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PUNCH-CARD MACHINE METHODS APPLIED TO THE

SOLUTION OF THE TORSION PROBLEM*

BY

STEFAN BERGMAN
Harvard University

Introduction. Many problems in Engineering and Physics can be reduced to

boundary value problems, i.e. to problems involving the determination of a function

which satisfies a given partial differential equation inside a domain and assumes per-

scribed values on the boundary of this domain. Despite the fact that the solutions of

many such problems have been known "in principle," their actual evaluation has re-

quired such a great amount of computation that it has only been possible to carry out

calculations of this kind in a few simple cases.

The creation of modern computational devices such as punch-card machines,

IBM-Harvard and Bell Telephone Laboratory machines, the ENIAC computer, etc.,

which can carry out rather extensive computations automatically, has changed the

picture completely. However, these machines exist only to implement theoretical

methods, and the reduction of these methods to a form whereby the machine can "take

hold" represents a problem in itself.

In previous publications the author developed certain theoretical methods (the

"method of orthogonal functions" and the "method of particular solutions") for solv-

ing boundary-value problems. The present paper illustrates the application of or-

thogonal functions to the solution of Laplace's equation (d2</>/dx2) + (d2</>/d;y2) =0

through the use of punch-card machines.

1. Formulation of a problem in elasticity. The present paper is concerned with a

method of solving the torsion problem for a bar of uniform cross-section.

Let x, y, Z denote rectangular coordinates, the axis of Z being perpendicular to the

cross-section of the beam.1 According to Saint Venant the components u, v, w of the

displacement vector are given by the expressions

u — — ryZ, v = txZ, w = §tG(x, y) (1.1)

and the components of the stresses, Xz and Yz by

Xs = ^(dH/dy) - y], Yz = ht[x — %(dH/dy)]. (1.2)

Here r is the angle of twist per unit length, /z is the modulus of rigidity, G(x, y) and

H{x, y) are conjugate harmonic functions.

On the boundary of the cross-section, the function H(x, y) assumes the values

x2+y2. These conditions determine G and II uniquely within an additive constant

for G.

The torsion problem is thus reduced to the "first boundary value problem" of

potential theory. We shall describe a method of solving it. As an illustrative example,

we shall determine the function H in the case of the domain indicated in Fig. 1.

* Received June 14, 1946.

1 This coordinate is denoted by Z rather than z in order that this last symbol can be used to designate

the complex variable z = x+»y.
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If one of the functions, G or H, is known, the determination of the other function

is very simple. Despite the fact that for the displacement components we need G in

our example, we determine the function H, since its values are given on the boundary

and the reader can directly estimate how much our approximate solution differs from

the required values on the boundary.

2. The method of orthogonal polynomials. In this paper the method of orthogo-

nal polynomials will be used for the determination of the function H defined above.

The mathematical ideas underlying this method have been developed by the author

in [l],* pp. 57-59 and supplementary Note No. II, [2] and in other papers which are

listed in these references. However, the necessary computations are very involved;

the aim of the present paper is to indicate how

they can be performed with the use of punch-

card machines.

There exist various methods for solving the

boundary-value problem of Laplace's equation.

The method of orthogonal functions has the fol-

lowing advantages.

1) One can obtain the solution in a form in

which the dependence on various parameters is

evident; in particular one can obtain a solution

not only for one fixed domain but for a whole

family of domains which depend upon one of

several parameters. For instance, in the case of

the domain indicated in Fig. 1, one can obtain

Fig. 1. The cross section B of the bar. formulas involving the radius of curvature at

the corners and thus investigate how this radius

influences the stress distribution.

2) In order to solve the boundary-value problem, the bulk of the computation,

i.e. the determination of orthogonal functions, need be performed only once. As soon

as a set of orthogonal functions for a domain B is known the harmonic function which

assumes given boundary values or given values of the normal derivative on the bound-

ary can be easily determined.

