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A NOTE ON STABILITY CALCULATIONS AND TIME LAG*
By SEYMOUR SHERMAN (University of Chicago)

In recent technical literature1 covering widely different fields, investigations have
appeared of the zeros of particular exponential sums, one example of which is

az2 + bz + /3ze~* + c. (1)

The question is: what are the conditions on a, b, /3, and c which are necessary and suf-
ficient that the real parts of all the roots be negative, thus indicating stability. There
also have appeared papers in pure mathematics2 which discuss similar problems and
which supply useful techniques for their solutions. It is the purpose of this note to
indicate how one such technique, which shall be referred to as the Cauchy-Sturm
method, may be applied to a discussion of the zeros of transcendental expressions
such as (1).

Equation (1) arises in the study of control systems with retarded action or time
lags.3 Several attempts have been made to study the zeros of this function and the
results have not been consistent. Minorsky,4 in one of his papers, expands the function
in a power series

/(z) = az2 + bz + fize~z + c

/3z3 /3 z* pz6 13z6
= (c + (b + 0)z + (a - /3)z2 + +  57+'" '

He then attempts to approximate the zeros of /(z) by taking zeros of partial sums.
For nonzero c and |3 we can choose a partial sum of degree 3) such that c and
( — l)n_1/3 have opposite signs and so the partial sum

/Sz3 /3zn
c + (b + fi)t + (a - 0)z2 + +•■•+(- I)""'

2! (» - 1)!

* Received March 28, 1946.
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where z(0) is given and z'(t) =0, —1 <<g0.
* N. Minorsky, (i) supra.
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would have at least one positive zero. This would seem to suggest that dynamical
systems with retarded viscous terms are necessarily unstable. However, from a theo-
rem of function theory,5 we know

For every power series, every point of the circle of convergence is a limit point of zeros
of partial sums.
Although function (1) is entire and so has no circle of convergence, the theorem stated
above shakes our faith in the value of approximating the zeros of function by tak-
ing the zeros of partial sums of its Taylor series.

Reinhardt,6 in his discussion of the same equation, first considers a particular case
of equation (1), namely

z2 + -5z + .5 ze~Tz +1 = 0, (2)

and among the infinite number of zeros of /(z) chooses one which has the largest real
part and small imaginary part (most unstable and corresponding to low frequency).
Arguing that this root, corresponding as it does to a low resonant frequency, is physi-
cally the most significant, Reinhardt studied the zeros of (1) which for other choices
of parameters could be expanded in a series about the "original" zero. Thus he studied
one of the infinite number of zeros of (1) intensively and later made approximations
to the others. He discovered that for some choices of a, b, (3, and c this root had a posi-
tive real part and for other choices of these parameters this root had a negative real
part. Thus, the results of Reinhardt and Minorsky are inconsistent. Since both of
their arguments are approximate a further study is indicated. Minorsky has published
another analysis7 of this subject which allows for the possibility of stability.

A method frequently useful for counting the zeros of an analytic function /(z) in
a simply connected domain D bounded by curve C is Cauchy's8 index theorem:

If w=f(z) is an analytic function of z in a simply connected domain D bounded by
a closed curve C, f(z) f^O, z£C, and z traverses C in a counterclockwise direction, then
f{z) will traverse a closed curve in the w-plane and the number of zeros of f(z) in D is
equal to the number of times the w-contour encircles the origin.

This theorem is at the heart of Nyquist's9 criterion for the stability of amplifiers
and Routh's10 stability criterion. An attempt will be made to apply Cauchy's Theo-
rem to the zeros of (1). We first note that as z traverses C in a counterclockwise sense
w may cross the real axis. Let y be the number of times w crossed the real axis in a
counterclockwise direction relative to the origin (i.e., from quadrant IV to quad-
rant I or from quadrant II to quadrant III) and let a be the number of times w
crossed the real axis in a clockwise direction relative to the origin (i.e., from quad-
rant I to quadrant IV or from quadrant III to quadrant II). The number of zeros of
/(z) in D is then equal to 1/2(7 —a).

