = ^ kT)C*

m=—oo

If we now evaluate the integrals in (2.1) we get immediately

e«(*oo.»+x.inl» = 4,intl(x, z)

i.e., the incident field.

For our final equation we then have

<t>(x, z) = &„<,(*, z) + X f Im(z')G(x, z, ma, z')dz'.
m=r> **

If we now let q become positively infinite, p negatively infinite, and let each plate

extend indefinitely to the right, we can then express z), the y component of the

electric field, in terms of the incident field and the surface current density on the

plates, that is,
. 00 OO

4>(x, z) = *,„(*, x) + — Im(z')Hw [W{z - z'Y +(x - maY]dz', (2.3)
4 Jmb 0

where a = b tan a. We now impose the electromagnetic boundary condition, namely

that z) vanishes on the metallic plates, and we get a system of simultaneous in-

tegral equations of the Wiener-Hopf type for Im(z). That is, for x = na

i 00 r00

0 = 0i„.(Ma, z) + — £ I Im{z')H^[W{z - z'Y + (n - m)V]<fc' (2.4)
4 m=—oo mb ^

for all n with z>nb,.n = 0, + 1, + 2, • • • ,6 Due to the periodic nature of the structure,

the infinite set of simultaneous integral equations can be cast into the form (1.1).

6 It is possible to obtain the integral equation (2.3) directly from the infinite structure indicated in

Fig. 1. We have intentionally avoided this because it requires a more detailed knowledge of the field at

infinity.
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We close our discussion of the formulation of the integral equation (2.3) with some

remarks about the range of values of a/\ which is allowed. In the parallel plate regions

for 2 large and positive, <fr(x, z) is asymptotic to sin (ivx/a^e*" where k = \/k- — (ir/o)2.

If now &<ir/a, i.e., X>2a, k will be pure imaginary and hence for z sufficiently

large and positive, <f>(x, z) will vanish exponentially. In this case, the parallel plate

regions cannot sustain a propagating mode. If k>ir/a, i.e., 2a <X, then k is real and the

parallel plate region can sustain at least one mode consistent with the polarization

which we have employed. In order that a second mode not propagate in this parallel

plate region, we must further assume that a <X. We also assume that there is a single

reflected wave. Such a restriction puts further limitations on a/\ as well as on 8.

These restrictions will appear when we have obtained the solution of the problem.

3. Fourier transform solution of the integral equation. Before we turn to the

Fourier transform solution of the integral equation (2.4) we shall first convert it into

one of the Wiener-Hopf type. We note that the surface current density of themth

plate has the same magnitude as that of the zeroth plate provided we measure the

distance along the mth plate from its edge. Hence, the surface current density on the

wth plate differs from that of the zeroth plate only by a phase factor. This phase fac-

tor arises because the amplitude of the incident wave differs from plate edge to plate

edge by the factor

cos 0+a sin $)

Thus

Im(z - mb) = h{z)eikm< 6 008 t+a sin

where I0(z) is the surface current density on the zeroth plate. Equation (2.4) may

then be rewritten as

i °° rx »  

0 = 0i„c(z, no) H 23 I Io(z)eikl>mH(1)[k\/(z — z' — mb)2 + (« — m)2a2\dz', (3.1)
4 Jo 0

where p = b cos 8 +a sin 8. If we replace z by z +nb, Eq. (3.1) will read

Q _ gih[(z+nb) cos O+iia b'\ti 6]

{ 00 p 00 

+ — I 7o(z')eif''""tf (1)[fc\/{(« — m)b + (z — z')}2 + [n — mya2]dz', z > 0.
4 J o 0

Finally, when we divide the last equation by eik"n and put m — n = q, we get

i °°
0 _ eikz cos s _| £ I^z')eik<"'H^[Wqia2 + (qb + z - z')2]dz' (3.

4 J o 0
2)

and this equation is of the Wiener-Hopf type.