3) The method is very general; it Can be easily extended to various other prob-

lems, e.g. to problems in elasticity as well as to problems involving linear differential

equations of elliptic type with non-constant coefficients (see Sec. 8).

Let z=x-\-iy, (x, y real), and let </>Cn+1)(z) denote the polynomial

0(«+i>(«) = Z)„+1(2)[EnEn+1]-v\ n = 0, 1, 2, • • • (2.1)

where Dn+\ and E„+i are the determinants

Dn+i(z) =

Fo.o F o,t

Fi,o F\,i

F 0,n—1 1

Fi,n— i z

F n,0 Fn, 1 • • ■ Fn,n-1 2"

respectively, and

En+i —

'o,o -fo.i

Fn,0 FUli * * * Fn<n—l Fntn

F0 ,n—1 F o,w

(2.2a)

* Numbers in brackets refer to the bibliography at the end of this paper.
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F. = JJ zpz"dxdy, z = x — iy. (2.2b)

The set of polynomials }, n = 1, 2, 3, • • • , constitutes an orthonormal set

over the domain B, i.e.,

C r —— (1 if n = m,
I I dxdy = < (2.3)

J J b 1.0 if n m.

Now let

<j>(")(2) = r </><■"'>(z)dz (2.4)
" o

and let the real and imaginary parts of <E>(n)(z) be designated as and 0„, respectively,

so that
$(»)(z) = y) + idn(x, y). (2.5)

Note that $<n)(z) is a polynomial of degree n in z, and that \pn and 6n are polyno-

mials of degree n in x and y.

As is well-known, both ipn and 0n are harmonic functions. They possess the follow-

ing property. Let H(x, y) be a function which is harmonic in B and continuous on the

boundary C of B. Let s denote the length along the boundary C measured from some

fixed point, so that the boundary values for II(x, y) may be given in the form

II(x, y) =f(s) on C. The function IKx, y) and its conjugate G(x, y) can be expressed

in terms of prescribed boundary values f{s) and the functions \pn, 6n in the following

form:

H(x, y) = ci + XTm*. y) f f(s)dd,(s) - 0,(x, y) f /(s)#„(s)l, (2.6a)
v=i L J c J c J

G(x, y) = c2 + y) f f(s)d0,(s) + i,(x, y) f f(s)d#„(s) 1, (2.6b)
y=l L J C J C J

where Ct are constants. The proof of this statement may be found in [l], p. 58.

In any practical case, the infinite summation (2.6) must be approximated by a

summation over a sufficiently large number of functions, i.e., (2.6a) must be replaced

by2

Hn(x, y) = cN + ^["^(x, y) f f(s)dOr(s) - B,{x, y) f /(s)#„(s)~|, (2.7)
i-iL J c J c J

where N is a positive integer. For increasing N the accuracy of the approximation

will constantly improve. In the present case, we shall take N — 8.

It is thus seen that the whole problem of solving the boundary-value problem is

reduced to the performance of the following computations.

(i) Evaluation of the integrals

2 In the following some quantities, e.g. 8V and \pv, are considered as functions of different variables.

In passing from one variable to another, new symbols should be introduced, since 6, and are different

functions of their respective arguments. For instance

0y\s) = 0,[*(s), ?(*)].

For the sake of brevity the superscript (or the introduction of new symbols) will be omitted and the func-

tions will always be denoted by 0,, i/v, etc., irrespective of the arguments.
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If,zpz"dxdy; (2.8)
' B

(ii) Computation of the determinants appearing in equation (2.1).

(iii) Evaluation of the coefficients

f f(s)dd,(s), f f(s)dMs); (2.9)
J c J C

(iv) Determination of the sum appearing in the right hand side of (2.7), i.e. of

Hn for a sufficiently large N, and the determination of the first partial derivatives

dHn/dx and dHx/dy.

Using an illustrative example we shall describe in the following how each of these

operations can be carried out on punch-card machines.

3. Evaluation of the integrals Fpq. In this paper we consider a bar with the cross-

section shown in Fig. 1. This cross section possesses 8-fold symmetry.

