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ON THE SUPERPOSITION OF A HEAT SOURCE AND
CONTACT RESISTANCE*

By S. A. SCHAAF (New York University)

1. Introduction. The usual condition for a thermal contact resistance1 is that the
temperature discontinuity T1 — T2 across the interface of two heat conductors [l]
and [2] should be proportional to the rate of heat transfer H per unit area there, i.e.

Ti — T2 — RH, R = "resistance" constant. (1)

If heat is generated at the same interface, however, the quantity H in (1) cannot be
interpreted unless a more specific physical model of the interface is considered. For a

Fig. 1. Magnified view of "lubricated friction" model for interface, consisting in a source S between
the two media and separated from them by contact resistances R1 and R%. A typical temperature dis-
tribution for some fixed time t>0 is superimposed.

large class of problems, including those in which the heat source is caused by friction,
appropriate physical models of the interface lead to a condition of the form

T\ — Ti = R(C\S - //1) = - R(C2S -Ht) Ci + C2 = 1, (2)

where 5 is the rate of heat generated per unit area at the interface, Hi is the rate of
heat per unit area flowing into the corresponding medium and C< is a constant whose
interpretation depends on the nature of the interface. Condition (2) is obtained by
considering models of the interface in which either the contact resistance or the heat
source is broken up into two parts. If the source is caused by friction as the two solids
slide against each other with the interface as slip plane, these two models correspond
respectively to lubricated and to dry friction.

* Received May 27, 1946.
1 W. A. Mersman, Heat conduction in an infinite composite solid with an interface resistance, Trans.

Amer. Math. Soc. S3, 14-24 (1943).
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Lubricated friction. Here we suppose (see Fig. 1) that the heat source is located
between two known contact resistances Ri and i?2, with i?i+i?2 = R- This is the case
if the two solids are separated by a layer of lubricating fluid, for example melted
material from one of the solids. Heat is then generated in the turbulent fluid and flows
to the two solids through film contact resistances of the ordinary kind. If we suppose
that the fluid temperature is T, then according to (1) we have

T — Ti = RiHi at x = 0, (i = 1, 2).

Eliminating T, using Ri-\-R} = R and Hi-\-H2 = S, we obtain

7\ - T2 = RzS - RH1 = - (RiS - RH2) at x = 0,

which is equivalent to (2) if we put Ci = l—Rt/R.
Dry friction. An alternative model for the interface (see Fig. 2) is to suppose that

m
Fig. 2. Magnified view of "dry friction" model for interface, consisting in two sources Si and St

separated by a contact resistance R, with typical temperature distribution as some fixed time t> 0.

the heat is generated on each of the two surfaces, so that there are two sources Si(t)
and S»(f), with Si+52 = 5, separated by a single contact resistance R. This seems a
reasonable model for dry friction, where the heat is generated on the two sliding sur-
faces which are separated at most points by a very thin air gap which constitutes the
contact resistance. It further seems reasonable to suppose that these two sources are
proportional, so that

5x(/) = CiS(t), S,(t) = C2S(t), Ci + C2 = 1,

where Ci is an empirical constant depending on the elastic and cohesive properties of
the two media and on the geometry of the surface roughness, but not on the source
strength S(t) nor the temperature. The rate of heat per unit area flowing across the
resistance from [l] to [2] is then Si(t)—Hi(t), so that according to (1) we have

Ti - 72 = R(Si - Hi) = R(H2 - Si) at x = 0 since Si + S2 = Hi + H2.

This is equivalent to (2) providing that the assumption S,= C<5 is valid.
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In Sec. 2 we solve a typical heat transfer problem whose formulation involves the
boundary condition (2).