In order to put this equation into a form which amenable to solution by Fourier

transform methods, we extend it for negative z to be

j °° /* 00

*i(«) = — E J0(*V*Mff(1)[V?,fl,'+ («& + «- z')2Jdz', z < 0, (3.3)
4 J o 0

where $i(z) is an unknown function which is, save for a phase factor, the tangential
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component of the scattered electric field at x = na. In view of the periodic nature of

the structure, the dependence of the integral equation on n is not explicit. We may

now replace Eqs. (3.2) and (3.3) by the equation

<£i(z) = 4>o(z) H—- 2 f Io(z')eikl">H(l)[k\/q2a1 + (qb -f z — z')2\dz', (3.
4 J 0

4)

where now

<t>i(z) =0 for z > 0,

Jo(z) =0 for z < 0,

("0 for z < 0,
<£o(z) s 1

(.e1** cos 6 for z > 0.

For analytical convenience, it is now assumed that k has a small positive imaginary

part. This is tantamount to assuming that the medium is slightly absorbing.

Before we can apply the Fourier transform in the complex plane to the solution

of Eq. (3.4) it is necessary to study the growth order of the functions <j>i (z), I0(z)

and <po(z). It is clear from a direct study of the integral Eqs. (3.2) and (3.3) that these

functions are integrable for all finite z. The half planes of regularity of the Fourier

transforms of </>o(z), </>i(z) and Ia(z) are, of course, determined from their growth orders

at infinity and we now proceed to determine these orders. Since we know 0o(z) ex-

plicitly, it is clear that its Fourier transform is

/;

i
eriwz<t>0(z')dz' = —

i[w — k cos 0]

and is regular in a lower half of the w plane defined by the inequality < 3m (k cos 9) ■

Save for a translation on the z variable and a phase factor which is independent of z,

Io(z) is, in certain units, the surface current density on any metallic plate. For z suffi-

ciently large and positive, I0(z) is asymptotic to the surface current density in any of

the parallel plate regions, that is, it is asymptotic to e'". Since Io(z) is integrable at the

origin, the Fourier transform of Io(z), that is

/:
h{z')e-iv"'dz',

is regular in some half plane defined by

t^Vrri k
3mw < 3m(it) ~ :—:— > 3nt£,

IK!

since 9te(&)/| k\ > 1.

We now investigate the asymptotic form of <j>i(z) for z large and negative. Before

doing this, however, it is convenient to give another representation of the kernel of the

integral equation (3.4). The kernel

oo

— X) ea"H<»[kx/q2a2 + (qb + 2)2]
4 0
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has the Fourier integral representation

^ /» 00 gibpn+i\q\ a.^ k2— tr2— iwqb

— I eiw' £  ===== dw, (3.5)
4 tJc Vk*-w*

where C is a contour which lies in the strip of regularity of the sum in (3.5). It is

closed in the upper or lower half planes by a large semi-circle which passes between the

poles of this sum depending upon whether z>0 or z<0. The strip of regularity is,

of course, determined by the region in which the infinite series in (3.5) converges. A

direct study of this series will reveal that the ordinates of convergence are given by

the inequality, 3m& cos (2a —6) <3mw<3m& cos 9. This now clarifies the reason why

we imposed a small but positive imaginary part on k. Had we not done this, the series

would only converge on the real axis of the w plane and as we shall see in the actual

solution of the Wicner-Hopf equation, this situation would have presented us with

some analytical difficulties.

We may now write the sum in the integral (3.5) in closed form as

eiwz sin a\/ k2 — w2 dw

4ir J c \/k2 — w2 [cos ay/ k2 — w2 — cos (hp — wb) ]

For 2<0, we close the path C in the lower half of the w plane. The poles in the lower

half plane are w = k cos (2a — 6) and two infinite sequences of poles both of which have

negative imaginary parts. We shall have more to say about this double set of poles

presently. Suffice it to be noted at this point, that the kernel has a second representa-

tion which for z <0 may now be written as

gikz cos (2a— 0)

+ terms which attenuate exponentially for z large and negative.
2a k sin (a — d)

It is clear then, that for z large and negative, <f>i(z) is asymptotic to

gik(z-z') cos (2a— 6)

f, 2ak sin (a — 6)

and thus, the Fourier transform of 4>\(z), i.e.,

h(z')dz',

r e~iw*ct>\(z)dz,

is regular in the upper half of the w plane cos (2a — 6).

The Fourier transforms involved in this problem then have a common strip of

regularity, 3m((& cos (8 —2a)) <3mw<3m(& cos 6) and it is thus permissible to apply

the Fourier transform to the integral equation (3.4) within this strip.