B is a star-domain; i.e., its boundary C can be represented in polar coordinates

(p, #) in the form
p = r(t?) (0 ^ ^ 2%). (3.1)

The values of r(&), $ = 0, 1°, 2°, ■■■ , 45° are indicated in the second column of

Table 1.

Table 1: The values of #, r(i>), r'(tf), x}) —c& and of Ha(r(0), t?) on the boundary C of B.

0
2
4
6
8

10

12
14

16
18
20
22
24
26
28
30
32
34
35
36
37
38
39
40
41

42
43
44
45

rW

2.722
2.723
2.728
2.737
2.749
2.764
2.783
2.805
2.831
2.862
2.896
2.936
2.979
3.028
3.083
3.143
3.210
3.276
3.291
3.291
3.273
3.236
3.179
3.122
3.049
2.990
2.941
2.912
2.903

r\d)

7.41
7.420
7.447
7.491
7.557
7.640
7.745
7.874
8.020
8.191
8.393
8.620
8.880
9.169
9.504
9.878

10.304
10.732
10.837
10.837
10.719
10.476
10.106
9.691
9.303
8.940
8.655
8.486
8.428

i/stKt?), <?]— C8

-1.309
-1.295
-1.249

-1.174
-1.070
- .937
- .779
- .595
- .389
- .163

.078

.330

.586

.840
1.085

1.308
1.498
1.629
1.639
1.610
1.553
1.477
1.388
1.301
1.228
1.163

1.113
1.085
1.075

IMrW, <?]

7.183
7.197
7.243
7.318
7.422
7.555
7.713
7.897
8.103
8.329
8.570
8.822
9.078
9.332
9.577
9.800
9.990

10.121
10.131

10.102

10.045
9.969
9.880
9.793
9.720
9.655
9.605
9.577
9.567
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The double integral Fmn can be replaced by a single integral. Indeed,

2IT r(0)

I pm+n+1ei(n-m)»dpdd

0 ^ 0

-  1 f [r(tf) 1 ">+»+2 cos (n — m)x)dd
m +' n + 2 IJ o

+ j [r(#) ] m+"+2 sin (w — m)&d§. (3.2)

It follows from the aforementioned symmetry that many of the coefficients Fmn

vanish. Indeed, Fmn = 0 unless \m—n\ =0,4,8, • ■ • . Also, even if Fmn does not vanish,

it can be shown that the imaginary part vanishes, so that

1 r 2t
Fmn = Fnm =  I [r($) ] m+»+2 cos (m — n)ddd. (3.3)

m -f- n -f~ 2 J o

If we let m+«+2=sandm-M = g, and take account of the symmetry once again,

it is easily seen that

/i w/4
[/($)]8 cos q&d&. (3.4)

o

Taking account of the relationship between degrees and radians, and replacing the

above integral by a summation, we get the approximation:

Fmn = Fnm ~ (8/s) ■ (tt/180) || [r(^)]s + |[r(45°)]s cos {qir/4)

44 \

+ Z k"°)]8 cos (gTTf°/180) > . (3.5)
y=l )

The above sum can be conveniently evaluated by using the method of "digiting

without sorting," see Lorant [4, 5]. The idea underlying this procedure can be ex-

plained by using the following example. Let us assume that we have to add the follow-

ing column of products:

234 X 24

344 X 32

342 X 33

232 X 22.

In the first column of the multiplicand the number 2 appears in line 1 and line 4.

Instead of multiplying each number separately, we add the multipliers (24 + 22 =46)

and add 46 to itself (i.e., 2X46=46+46). This result is accumulated. Likewise,

3 appears in the first column of the second and third multiplicands. We there-

fore add the corresponding multipliers (32+33=65) and then multiply 65 by 3

(3 X 65 = 65 + 65 + 65). This quantity is likewise accumulated. The first column is thus

completely accounted for; the same procedure is employed for the other columns.

