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THE REFLECTION OF AN ELECTROMAGNETIC PLANE WAVE
BY AN INFINITE SET OF PLATES, II*

BY

ALBERT E. HEINS1 and J. F. CARLSON2
Radiation Laboratory,3 Massachusetts Institute of Technology

1. Introduction. In Part I4 we have calculated rigorously with Fourier transform
methods, the reflection and transmission coefficients due to the incidence of a plane
electromagnetic wave on an infinite set of parallel staggered plates. We discussed
there the case in which there was only one component of the electric field excited;
that is, the incident electric field was parallel to the edges of the plates. We shall now
discuss the same geometric structure when it is excited by a plane wave which has
only a single component of the magnetic field which is parallel to the edges of the
plates. In this case we shall see that the magnitude of the reflection and transmission
coefficients are independent of the wavelength and depend only on the angle of stag-
ger a, and the direction of incidence of the plane wave 6. We shall use the Fourier
transform technique again, and since many of the calculations are parallel to those
which we did in Part I, we shall only outline the procedure.

2. Formulation of the problem. We treat here the following problem. A plane
monochromatic electromagnetic wave whose direction of propagation lies in the plane

of the paper, is incident upon an infi-
1®° nite set of staggered, equally spaced,

/ ' semi-infinite metallic plates of zero
/ | thickness and perfect conductivity.

I" d/ L These plates extend indefinitely in a
—— 00 direction perpendicular to the plane

/ d of the paper. (See Fig. 1 for a side
h ' ? L view.) The angle of stagger with re-

■ spect to a fixed direction (that of the
loo cross section of the plates in Fig. 1)

Fig. 1 is a, while the direction of propaga-
tion with respect to this fixed direc-

tion is 0, where a — ir<d<a and 6 <a^ir/2.
We assume here that the incident wave has only one component of the magnetic

field, that is, the component which is perpendicular to the plane of the paper. For such
an excitation, no other components of the magnetic field can be excited. Thus, all
components of the electric field can be derived from a single component of the mag-
netic field Hx(y, z)=\p(y, z). For this case, the components of the electric field lie in
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the plane of the paper and we shall refer to this problem as an "E plane" problem.
Let us assume as in I, that the time dependence of all field quantities is e~ikct

so that Maxwell's equations may be written in spatial form as

V X E = ikH.
and

V XH = - ikE,

where k = 2tt/X, and X is the free space wave-length. We then have that ikEv= —d\f//dz
and ikEz = dip/dy. Upon eliminating Ey and Ez from the above equations we get the
two dimensional wave equation

<3Y dY + MV = 0
dy2 dz2

which is to be solved subject to the boundary condition dip/dy = Q on the metal plates,
since Ez is the tangential component of the electric field on these plates. There are
also conditions at infinity on the function \p(y, z) which are similar to those which we
required for tp(x, z) in I.

We now formulate the equation which expresses the z component of the electric
field at any point (y, z) in terms of the surface current density on the plates. Following
a procedure similar to that developed in I, we find

^ 00 -00 ()H
iKy, z) = iinc(y, z) - — £ I 7">00 ^ °, [feVte - O2 + (y + y')2]dz' (2.1)

4 mo dy

where y' = md, g = d cot a and i/'ino(y, 2) = ei*(s'sin9+*00ii9) is the incident magnetic field.
\k\/(x—z')2+ (y — y')2 ] is the free space Green's function which we have described

in I. Due to the form in which y and y' appear, we may write (2.1) as

id 00 (* °°
i(y, z) = ^inc(y, 2) H ^ I Im(z')Ho1) [k\/(z — z')2 + (y — md)2]dz'.

4 dy m—„ J mo

Now d\p/dy, which is proportional to Ez(y, z), is given by the equation

d d
— i(y,z) = — tindy, 2)
dy dy

i 3^ 00
+ —— E I /m(2')^o1)[^V(2 - 2')2 +(y ~ md)2]dz', (2.2)

4 dy2 m__„ J mt)

and since Ez(y, z) vanishes for y = nd, z>nd cot a, w = 0, +1, • ■ • Eq. (2.2) leads to
an infinite set of inhomogeneous integral equations of the Wiener-Hopf type similar
to those developed in I.