Let $1 (w) be the Fourier transform of $i(z) and J(w) the Fourier transform of

7o(z). The Fourier transform of the integral equation (3.4) is then

1 J(w) sin dv/i2 — w2
$i(w) = 1     : ; • (3.6)

i(w — k cos 6) 2\Zk2 — w2 [cos a\Zk2 — w2 — cos (kp — wb) J

The Wiener-Hopf theory now tells us that we can split this transform equation into
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two parts. One part will be regular in an upper half plane, cos (6 — 2a), the

other in a lower half plane 3mw<3m& cos 0 and both of these half planes have a

common region of regularity. It is well to note here that we use the term regularity

in a slightly extended sense. We imply by regularity that the function has neither

zeros, branch points nor poles in the region of regularity. That is, the function as

well as its reciprocal is "regular" in the conventional sense of the term. Suppose we

assume that we can write

K-(w) sin a\/k2 — w2

K+(w) \/k2 — w2 [cos a\/k2 — w2 — cos (kp — wi)]

where K-(w) is regular in the proper lower half plane and K+(w) is regular in the

proper upper half plane and that there is a common strip of regularity for both K-(w)

and 2£+(w). Then

, . sv . . K+(w) J(w)K-(w)
4>i (w)K+(w) = —   — H • (3.7)

i(w — k cos 8) 2

The left side of Eq. (3.7) is regular in an upper half plane while the second term on

the right side is regular in a lower half plane. The term

K+(w)

i(w — k cos 6)

is only regular in the strip of regularity. This function may be decomposed into two

functions in such a manner that one function is regular in the appropriate upper and

the other in the appropriate lower half plane, since

A"+(w) K+(w) — K+(k cos 6) K+(k cos 8)

i(w — k cos 8) i(w — k cos 6) i(w — k cos 8)

The first term on the right no longer has a singularity at w = k cos 0, but is regular

in the upper half plane and the second term is regular in the lower half plane. Thus

Eq. (3.7) can be rewritten in the form

*./ w / \ K+{w) - K+{k c°s 8) J{w)K-(w) K+(kcos8)
$i(w).fir+(w) — = 1   (3.8)

i(w — k cos 6) 2 i{w — k cos 8)

The right side of the equation is regular in the lower half plane 3mw < $mk cos 6

while the left side is regular in the upper half plane cos (0 — 2a). Both

sides have a common strip of regularity and hence the left side of (3.8) is the analyti-

cal continuation of the right side. Such an equality can only hold if both sides of

Eq. (3.8) are equal to an integral function, that is, a function regular everywhere in

the complex w plane. We have then

J(w)K-(w) K+(k cos 8)
 1 = integral function (3.9)

2 i(w — k cos 8)

and also

K+(w) — K+(k cos 8)
<I>i(w)K+(w) = integral function. (3.10)

i(w — k cos 8)
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We shall now show that it is possible to decompose the function

sin a\/ k2 — w2

\/k2 — w2 [cos a\/k2 — w2 — cos (kp — w/ft)]

into two functions, one of which is regular in the lower half plane cos 6,

while the other is regular in the upper half plane cos (0 —2a). The de-

nominator of the fraction mav be written as

cos a\/k2 — w2 — cos (kp — wb)

[a\/k2 — w2 + kp — wb\ [kp — wb — a\/k2 — w2\
- 2 sin sin

2 2

= %[a\/~k2 — w2 + kp — wb][kp — wb — a\/k2 — w2]

X
" r (a\/k2 — w2 + kp — wi)2~| ™ T (kp — wb — a\/k2 — w2)2

H L1 ~ J M L1 4 «V!

. . ° r aV k2 — w2 + kp — wji ——-
= J[(*P- wb)2 — a2(k2 — w2)]II 1    eyw+ir.«/1«

»_1 L 2W7T J

X
"i. r ay/k2 — w2 + kp — u>5~|
n i-——  

n——oc L 2w ir J

Vki—wi+kp—wb) /2nx

™ r kp — wb — a\J k2 — w2~| -,—,
^ T I I J     I g(fcp-u>6-a^r-tc2)/2»ur

n=l L 2«ir J

il [ kp — wb — a\J k2 — w2"l

: AM1 o  'n*—» L 2M7r J

zl r kp — wb — a\/ k2 — w2~\
^ | J | J    _   g(kp—wb~a^k2—w )/2nr

The exponential factors in each of these products has been inserted to render the

products absolutely convergent. The above expression may now be rewritten to read

" , r ( kp — wb) 2 a2(k2 — w2)l
§(«» + &»)(»-,l)(w - »,) n h   \ (3.11)

n—»L I 2wtt ) 4n2ir2 J

where the prime on the products denotes the absence of the term « = 0 in the product.