Conditions are sought on a, b, j3, and c (all nonzero) in order that all of the roots of

w(z) = az2 + bz + 13ze~* + c = 0

6 E. C. Titchmarsh, The Theory of Functions, Oxford University Press, 1939, p. 238.
6 See (1) supra.
7 N. Minorsky, (ii) supra.
8 H. W. Bode, Network analysis and feedback amplifier design, D. Van Nostrand Co., 1945, chap. 8.

See Titchmarsh, supra pp. 115-116.
9 See Bode supra.
10 See E. J. Routh, Dynamics of a system of rigid bodies, Macmillan and Co., 1892, Part II, pp. 191—

202.
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have negative real parts. We assume that w(z) has no zeros on the imaginary axis.
Our domain D is the semicircle

D: <R(z) >0, | z | < R

in the z-plane.
For i?(>0) sufficiently large, if |z| ^R and11 51(2)^0, then

| az21 >| /3ze~* + bz + c \.

Since az2 ^0 for | z\ ^R, 'R.(z) ^0, we have, by arguing from Rouche's theorem,12 that
w(z) 5^0, for z in this region. If we choose the R given above, all the zeros of w{z) lying
in the right half-plane will lie in D and so we apply Cauchy's Index Theorem to this
region. The boundary curve C may be broken into two parts

A ■ <R.(z) =0 | z | ^ R

and
B; <R.(z) >0 | z | = R.

We consider A for large R. Let z = iy and

w(iy) = — ay2 + c + ($y sin y + i(by + Py cos y).

Note that %_{w) is an even function of y and 3(w) is an odd function of y.
In practical application frequently a> 0, c>0. Let us consider the special case

bet 113| >0. If y = 0, then w( 0) = c>0. If 0<y ^2?, then 3(w) = y(&+/3 cos y) 2:0 and w
is in either quadrant I or quadrant II. For large R, w(iR) is in the second quadrant.
If — R^y<0, then 3(w) =y(b-\-@ cos y)^0 and w is in either the third or fourth
quadrants. Thus, as z traverses A from -\-iR to — iR, w crosses the real axis once in a
clockwise direction relative to the origin (from quadrant I to IV). On the other hand,
for large R, w(z) is dominated by az2 and as z traverses B from — iR to -\-iR, the net
number of times that w crosses the real axis is just once in a counterclockwise direc-
tion relative to the origin (from quadrant IV to I). Since 1/2(7—a) =0 f°r C, f(z)
has no zeros in D, therefore all the zeros of/(z) have negative real parts. It should
be noted that if we remove the restriction of c>0, then13 y — a = 1 — sgn [c(&+/3) ].

We may rephrase the results as follows: In a one degree of freedom mechanical sys-
tem with positive mass a, positive spring constant c and positive damping coefficient b,
and with retarded (unit time lag) coefficient \3, if the damping coefficient is greater than
or equal to the absolute value of the retarded damping coefficient, then the system is stable.14

Suppose we relax the restrictions of the preceding two paragraphs but still re-
quire a>0 and consider (1) on curve C. In order to compute 1/2(7 —a) for the line

11 If z = x-\-iy, x, y real, then
'R.(z) = x and 3 (z) - y.

12 See Titchmarsh, p. 116.
13 sgn (x) is a real valued function of a real variable defined as follows:

[-1, * 0,sgn (x) = j 0, x = 0,
( 1, x 0.

14 This is consistent with Minorsky (ii) p. A69. Note that if 6 g — j <0 (the damping coefficient less
than or equal to the negative of the absolute value of retarded damping coefficient), then the system is un-
stable with two zeros of (1) in the right half-plane.
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segment A and arc B we wish first to note where w crosses the real axis. Because
<R.(w(fy)) and 3(w(iy)) are even and odd functions of y respectively, we need only
consider those positive values of y for which 3(w(iy)) —y(b-\-(3 cos y) =0.