Some remarks are now in order about the range of values of d/\ which we will
assume here. In the first place, we suppose that in the parallel plate regions, \j/(y, z)
is proportional to eih* for z sufficiently large and positive. That is, the parallel plate
region can sustain the so-called principal mode, a mode which cannot occur in the
H plane case. In order that no higher mode propagate, we must now have that
0<<f/A<f. We further assume that there is only a single reflected wave. This as-
sumption puts further limitations on d/\ as well as on 9, and we shall discuss them
when we have obtained the final solution of the problem.
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3. Fourier transform solution of the integral equation. We have already shown in
I, Section 3, that the surface current density on any plate can be expressed in terms
of the surface current density of a given plate, the argument being that we had a
geometric structure with two types of periodicities. The same argument shows us now
that

/„(* - mg) = /0(Z)ei*«(»«»»+d.in«>,

where 10(s) is the surface current density on the zeroth plate. With this reduction and
an appropriate change of variables, the integral equation which we have to solve,
now reads

d
0 = —'/'inc (y, 2)

dy

^ 00 ^ 00 ^2

H f h(z')eik"m Ho ' [k\/{z — z'+(n — m)g\2-\-(y — md)2]dz' z>0, (3.1)
4 m=—00 J 0 dy2

where now g = d cot a, and n = g cos 6-\-d sin 9. The y derivatives in (3.1) are under-
stood to be evaluated at y = nd. Equation (3.1) is an inhomogeneous Wiener-Hopf
integral equation, which may be rewritten as

0=ik sin 8eik*cose
00 _ 00 ^2

H I Io(z')eiklip Ho \k\/(z — z' + pg)i-\-(y — nd—pd)2]dz'z>0. (3.2)
4 p=—00 J 0 dy2

The dependence of Eq. (3.2) on n is not explicit as the differentiation of
Ho)\ky/{z — z'-\-pg)2-{-{y — nd — pd)2] with respect to y will demonstrate. We now
extend Eq. (3.2) to hold for all z by writing it as

d
F(z) = —iindy, z)

ay y=0

a2
-1 X f Io(z')eiklip Hol)[k\/ (z—z' + pg)2+(y— nd— pd)2dz', (3.3)

4 J dy2

F(z) =0 z > 0, To(z) =0 z < 0,

dy

where we define

d
— "Aino(y, z)
dy v=o

\= ik sin 0eikzoose z > 0,

:= 0 2 < 0.

We assume as in I, for analytical convenience, that k has a small positive imaginary
" part.

By arguments which we employed in I, we can show that F(z) is asymptotic to
eikzcos(2a-m for z ]arge an(j negative and therefore it has a Fourier transform

I 0
e~iwz'F(z')dz'

which is regular in the upper half of the cc plane 3mw> +3111^ cos (2a —0). Since Io(z)
is asymptotic to eikz for 2 large and positive, that is, the parallel plate regions are of
such spacing as to permit the propagation of the principal mode only, the Fourier
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transform of I0(z) is regular in the lower half of the w plane 3mw<3m£.6 The trans-
form of dipinciy, z)/dy \ v=o is regular in the lower half of the w plane, 3mw <3m& cos 9.
Finally, the transform of the kernel of Eq. (3.3) is

y/k2 — w2 sin ds/k2 — w2 K^(w)
= K(w) =

cos dy/k2 — w2 — cos (k/j, — wd) K+(w)

and it is regular in the strip

cos (2a — 6) < 3mi» < cos 9.