The infinite product in the last expression may now be expressed in a manner such

that it puts into evidence the portion which is regular in the correct upper half and

lower half planes. Indeed we may express (3.11) as

oo

h(a2 + b2)(w - <n)(w - <r2) XI' ]cI(*p_"Wl°0<>/2™J+»'(*/2-<o
n——oo

00

X IT [An + iSEr„)e"fcp—wb~u>oi)/2nir]— i(x/2— a)|

n=—oo

where now

<7i = k cos 6, at = k cos (2a — 0),
and

i.-y'rin.
wa csc a

2 irti
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where again, the exponential factors following the infinite products have been chosen

to insure the absolute convergence of the product. One should note at this point that

the choice of these exponential factors is not unique and indeed need only be asymp-

totic to the factors which we have chosen. However, we shall see that a second in-

tegral function x(w)> introduced into the decomposition of K(w), is determined in

terms of the factors which we have chosen. We have finally that the factor

-l 00

— p-j) wH-u>a«)/2irn]+i(T/2— a) |^n -j- jgl( u> / 2 »-»«]—i< t/2— a)

n=—oo n—1

has no zeros in the lower half plane cos 9, while the factor

(W — (T2) n [A„—JJ [A„ -f- iv^n]et(':p-wfr-u'nO/2»-»I Ui/i-a)

tl— 1 n«-oo

has no zeros in the upper half plane 3fmw>3m[fe cos (0 — 2a)]. The factorization of

sin a\/ k1 — w2

y/k1 — w2
is more direct, for

\/k2 — w2

sin a\/k2 — w2 JL r a2(fe2 — w2~\

-SL1—sH
a3 " r / /a&\2 iaw~\

= —(w — K)e~iaw'T(w + 1 — J -1 J e-iawl,n
7T

The factor
-Bt/-©'-]' ,iaw I rti

a " f / /ak\* t'aitfl
— (w - K)e~iawlT\^ I A/ 1 — I — ) H 
r „_j L V W/ ir» J

has no zeros in the lower half plane 3mro<3m«, while the factor

a " f / /a£\2 iaw~\
  (W + I A/ 1 - ( — ) giaw/rn

it „_2 L r W/ xm J

has no zeros in the upper half plane 3mw>3m( — k). We thus find that

nTl/l-) "! 1 e-""'1-— (» -
„ , . »_s L r \m/ xn J t
/C_(w)   — =  

(W — <Tl) XI [A,1 — [a„ -(-
fl—OO flail

is free of zeros and poles in the lower half plane <3m& cos d. The factor exM

will be determined so as to make K-(w) have algebraic growth as | w | —►» for

3mw<0. With x(if) so chosen, the integral function sought can only be of algebraic

growth for |zt>|—»w. K-(w) is regular in the lower half plane cos 6.

Finally,
8 -1

(a1 4- b2)(w — [An — JJ [^n +

K+(w) - 
■rr T / /iJ\2 iaw~\ . a

2a II 4/1 — 1 — ) «••"'*»—(» + i)tr»!T
»_2 L r \7rn/ xn J x
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has no zeros or poles in the upper half plane cos (6 —2a).

We shall now discuss the asymptotic form of K-{w) as [w|—>x, 3mw<0. This

procedure will enable us to determine the unknown integral function x(w)- It has

been shown by Schwinger7 that functions of the form of K-(w) are independent of ka

for j | —> co, 3!Tinf <0, and ir <ak <2t. Thus

JV r iaw~\
i + — <

n-2 L TTtl J
A _(«•;

—iaw/irn p—iawl*

tt f . . ( wa esc a \ "I
(>n [s-na- ^COSa + ^—jJ g[(u>ai—u'6)/2Tn]+t (T/2—<*)

l

— [ (wa i+wb [/2irn J—i /2—a )
TT r . ./ wa cscaX 1
n [sina + I|cosa + -^—jje

The products in (3.12) are now in the form of gamma functions and

(wa csca\2 ( ~~ wa csc ae~'a\ (wa csc ae'•

(3.12)