Thus, the process of multiplication, more time-consuming than addition, has been

completely replaced by summations, which can be performed on an electric account-

ing machine.
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mnTable 2: The values of Fm„. In Table 2 the values of F,

obtained in our case are given3 for

tmn m ^ 8, n ^ 8. It must be remem-

27 507 bered that Fmn=Fnm in this case

122.38 (biit not in general). All Fnm with

737.97 m ^8 and #^8 which are not listed

5,087.7 are equal to zero.

38'°03- 4. Computation of the deter-

2 471 500 minants. In order to determine

21 'o41 'ooo! 0("'(z). defined by Eq. (2.1), we
184,060,000. must compute a series of determi-

— 169.13 nants whose elements are complex

— 1,523.2 numbers. In this section we indi-

— 126 920 cate a meth°d for evaluating de-

— 1 174 000. terminants with complex elements

—760.2 by the use of punch-card machines.

We shall again explain the pro-

cedure by means of an illustrative example, referring for detailed information to

Lorant [6]. Let the determinant be:

®n + iA ii an + iAu au + iA 13

121 "t- iA 21 a,22 1A22 0,23 + iA 23

®3i -f* iAi\ 032 + iA32 a33 4" iA33

where the quantities a and A are real numbers.

We shall assume that none of the three complex numbers in the first row is equal

to zero. We then take the reciprocal of each of the three numbers in the first row. The

reciprocal of any complex number not equal to zero is given by the formula

1 a iA
 =     . (4.1)
a+iA a* + A2 a2 + A2

In this way we obtain the three reciprocals

rk + iRk = l/(ffik + iAik) (k = 1, 2, 3) .(4.2)

Now a card is punched for each of the nine elements of the determinant, the entries

being given in Fig. 2, where n is the number of the row and m the number of the col-

umn in which the element is located. If a number is negative, we punch a hole in the

corner above it. See the columns for anm and r„, where the hole is marked by an X.

In this case the machines automatically replace addition by subtraction and, in multi-

plying, punch a hole if one of the factors has a hole.

Note that the entries in the last two columns will have indices running from 0 to 2

instead of from 1 to 3, as formerly. Now disregard those cards on which either or

3 The author wishes to thank Dr. Edwin L. Crow for valuable advice and assistance in the perform-

ance of numerical computations.
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10 11 12 13

v
-v

6
p

K
1e

I
S

S

12
+

S

O?

I
s
c

Co

g
c

11^
7
s

*1"

Fig. 2. The entries on punch cards for the computation of a determinant.

Every column represents a field on a punch card.

both of the two subscripts of a* and ^4* are zero; thus five of the nine cards are dis-

regarded. From the remaining four cards we set up a new determinant

an + iAu an + iAu

;f;
&21 iAu 0-22 lA 22

Repetition of the above procedure reduces this determinant to a single element

a?*+iAi**.
The value of the original determinant is then equal to

{an + iAii){aii + iAu)(au + iAu) (an + iAu)(an + ^412X011 + iAu). (4.3)

If we had started with a fourth-order determinant instead of a third-order one,

the first stage would have reduced it to one of the third order, the second stage to one

Table 3: The values of an, b„, etc.

ajn bj(n- 4) Cn/(n—8)

1.9069 XI0-1

9.0407X10-2

3.6806X10-2

1.4020 X 10~2

5.2013X10-3
1.8859X10"3

6.7240X10-4
2.3652X10-'
8.2631X10-6

3.1980X10"2

2.3472 X10-2

1.2613X10"2

5.9007X10-'
2.6348X10-3 1.8437X10-2

1.9069X10-1

4.5203X10-2
1.2269X10-2

3.5050X10-'
1.0403X10"3

3.1432X10""
9.6057X10-5
2.9566X10-5

8.1812X10-5

3.1980X10-2
1. 1736X10"2

4.2043X10-3
1.4752X10-3

5.2697X10-4 1.8437X10"2

of the second order, and a third stage would have been necessary to obtain a reduction

to a single element. From this example it should be quite clear how to proceed in the

general case.