If we temporarily ignore the case previously considered where y(b-\-/3 cos y) had
no positive zeros, but assume merely that/3^0, then the positive roots of y(b-\-(3 cos y)
will be of the form

/-b\
arc cos I ) + 2mir, m = 0, 1, 2, • • • ,

\ 0 /
where we permit arc cos to take two positive values between 0 and 2:r (including the
latter). We number the positive zeros of y(b-\-fi cos y) in order of increasing size
yi, y%, ■ ■ ■ . Let yM be such a positive zero of &+/3 cos y that

(1) j8 sin yM< 0

and

(2) — ay2+c+[iy sin y <0 for15 y

We might, if we so wished, have chosen yM so large that yM <R <yjif+i. For the pur-
poses of our subsequent calculation this would be inconvenient, but since it is con-
venient for the purpose of the argument, we shall make this assumption during the
proof. We now calculate y—a for curve C. In other words we have to consider the
number of times and the direction relative to the origin in which w crosses the real
axis as z traverses C in a counterclockwise direction relative to D. The only values of
z along A for which w hits the real axis are: 0, ±yj]j = 0, 1, 2, ■ • • , M. Let us con-
sider yj, which is by definition positive. The contribution to 7 — a due to this crossing
is

- sgn (- ay) + c + Py,- sin y,) sgn — {y(b + P cos y)}
L dy Av=vj

= - sgn [- ay* + c + ,By,- sin yf] sgn (b + 0 cos y)l
L dy

= + sgn [(- ayj + c + Py,- sin y,){P sin y,)\.

Because 1{(w(iy)) and 3(w(iy)) are, respectively, even and odd functions of y, tlie
contribution to y —a, because of the crossing at 2= — ijj is also

sgn [(- ay) + c + Pyj sin y,-)(/3 sin yj)].

The definition of yM was so arranged that the net contribution to y— a because of the
crossing of the real axis corresponding to 2 = 0 and those crossings corresponding to 2
on B totals to 1 — sgn [c(&+/3) ], as in the case a> 0, b^\p\ >0, previously consid-
ered. We now have16

15 If y>(2c/2\/ac—0)>O, then — ay2+c+fi_v sin y<(). Thus in many cases the condition
y>(2c/2\,ac—0) >0 may be used rather than (2). There are other approximations to (2) which might
prove convenient in different cases.

16 If 3 \w{iy) ] ;^0 for any real value of y or if 3[ie(iy)]=0 implies that sin y = 0, then substitute 0 for
2Z,w sgn { [-ay'+c+by,- sin yj] [0 sin ys]}.
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M 2

(7 - a) = 1 - sgn [c{b + /?)] + 2 X) sgn { [- ay,- + c + Pyf sin y,] [(3 sin y-\ J.
7=1

Thus a one degree of freedom mechanical system with positive mass a, and nonzero
spring constant c, damping constant b, retarded (unit time lag) damping constant f3, and
with w(iy) f^O, y real, is stable if, and only if,16

M 2

1 - sgn [c(6 + 0) ] + 2 X sgn { [- ayj + c + Pyt sin y,] [|8 sin y,-]} = 0. (*)
i—i

Only minor modifications are required in order to take care of the case a < 0 or the
degenerate cases where one or more of the coefficients is zero. The expression (*)
may readily be calculated since it involves only four readings from a trigonometric
table and subsequent evaluations of the sign of quadratic expressions.

For dynamical systems with a larger number of degrees of freedom or with more
lag terms, we get higher powers of z or more exponential terms and the application
is complicated but not hopeless. A machine17 of the isograph type should prove helpful
where extended calculations on complicated systems are being considered.

Stability calculations are always easier than control calculations. The usual de-
sign procedure would be to discover a range of a, b, (3, and c corresponding to stable
responses and then to investigate the detailed response for a few choices of a, b, f3,
and c. Thus we would expect that for any particular choice of a, b, (3, and c the control
calculation will be more laborious. In the stability calculation of this paper we have
been, in effect, investigating the relations between the parameters a, b, j8, and c and
the asymptotic character of the solutions of

az"(t) + bz'(t) + 18z'(t — 1) + cz{t) = 0,

subject to the boundary conditions:

z(0) 5^ 0, and z'(t) = 0, — 1 < t ^ 0.