K-(w)

(wa csc a\2 /— wa csc «r'°\ /wa csc aeia\

-IT) r( 2t )r(——)

law / iaw\ /iaw\

T(1 + T)"™'"r(v)

where y is the Euler-Mascheroni constant. Using the Stirling expansion theorem

for | w| —> oo, <0 we get

/ awcsca \-[<»ac«ca!)/iTj,->«-i/» /auicsca \
ex(«"a csc2 a | e~'a ) ( eia 1 «[(«•<««>/»*]•"*-»/«

K_{w)  1 I V 2' '
^ ia,w ^ **a 12

4irH

[(a~*72) cot a+ln (csc<*)/2]

w0* '

where C is a constant. Thus if we choose

— iaw I" / ir \
x(w) = —-1 (a —J cot a — In 2 sin al,

K-(w) will have algebraic growth for | w\ large, 3nw<0.

Now J(w), which is proportional to the Fourier transform of the surface current

density on the various plates, approaches zero for |w| large, 3mw<0. This assumes,

of course, that I0(z) can at most be of exponential growth for z large and positive and

is integrable for z finite. Thus K-(w)J(w) approaches zero for | w| large and 3mw<0.

If we now return to Eq. (3.12) we see that as | w\ becomes large, Qmw <0, the integral

function in (3.9) is asymptotic to zero. We may now apply the same argument to Eq.

(3.10) and find that the integral function is again asymptotic to zero. But by a theo-

rem of Liouville, and analytic function which is bounded in the entire complex plane

is constant and in this case the constant must be zero. We thus have

2iK+(k cos 6)
J{w) =

K-{w){w — k cos 0)

If we were interested in the explicit form of the surface current density, we could

obtain it from J(w) by evaluating the Fourier inversion integral

7 J. S. Schwinger, loc. cit.
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K+(k cos 6)eiw'dw"J
r J c K-(w)(w — k cos 0)

where C is a contour which may be taken as a straight line within the strip of regu-

larity of the Fourier transforms of I{z), 0i(2)> <t>o(z) and K(z). The contour is closed

above by a semi-circle, which by familiar arguments in contour integration may be

shown to make no contribution to the value of the integral. In the next section we

shall show that it is possible to find the reflection and transmission coefficients with-

out evaluating this integral in detail.

4. Investigation of the far fields. In order to find the reflection and transmission

coefficients, we now investigate the asymptotic form of 4>(x, z) for |z| large. To this

end we note that Eq. (2.3) can be written in Fourier integral representation as

4>(X, Z) = 4>inc(*, z) + f/ ^47T J C 771=—«

giwz+ik mp—iw m b+1 x— ma | ̂  k2—wi J ^ nj)dlV

x/kP- — w2

where C is the contour which we described at the end of Section 3. This in turn, may

simplified to

<t>(x, z) = <t>inc(x, Z)

* C ... ■ ., [sin y/k1 — w* (x — an — a) + e'W""™6) sin -s/k'1 — w'1 (an — x\d-
 | J(w)e"°,+i<-kp~wb) 1            

4it J c Vk* — if1 [cos a ̂ k* — w' — cos (kp —

w

-)] ' (4 ,)

where n is the greatest integer contained in x/a. From (4.1) one can get the asymp-

totic form of <j>(x, z) as z becomes large and positive. Since J(w) is regular in the lower

half of the w plane 3mi£i<3fmife cos 0, we can close the contour C by a large semi-

circle which passes between the poles in the upper half plane. For na<x<(n+l)a it

can be seen that due to the form of the integrand, there is no contribution from this cir-

cular arc as its radius becomes infinite. In the upper half plane 3mw > cos (2a —d),

there are two poles which correspond to propagating modes, namely w = k cos d and

w = k. All other modes are attenuated modes in the sense that they have large positive

imaginary parts compared to the imaginary parts of k cos 0 and k. If we now express

J{w) as a function of w and use the above described contour in the evaluation of the

integral in (4.1) we have then to consider the asymptotic form of

i r [sin (x — an — a)y/k* — W + t<<-kp~"b> sin \Zk* — w' (an — x) ].£+(& cos 6)dw