Now
4>(n)(z) = a„zn_1 + bnzn~5 + cnzn~9 + • • • (4.4)
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and for \//n and dn we have the equations

= («n/w)rn cos nd + (bn/n — 4)rn~4 cos (n — 4)# + • • • (4.5)

and
dn = (a„/n)rn sin w# + (bn/n — 4)rn~i sin (n — 4)j? + ■ • • . (4.6)

The values of an, bn, c„, an/n, bn/(n — 4), c„/(n — 8) are given in Table 3.

5. Determination of the function H(r, $). In order to determine the harmonic

Fig. 3. The exact values of r2(tJ) along the Fig. 4. The exact values of r2(i>) along the

boundary C of B (first quadrant) and the corre- boundary C of B (first quadrant) and the corre-

sponding approximate values J78[r(i9), j>J indicated sponding approximate values of S[r(i?), t?] indi-

by dashed line. cated by a dotted line.

function H(r, d) which assumes the prescribed values, it remains only to determine

the coefficients.

Ay — C f(s)dd,(s) and B„ = f f(s)d\f/y(s). (5.1)
J c J c

In our case/(s) =x% = [r(#) ]2, where |/($) ]2 is given in column 3 of Table 1.

The above integral representation for A v can be approximated by the summation

8ir
A, = 

180
|MK0o)]2 + §[K450)]2 + jt [r(M°)]2^) - ^(^-i)]} (5-2)

where 5„ is the point on C having the polar angle of n degrees.

The expression for B, is exactly the same as (5.2) except that 0„is replaced by \py.

(It will be noted that instead of summing from 0° to 360° it suffices to sum from

0° to 45° and multiply by 8; this is not justified in general, but is in this particular case,
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because of the symmetry of the functions and and of the values of r2 (=*£+:y?)

on C.)

The summations can be easily performed by using the "method of digiting." See

[4, 5]. Because of the symmetry of the specific problem under consideration, most

of the coefficients vanish. In fact, it can easily be proven, and confirmed by computa-

tion, that all the A, will equal zero, while only B4, Bs, etc., will differ from zero.

Bi and Bg have been calculated and the values obtained are \B± = — 4.734, Bs= — 2.343.

The function H, or more precisely the approximation H$ obtained by taking only

the first eight 9„ and \//v, is now completely determined except for the additive constant

which we have designated Cg. Since the infinite sum has been replaced by a finite

approximation which we may designate by Hs. it cannot be expected that r2 — Hs will

be absolutely constant. Therefore, the following process is employed in order to ob-

tain an "average" value of cg.

We evaluate ilg on the boundary; i.e., we find [A *ipv{s) —B„6,(s) ] at a number

of points on the boundary C. We then subtract these values from the correspond-

ing values of r2, and average the differences. Thus an approximate value of c8 is ob-

Table 4: The values of t?) in B.

0°

5°
10°

15°
20°
25°
30°
35°
40°

45°

.5

8.491

8.491
8.491
8.491

8.492
8.492
8.493
8.493
8.493
8.493

1.0

8.472
8.473
8.477
8.482
8.489
8.496
8.502
8.507
8.511

8.512

1.5

8.389
8.395
8.414

8.442
8.476
8.511
8.544
8.569

8.586
8.592

2.0

8.154
8.177
8.243
8.340
8.453
8.564
8.661
8.735
8.780
8.795

2.5

7.603
7.675
7.874
8.153
8.455
8.727
9.936

9.074
9.147
9.169

3.0

9.201
9.531

9.657
8.670
9.661

tained, and we obtain as the best possible appioximation to II%{r, #) the quantity

8

C8+Z [AMr, 0) - BA(r,«?)]. (5.3)
v=l

In the example under consideration cs = 8.492.

In the column 4 of Table 1 the values of iJ8|/($), $] ~c* and in column 5 those of

iJg[r(#), $] are given. The values of Hg(p, $) in B are given in Table 4.