2. Problem and solution. Let us consider the case of two semi-infinite media [1]
and [2], initially at zero temperature and in contact along the plane x = 0, where there
is a heat source S(t) and a contact resistance R. Then, in the usual notation, we have
the following boundary value problem:

d2Ti 1 dTi
 = > (i = 1,2), x>0, t> 0. (3)
dx2 OCidt

Ti = 0, t = 0, x > 0. (4)
r arn r aiYi

- r2 = 22 C*S(<) + Kx — = - R\c2s(t) + k2 — ,
L dxj L dxj (5)

x = 0, / ^ 0, Ci -j- Ci — 1

Equation (5) is the same as (2) since

dTi
Hi = — Ki  at x = 0, t > 0. (6)

dx

The solution of (3) and (4) in terms of the undetermined functions Hi(t) is well
known2 to be

Ti = /3i J Hi(t — u) exp (— yi/Au)du/\/u,
J o (7)

where ji = Xi/y/oa, =y/oti/K{\/ir. The functions //,•(/) may then be determined by
use of the Laplace transform from the integral equation (5) and the additional re-
quirement

Hx(t) + H2(t) = S(t), (8)

which is obtained by equating the two right members in (5) and then using (6). We
denote by f*(s) the transform of f(t), i.e.

f*(s) = f e~"f{t)dt
J 0

(9)

and recall that

j f(t ~ u)g(u)du^ = f*(s) g*(s). (10)

Transforming (7), we obtain

T? = PiH?(s)-VttJs exp (— ytVs), (7)*
since3

fexp (- y*/4<)"]* , , 7-^ J = Vir/s exp (- yiVs). (ID

'■ H. S. Carslaw, Conduction of heat in solids, p. 153.
1 J. Cossar and A. Erdelyi, Dictionary of Laplace transforms, ACS-DSRE No. 71, p. vi-20.
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The transforms of equations (5) and (8) are

ft= R(C1S* - II *), (5)*
II ? + II? = 5*. (8)*

Solving for II*, we obtain

02\ 7T ")- RC\ \ J
gf = _ 5*: (12)

(01 + 02)\ 7T + i?\/.S

We will treat the cases 5 = constant 50, and S = S(t) separately. In the former case,
we have

5* = So/s, (13)

and the inverse of (12) is then known4 to be

02*5*0 .S^lCi — 02C2) r , r   1Hi(t) = 1 exp [(0i + 02)V//i?2] erfc [(0i + 02)v^7^J, (14)
01 + 02 01 + 02

where

2
V'
2 r »erfc (*) = —p= I e~u du.

V TT J x

Hi{t) may be obtained from (14) by interchanging subscripts 1 and 2; the expressions
for Ti then follow immediately from (7). We observe that as <—»<», Hi approaches
the constant value it would have for R = 0, i.e. for no contact resistance. It follows
that, although

^•(O, t) ~ const. \J t as t —* 00,

the temperature discontinuity

3Ti(0, t) - r2(0, /) -► const, as t—+ °o.

For the case S = S(t), we substitute (12) into (7)* to obtain

n * _ 0 s* r + CiRVs \/r exp (- yrs/Jn
L(01 + 02) V 7T + RV S V S J (15)

This is in the form of a product of two functions with known inverses,6 so that (10)
may be used to obtain

t o C Qf, \ (Ci exp (— yll\u) ir(02C2 - 0iCj)T1 = 0i | S(t-u)-< 7= 1    
Jo v R

,exp \t+Jl ytVi + „le,fc [*±*. vr„ + 4=1U. (16)Li? #2 J L i? 2V«Ji
The expression for T2 may be obtained from (16) by interchanging the subscripts 1

4 J. Cossar and A. Erdelyi, loc. cit., p. vi-76.
6 J. Cossar and A. Erdelyi, loc. cit., pp. vi-77, 78.
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Fig. 3. Temperatures distribution in steel and copper media, separated by a contact resistance and a
heat source whose strength is proportional to the time, S = yt.

and 2. The evaluation of (16) is given graphically in Fig. 3 for the typical numerical
case (in c.g.s.) /3i = 1.8 (steel), /S2 = - 6 (copper), C\= Cz = \/2, R = 4.2, 5(/)~/; which
corresponds approximately to the early stages of heat transfer between a steel gun
barrel and a copper shell under constant acceleration.