2jt J c (w — k cos 6)K+(w) sin a^k1 — w*

This in turn is equal to "iu ,+I co" — Te'" sin xx/a +terms which approach

zero for z>5>0]. For z large and positive, this is asymptotic to

irx
<i>ino(*, z) — Te{" sin  

a

Hence, save for a numerical factor, the functional form of <f>(x, z) as z becomes infinite

is ei,z sin irx/a, that is, it represents a travelling wave in the parallel plate region with

propagation constant k, as it should. The amplitude of this wave is

xe<«< »*-«»(_ )»[l + ei<-k',-'h)]K+(k cos 0)
T = \T e4® =

(k — k cos 8)atKK+(K)



326 J. F. CARLSON AND A. E. HEINS [Vol. IV, No. 4

and depends of course on the particular parallel plate region for which it has been

computed. Since T is the amplitude of the wave transmitted in the parallel plate re-

gion it is the transmission coefficient because the amplitude of the incident wave has

been taken to be unity. If we now assume that k is real, the magnitude of T is

, . 2%nk sin (a — 0)
\T =

\/(k cos 0 + k)(k — k cos (2a — 0)

a quantity independent of the particular parallel plate region considered. Its phase

angle depends, of course, on the particular parallel plate region. We shall not give

the phase angle explicitly since we shall not use it in our later discussions.

For z large and negative we close the contour in the lower half of the w plane.

There is again no contribution from the circular arc which is drawn between the poles

in the lower half plane and so we need only evaluate the residues from the poles in the

lower half plane. The dominant contribution now arises from the pole w = k cos (6 — 2a)

and in this case the dominant term is

K+(k cos 8)e' k[x sin (2of— 0) + z cos (2a— 0)]

k[cos (2a — 0) — cos 0\K+ [& cos (2a — 0)]

all other terms in the integrand approaching zero for z large and negative. Here

K+ [k cos (2a —9)] means, as usual, the derivative of K+(w) with respect to w evalu-

ated at w = k cos (2a — 6). The amplitude of the reflected plane wave is the reflection

coefficient R if the amplitude of the incident wave is taken as unity, so that we now

have

K+(k cos 0)
R =

fe[cos (2a — 0) — cos 0]K+ [& cos (2a — 0)]

Assuming, once again that k is real, the reflection coefficient may then be rewritten

in complex polar form as follows:

/(k cos 0 — K)(k cos (2a — 0) + k)
R = — -*»A/-       V(k cos 0 + k)(k cos (2a — 0) — k)

where now

@i = - 2

ka
cos a -] sin (a — 0)

2irn ka cos 0
arc sin -

l/'"
ka 2 irn

 sin0
rn

+ z

ka
cos a + —— sin (a — 0)

2tn ka cos 0
arc sin -=== 

ka 2irn
sin 0

/ ka
A/ 1 si:
V Til

-(f-)

-G-.)
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00

+ E
ka cos 6 ka

arc sin  _  cos
■trn

sin2 0

ak ( ( ir\ ")
— cos 0-^1 + ( a —J cos a — In 2 sin a > ,

and

02 = - E

ka
cos a  sin (9 — a)

2icn ka /ir \
arc sin  — cos (0 — 2a) — I a )

/ ka 2nir \ 2 /
A/ 1 sin (2a — 8)
V tm

+ E

ka
cos a H sin (6 — a)

2ir» ka
arc sin -

/ ka 2nir
y 1 sin (2« - 0)

cos (0 — 2a) —

irfi

+ E

ka
— cos (2a — d)
Trn ak

arc sin  ^  (cos (2a — 6)
nir

sin' (2a — 0)-0-
ak ( ( ir\ "J

— — cos (2a — 0) <1 + ( a 2 J C0S a — ^ s'n a \ •

It is evident that there will be restrictions on o/X and 9 if we are to have a single

reflected plane wave. These restrictions become evident when we study the arc sin

sums and observe that conceivably the first term in the sums beginning with index

unity can exceed unity. We have tacitly assumed that they do not, for otherwise

they would appear in the amplitude factor as real terms. Thus we must see what is

implied by the condition that all factors in the infinite products be complex, or equiva-

lently Aj>0. If we demand that A^>0 it is clear that all other A„5, « = 1, 2, • • • will

also be >0. The condition Ai>0 is equivalent to

ak 2a sin a
(i) ~ = - <

it X cos2 f (0 — a)

and

ak sin a
(ii) — >  

7r sn2 f(0 — a)

