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where Zi(0), given and z[ (0) =0. The solution of this equation can be found in any
standard text18 on differential equations, but, depending on the nature of f(t), might
best be done by numerical integration. In any event, we have z(Jt) = Zi(t),0 ^ 1.
Now during the second second we can again consider our system as a one degree of
freedom system with the same mass, viscosity, and elastic coefficients, but with an im-
pressed force which depends on f(t) and velocity at time t— 1. Consider the equation

azl' (t) + bzI (/) + cz(t) = f(t + 1) — /Szi (t),

for 0^/^ 1, where z2(0) = zx(l), z2' (0) =z{ (1), and z{ (t) are derived from the solution
of the previous equation. Again by standard methods we solve for zs(i), 0 1. This
is related to the actual response z(t) during the second second by

z(t) = z2(t - 1), 1 ^ 2.

We can continue this process19 for larger values of t if so desired.
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In two recent papers W. R. Osgood1 and J. N. Goodier2 reconsider the much dis-
cussed question of the center of shear and center of twist, the former author pointing
out the disagreement in the literature as to the location of the center of shear. How-
ever no mention is made of the important paper by P. Cicala3 which, together with
a paper of Trefftz,4 will form the basis of the following remarks.

R. V. Southwell5 has clearly pointed out that the two centers, which are intui-
tively well known to engineers, constitute two different concepts and are not just
synonyms for the same point. The center of twist is the point at rest in every section
of a uniform beam subject to a twist by a terminal couple and rigidly clamped at the
other end. The center of shear (called also flexural center) is the point at which an
applied shearing force would produce a flexure without torsion. However, neither of
these points can be explicitly computed, since the displacements of a rigidly clamped
beam under torsion are not known and, on the other hand, the concept of flexure
without torsion is still to be exactly defined. Nevertheless Southwell, using Maxwell's
reciprocal relations in a summary way, makes plausible the coincidence of both
centers.

As Goodier points out, Saint Venant's theory of torsion and flexure of beams does
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not give any definition for either point. Several suggestions have been made concern-
ing the use of Saint Venant's theory for this purpose, and it will be shown here that
a definition can be given, which is based on Saint Venant's formulae and leads to an
explicit proof of the coincidence of both centers.

We shall accept Trefftz' definition of the center of shear, and refer the reader to
Trefftz' paper which also contains a clear exposition of the theory of flexure. It will
suffice to mention here that Trefftz has been led to his definition by the reciprocity
law of Maxwell and Betti.

Let 2 be the axis of a uniform beam and x, y the principal directions in the cross
section S, the origin 0 being the centroid of the cross section. According to Trefftz,
the coordinates Xf and Vf of the center of shear are given by

xF = f f y<p(x, y)dxdy, yF = — f f x<p(x, y)dxdy, (1)
I xJ J S

where ip(x,y) denotes the warping function for the cross section in the theory of torsion
and

Ix = J'J y2dxdy, /„ = j"J* x2dxdy

are the moments of inertia with respect to the axes of x and y.
Turning now to the center of twist, the definition which will be given here will

be based on an idea of Cicala, who however fails to recognize the coincidence of the
two points as postulated by Southwell.

According to Saint-Venant, the displacements of the twisted beam are given by

u = r(— zy + a + qz — ry),

v = t(zx + b + rx — pz), (2)

w = r[<p(x, y) + c + py — qx\,

where r denotes the infinitesimal angle of twist. The last three terms in each formula
represent a rigid body displacement. We have only six constants a, b, c, p, q, r at our
disposal, so that a rigid clamping cannot be obtained. However, an approximate
clamping of the end section z = 0 can be obtained by adopting the following postulates.

(■i) The displacements u and v in the section z = 0 are zero:

u = 0, v = 0 for s = 0. (3)

(ii) The mean square of the displacement w in the z direction is a minimum with
respect to the parameters c, p and q which occur in the last Eq. (2):

If,w2dxdy = minimum. (4)
s

Denoting this integral by J, we can write in place of (4)

J(c, p, q) = minimum with respect to c, p and q. (4')

From (2) and (3) we obtain

a = 0, 6 = 0, r = 0,
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so that we have, for any section z = const.,

u = rz(q — y), v = tz(x — p). (5)

We see that, in every section, u and v vanish at the point x=xr, y=yr, where

xT = p, yT = q- (6)

This point will be, by definition, the center of twist. In order to compute p and q, we
use (4) or (4'), and set the derivatives of J(c, p, q) with respect to c, p and q equal
to zero. In this way we obtain the following equations.

I I wdxdy = 0, II wydxdy = 0, II wxdxdy = 0, (7)
J J s J J s J J s

Using the last Eqs. (2), namely w = t{<p(x, y) -\-c-\-py — qx), and observing that

J J ydxdy = J'J" xdxdy = 0,
the origin being the centroid of the cross section, we obtain from (7) the three equa-
tions

| | {(p + c)dxdy = 0, | | (<p + py)ydxdy = 0, I I (<p — qx)xdxdy = 0.
J J s J s J J s

(8)

The first of these equations yields the value of the constant c, while the second and
the third gives us the coordinates p=Xr and q=yr of the center of twist, namely

Xt = f f y<p(x, y)dxdy, yr — — f f x<p(x, y)dxdy.
I xj J S I J S

A comparison with (1) shows that the center of shear coincides with the center of
twist.

Incidentally, the first Eq. (7), namely Jfswdxdy — 0, shows that the average dis-
placement in the direction of the axis of the beam is zero.

It is interesting to note that both centers, as defined here, are independent of
Poisson's ratio.