For many design purposes information more specific than the asymptotic character
of the oscillation might be needed. For instance, after having chosen a, b, (3, and c
so that the transient oscillations are stable (all of the roots of (1) have negative real
parts), one may be interested in the detailed response z{t) of the system to a given
impressed force f(t). This is the control problem. We therefore seek the solution of

az"{t) + bz'(t) + fiz'(t — 1) + c = fit),

subject to the boundary conditions:

z(0) given, z'(t) =0, — 1 < t S 0.

We consider first the response of the system in the first second. During that time it
will act like a classical one degree of freedom system with constant mass, viscosity,
and elastic coefficients a, b, and c, and variable impressed force f(t). The response is
given by the solution of

az"(t) + bz'(t) + cz(t) = f{t),

17 See T. C. Fry, Some numerical methods for locating roots of polynomials, Quart. Appl. Math. 3,
89-105 (1945), especially pp. 100-103.
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where Zi(0), given and z[ (0)=0. The solution of this equation can be found in any
standard text18 on differential equations, but, depending on the nature of f(t), might
best be done by numerical integration. In any event, we have z{t) = Zi(t),0 ^ 1.
Now during the second second we can again consider our system as a one degree of
freedom system with the same mass, viscosity, and elastic coefficients, but with an im-
pressed force which depends on f(t) and velocity at time t — 1. Consider the equation

«z2" (t) + bzi (t) + cz(t) = f(t + 1) — /3zi (t),

for 0i£2gl, where 22(0) = Zj(l), z{ (0) = z[ (1), and z{ (t) are derived from the solution
of the previous equation. Again by standard methods we solve for zz(t), 0 ^ 1. This
is related to the actual response z(t) during the second second by

z(t) = z2(i - 1), 1 g 2.

We can continue this process19 for larger values of t if so desired.

THE CENTER OF SHEAR AND THE CENTER OF TWIST*
By A. WEINSTEIN (Carnegie Institute of Technology)

In two recent papers W. R. Osgood1 and J. N. Goodier2 reconsider the much dis-
cussed question of the center of shear and center of twist, the former author pointing
out the disagreement in the literature as to the location of the center of shear. How-
ever no mention is made of the important paper by P. Cicala3 which, together with
a paper of Trefftz,4 will form the basis of the following remarks.

R. V. Southwell5 has clearly pointed out that the two centers, which are intui-
tively well known to engineers, constitute two different concepts and are not just
synonyms for the same point. The center of twist is the point at rest in every section
of a uniform beam subject to a twist by a terminal couple and rigidly clamped at the
other end. The center of shear (called also flexural center) is the point at which an
applied shearing force would produce a flexure without torsion. However, neither of
these points can be explicitly computed, since the displacements of a rigidly clamped
beam under torsion are not known and, on the other hand, the concept of flexure
without torsion is still to be exactly defined. Nevertheless Southwell, using Maxwell's
reciprocal relations in a summary way, makes plausible the coincidence of both
centers.

As Goodier points out, Saint Venant's theory of torsion and flexure of beams does

18 E. L. Ince, Ordinary differential equations, Dover Publications, 1944, chap. 6.
19 Analogous stepwise integration can be found in R. M. Head, Lag determination of altimeter systems,

J. Aeronaut. Sci. 12, 85-93 (1945) and C. C. Kennedy, Measuring the Coulomb and viscous components
of friction, Instruments 15, 404-410 (1942).

* Received May 9, 1946.
1W. R. Osgood, J. Appl. Mech. 10, A-62-A-64 (1943).
? J. N. Goodier, J. Aeron. Sci. 11, 272-280 (1944).
3 P. Cicala, Atti R. Acc. Sci. Torino 70, 356-371 (1935).
4 E. Trefftz, Z. angew. Math. Mech. IS, 220-225 (1935).
6 R. V. Southwell, An introduction to the theory of elasticity, 2nd ed., 1941, p. 29.


