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ON HYPERSONIC SIMILITUDE*
By WALLACE D. HAYES (North American Aviation, Inc.)

A recent paper by H. S. Tsien! presents a law of similitude for two-dimensional
potential hypersonic flows over a slender body. Hypersonic flow is fluid flow for
which the Mach number is much greater than one. If the transformation

x = bE, (1a) y = &, (1b) & = aodf(¢, ) (1c)

is made, where b and § are the length and thickness of the body and ay and M are
the velocity of sound and the Mach number in the undisturbed stream, the two-
dimensional potential equation is transformed into

[t — (v = DESfi — 3(v + Dfolfmn = K¥ie + 2K ufom )
where ’
K = Ms/b 3)
is a fundamental similarity parameter. The boundary conditions may be expressed ‘
fe=fr=0 at §= — =, (42)
fo= KH'(§) at n=H(), (4b)

where y=H§ defines the body shape. Since the equation is not linearized it is not
permissible to satisfy the shape boundary condition at 7 =0. Two potential flows with
similar bodies and the same value of K are thus given by the same mathematical
solutions and are similar. The drag and lift coefficients for bodies of similar shape
may be expressed

Cp = %A(K) (5a)
Ci = EI;A(K)  (5b)

Professor Tsien also demonstrated the analogous law for axially symmetric flow.

It is the purpose of this note to point out that this similarity law is both much
simpler in concept and much more general in scope than has been previously indi-
cated; it is, in fact, applicable to three-dimensional flow with shock waves and
rotation. .

The two-dimensional hypersonic potential equation expressed by Eq. (2) is
identical with the one-dimensional non-stationary potential equation in y and ¢ under
the transformation

t=T¢ (6)
with (1b) and (1c), provided the replacement
' T =b/Ma, @)
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is made in the definition of K. Also, the boundary conditions (4a), (4b) are the same
if now y=H -8 defines the position of the single boundary as a function of time. This
shows that with the slender body hypersonic assumptions, M>>1, there is no intrinsic
dependence upon the axial variable from the point of view of an observer stationary
with respect to the undisturbed fluid and the problem becomes a non-stationary one
in one fewer space variables. A change of § with K kept constant is merely a scale
transformation in the non-stationary system.

The difference between this point of view and the actual case is that the disturb-
ances at two points on the same streamline on the body are assumed to be in phase.
This difference is negligible if the ratio of the signal time between the two points to
the time phase difference between the two points is large. Using the fact that in the
hypersonic flow over a slender body there are appreciable changes in the velocity of
sound but not in the flow velocity, the ratio of these times is equal to the local Mach
number, and this parameter being large ensures the validity of the point of view.
It is clear that the concept applies to three-dimensional as well as to two-dimensional
flow. The presence of shock waves in a flow of extremely high Mach number can
change the order of magnitude of the local sound velocity. However, a simple in-
- vestigation shows that this sound velocity cannot be greater in order of magnitude
than Ma,B3, where 8 is the inclination of the surface causing the shock and is assumed
small but of order 1/M or larger. Thus with shocks present, the local Mach number
will remain of order -1 or larger. Hence the consideration of the hypersonic flow
about a slender body as a non-stationary problem in one less dimension remains
valid when shock waves and the resultant entropy changes are present.

The general similitude may be expressed thus: If a slender body of the shape

g(f, uh f) =0 (8)
where
x = bE, (92) y = o, (9b) z =208 (%)

is placed in a uniform stream of large Mach number the problem is identical with a
non-stationary problem in v, 2z, and ¢ where

t= x/Mao (10)

and is characterized by the parameter K as given by Eq. (3). The boundary condi-
tion satisfied on the surface is

Kg: +( )gn + (%)g -0 (1)

where v and w are the velocity components in the ¥ and 2z directions, respectively.
The drag and lift coefficients based upon an area of magnitude b8 are given by
Egs. (5a) and (5b).