6. Methods for improving the approximate solution. The solution obtained repre-

sents a rather rough approximation.4 It could naturally be improved by computing

more orthogonal functions and determining more terms of the development.

4 Since the aim of the present paper is to explain the procedures used rather than to obtain the best

possible numerical results, the author attempted to avoid long computations and computed only very few

orthogonal functions.

In actual applications of the method one will naturally determine more of these functions, in order to

obtain a much better approximation.
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In many instances, however, one can save a considerable amount of labor by the

use of the following simplified procedure: Suppose that there exists a domain, say M,

which differs only slightly from B, see §1 and Fig. 1., and which includes B-\-C in

its interior. Let us assume further that either the function mapping M into the unit

circle or a complete set of orthogonal functions {/„(z)}, ju = l, 2, 3, • • ■ , of M are

known.5 Here we choose for M a circle of radius R — 3.295.

Let (r„ t?„), v = l, 2, ■ ■ ■ , m denote the polar coordinates of m points of the

boundary C of B, and q, the differences between the desired boundary values and

those obtained by the use of orthogonal functions, i.e. let

q, = /0„ #„) - Hn(ry, t?„), v = 1, 2, • ■ • , m. (6.1)

In Table 5, Columns 2, 3 and 6 the values of r, and q„, respectively are given.

Table 5: The values of r(&), r2(tf), IIs(ry, t?„), c{r„, <?„), A(ry, <?,) and S(ry, i)y) on the boundary C of B.

0
10"
20°
25°
30°
35°
40°
45°

r,

2.72
2.76
2.90
3.00
3.14
3.29
3.11
2.90

7.41
7.64
8.39
9.00
9.88

10.84

9.69
8.49

7.18
7.56
8.57
9.20
9.80

10.13

9.79
9.57

2*

0.23
0.10

-0.18
-0.20

0.08
-0.59
-0.10
-1.14

C(fy} l1V)

0.4
0.5
1.0
2.0
0.9

0.2
0.5

A {fj,, l)y)

-0.02

0.07
-0.09
-0.19

0.32
0.69

-0.33
-0.98

S(fy, fly)

7.16
7.63
8.48
9.01

10.12

10.82
9.46
8.59

If M is a circle of radius R we introduce the functions

1 R2 - r*
p(R, t; r, t?) =     — (6.2)

2tr R2 + r2 - 2rR cos (t> - r)

where are harmonic for every value of r, and we determine I real constants

M = l, 2, •••,/, m, so that, at the points (r», #„), the expression

A(r, = Z T„p(R, r„; r, &) (6.3)
X=l

equals qy\ i.e. so that

^2 T,,,p(R, r„; r„ = q„, v = 1, 2, • • • , m. (6.4)
M-l

Remark. The conjugate g(R, r; r, $) of p(R, t\ r, i?) is given by

1 rR sin (i? — t)
g(R, t; r,d) = —

7t R2 — 2rR cos (t? — r) + r2

6 The function w(z, t) which maps M into the unit circle (taking a point t into the origin) is deter-

mined, if the set {f»(z)} is known, since according to [l, p. 53]

w(z, i) = | [ E M*)fM] & | [ E \W) I * J •
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The determination of the quantities TM involves solving a system of m linear equa-

tions with n variables. This can be performed using punch card machines. The ex-

pression
S(r,0) = Hn(r,&) +A(r, 0)

can be considered as a second approximation to the desired solution.

We wish to add that at the points (R, rM), where the difference R — r„ becomes

very small (e.g. for rM = 35° in our example), one has to replace p{R, r, $) by

(o) (i) rT'w
o>(R, Tu , t„ ; r, 0) = I p{R, T\r,d)dT, (6.5)

where r® r^1' (r® <Tf,<r^t1)) are suitably chosen quantities.

We note that the expression (6.3) can be considered as an approximation of the

integral

r 2t 1 f2x (R2 - r2)h(T)dT
p{R, r; r, d)h(r)dT = — I    > (6.6)

Jo 27tJ0 + r2 - cos (t? - r)

where h(j) is some continuous function which at the points r„ assumes the values

[7\,/(r^-r^) ]. In many instances instead of solving Eq. (6.4), we can estimate the

values of T?, taking T„ approximately equal to q,.