Condition (ii) is always satisfied since o/X is always positive. Condition (i) can be

more restrictive than the condition l/2<a/X<I. For example, if 9 = ir/l2, a = 5ir/12,

then condition (i) implies

a/\ < .65.
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5. No propagation in the parallel plate regions. In the Fourier transform solution

of the integral equation (3.4) we have assumed that there was only one propagating

mode in the parallel plate region, i.e.,

IT X

Im(z) ~ esin — > k > 0
a

for 2 large and positive and z in the parallel plate region. Suppose now we dispense

with this assumption and ask what form the reflection coefficient takes if we now as-

sume that k2<0, i.e., 0<a/X<l/2. In this case k is, of course, imaginary and

.—-—  , irx
Im(z) ~ e~ la ' sin —

a

for z large and positive and 2 in the parallel plate region. The result we desire can be

obtained most easily by studying the result which we have obtained in Section 3.

We note that if k is purely imaginary and k is real, the amplitude of the reflection

coefficient becomes complex of magnitude unity. Indeed for k2<0

(k cos 6 — K)(k cos (2a — 6) + k)

(k cos 6 + K)(k cos (2a — 8) — k)

= exp<«
ka cos 8 ka cos (2a — 9)

— arc sin -

j/1 - ysin2 0 jr j/l - ^ sin2 (2a - 6)

Thus for this situation, the amplitude of the reflection coefficient is —1. The phase

angle 0/ is given by

ka cos 6
©i = 0i + arc sin

while ©2' is now given by

ka cos (2a — 6)
©2 = ©2 + arc sin —

t / (ak\2

V 1 ~ \ v) Sln2 ̂ 2<X ~ e)

Hence the reflection coefficient for 0<o/X<l/2 is now — For a single re-

flected wave, the inequality (i) in Section 4 must still be satisfied, although now it is

not as severe.

6. Discussion of results. It should be pointed out that some of the results ob-

tained from our calculations can be interpreted in a simple physical manner. For con-

venience, in this discussion, instead of the angle d we use the angle i, which the inci-

dent wave makes with the normal to the trace of the edges of the plates. It is readily

verified that

v
i — 6 — a -1 

2
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and also that the angle r which the reflected wave makes with the normal is also

equal to i. The condition that there be only one reflected wave

2a sin a
<

X cos! 3(0 — a)

is seen to be a result of simple grating theory. If the waves scattered by a uniform

grating are not to interfere constructively in the region from which the waves are

incident (except for the specular case r = i) the condition o'( 1 +sin i)<\ must be

satisfied where a' is the distance between neighboring scatterers. In our case

a' —a csc a. Expressing d in terms of i, the relation

2a sin a
— <
X cos2 5(0 — a)

is seen to be equivalent to a csc a(l +sin i)<X. If this condition is satisfied and the

condition for no propagation, \ >2a, is also satisfied, the plates act as a perfect plane

mirror. However, while the magnitude of the reflected wave is unity, its phase is not

ir but 0i — ©2. It is easily shown that it will be ir on any plane parallel to that of the

trace at a distance d given by

(4ir<f/X) cos i + 2mv = 02' — 0/ m — 0, ± 1, + 2, • • • .

Therefore, as far as all distant fields are concerned, the plates behave in this case like

a perfect plane mirror whose surface coincides with any of the planes given by the

above equation.

When transmission is possible in the parallel plate region the wavelength in this

region differs from that in free space. One would, therefore, expect to find some anal-

ogy with the phenomena associated with a plane interface between two dielectric

media. This can be shown for the case a = ir/2. In this case the magnitude of the re-

flection coefficient is

, . k cos i — k

1*1   
k cos i + <t

This expression is identical with that obtained for the reflection at a dielectric inter-

face of a wave with the electric vector parallel to the interface. The phases are differ-

ent in the two cases and one can again find a set of planes at a distance d from the

trace given by

(47rd/X) cos i + 2mir = 02 — 0i, m = 0, + 1, • • •

such that the distant fields are identical in the two cases if we regard any one of the

planes as the interface.

The expression for the magnitude of the reflection coefficient should be of use in

estimating the reflection of waves incident on a metal lens provided that the radius

of curvature of the lens (i.e., the angle a) does not vary too rapidly.