Fig. 5. The values of ELo^*- 20°+yfe -90°; r(0), #)+p(R, 70°+k -90°-, r(tf), tf)],
considered as function of d, along the boundary C of B.

In the example under consideration we took for7 A(r, #),

3

A(r,0) - 0.2 X) [P(R, 25° + ft-9O°;r,0) + p(R, 65° + ^ 90°; r,&)J
k—0

3

+ 0.706 X) [#(-R. 35° + k ■ 90°; r, 0) + />(£, 55° + fc-90°; r,0)]
A;=0

3

- 1.139 X #(*, 45° + £-90°; r, 0), (6.7)
4=0

/? = 3.295.

7 We note that since r(35°) is almost equal to 3.295, we make an over-simplification by replacing

0.706[(r?} - T,C0V(«, re", t6<0); r, <>) + •••] by 0.706 [/>(*, 35°, r, <?) + •• • ];

this approximation, although valid approximately for points which are far enough away from

(R, 35°+& -90°), (R, 55°+fe -90°), k=0, 1, 2, 3, would have to be replaced by more exact expressions in

the neighborhood of these points.
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The values of

3

c(r, 0) = £ [p(R, 25° + k ■ 90°; r, 0) + p(R, 65° + k-90°; r, 0)] (6.8)
!c—0

at points (r„$„) are given in column 7 of Table 5 and drawn in Fig. 5.

The values of A(r, $) and S(r, $) are indicated in columns 8 and 9 of Table 5.

In the case where M is not a circle, but the mapping function of M into the unit

circle is known, we can proceed similarly. A very convenient procedure which can be

applied in this case consists in the use of curvilinear coordinates (in G) which corre-

spond to polar coordinates in the circle.

On the other hand, if a complete system of orthogonal functions {/,,), fx = 1, 2, ■ ■ •

of the domain M is known, we can construct in M a set of functions P„ which possess

properties similar to the functions p (R, t„\ r, &).

The characteristic property of the function p(R, t; r, t?) is that it is harmonic in M,

it becomes infinite at the point (r, t?) = (R, r) and vanishes on the remaining part of

the boundary of M.

We denote by PM a system of functions which approximately equal unity on a

small interval of the boundary and zero on the retraining part. Using the system {/„}

of orthogonal functions, we can determine a set of functions P„, and then proceed as

before, replacing the p(R, rM; r, by the P„'s.

7. Determination of the stresses. The determination of the stresses requires the

evaluation of the derivative of H. Our methods yield only functions HN and S, ap-

proximating the required function. Inside the domain B the derivatives (dHN/dx,

dHt?/dy) and (dS/dx, dS/dy) will in general approximate the corresponding exact

solution quite satisfactorily. The evaluation of these derivatives may proceed by use

of punch-card machines, in the manner described previously. Near the boundary or

on the boundary itself the approximations obtained for the derivatives will, in many

instances, not be satisfactory, and it is advisable to use some summation method in

order to obtain more exact values.

In particular at sharp edges, or points where the radius of curvature of the bound-

ary is no longer continuous, it is necessary to apply special methods for the evaluation

of the derivatives. These questions require special treatment, and will be discussed

in another paper.

8. Additional remarks. It should be noted that the method described in the

present paper can be extended without difficulty to the study of thin plates as well

as to the general problem of elasticity in three dimensions (see [8]).

Up to the present time, it has been practically impossible to determine Green's

function for the equation Am = 0 in the case of multiply-connected domains. In a recent

paper [9] Schiffer has indicated a simple relation between Green's function of La-

place's equations and systems of orthonormal functions which permits a compara-

tively simple determination of Green's function of such domains.

Finally by introducing some additional considerations the method of orthogonal

functions can be extended to a large class of linear partial differential equations in

two and three variables (see [10], [11])-
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