Since all of the transforms involved in Eq. (3.3) have a common strip of regularity
in the w plane, it is thus legitimate to apply the Fourier transform to this equation
to get

k sin 9 \/ k2 — w2 sin dy/k2 — w2 J(w)
D{w) = 7    r, (3.4)

w — k cos 9 2[cos d\/k2 — w2 — cos (kp — wd) J

where D(w) and J(w) are the respective transforms of F(z) and Io(z).
We are once again led to a problem in factorization of the coefficient of J(w) into

two functions, one of which is regular in the upper half plane 3mw>3mfe cos (2a — 9),
while the other is regular in the lower half plane cos 9. The factorization
of the denominator cos d-y/k2 —w2 — cos(kp — wd) is the same as it was in I, save
for the fact that p and a have been replaced by p and d respectively. The numerator
■\/k2—w2 sin d\/k2—w2 may be written in factor form as

d(k2 — w2) XI [V 1 — (kd/nir)2 + (iwd/nir) ]e~iwdlnr
71=1

00

• JJ [\/1 — (kd/nir)2 — (iwd/nir)]eiwdlnT.
71= 1

Clearly (k — w)Y[n= i [V1 — (kd/nx)2-\-iwd/nx\e~~iwilnx has no zeros in the lower half
plane while the factor (&+w)XX™_1 [\/l — (kd/nx)2 — (iwd/nx) ]eiwd,nx has
no zeros in the upper half plane 3mw>3m( — k). Thus

y/ k2 — w2 sin d\/k2 —

cos d\/k2 — w2 — cos (kp — wd)

may be factored into two functions, K+(w) and K~(w), where K+(w) is regular in the
upper half plane 3mw>3m& cos(2a —9), while K-(w) is regular in the lower half
plane 3m < $mk cos 9. We have

K^(w) = j^(fe— w) n i\i -(kd/nw)2+(iwJ/mr)]e-iwdln*exM~^

r -1 w -]
■ (w— CF l) n [a,  l^fn wg+iwd) l2nir+i(%T— a) II [A

L n=—oo n=l _

5 It has been tacitly assumed that F(z) and Iq(z) are integrable for all finite z. This we can show di-
rectly from the integral equation.
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and

1 2d
K+(w) (d*+g*)

(k-\-w) JJ [\/1 — (kd/riTr)2—(iwd/nir)]eiwdlnwe x(w)

• (TO —(r2) n [a n i\pn j e c kn—wg+ iw d) 12nt— i (|ir— a) II [An  i^fn Jg(^—u>0+iwd) /2n7r+i(j7r—a)
L n=- oo n=l .

The A„ and ^ are the same functions of to which we encountered in I save for the in-
terchange of p and a, by /x and d respectively; <Ti = k cos 9, cr2 = & cos (2a — 9) while
x(to) is an integral function introduced into the decomposition of K(w) to render the
portions K+(w) and K-(w) algebraic in growth in their respective half planes of regu-
larity as |to| becomes infinite.

The decomposition of Eq. (3.4) into two functions, one of which is regular in the
upper half plane 3:rrtTO>3m£ cos (2a —6) and the other of which is regular in the
lower half plane 3ittTO<3m& cos 9 follows as before. We now have

k sin ^/^(to) — K+(k cos ^)]
D(w)K+(w) — ■

w — k cos 6
K-(w) kK+(k cos 9) sin 6

= 7(to) H —  ——  (3.5)
2 to — k cos 9

Since the left side of (3.4) is regular in the lower half plane 3mTO<3m& cos 6 and the
right side is regular in the upper half plane 3mTO>3m^ cos (2a —6), while both sides
are regular in the strip cos (2a — 9) <$mw<k cos 9, it follows that both sides
of Eq. (3.5) are equal to an integral function. The final decomposition then gives us

k sin 0[iT+(w) — K+(k cos 0)1
D(w)K+(w) = Integral function, (3.6)

w — k COS 9

kK+(k cos 9) sin 9
— %J(w)K-(w) -| — = Integral function. (3.7)

to — k cos 9

We now turn to the evaluation of the integral function of separation and xW>
The functional form of x(w) follows from the asymptotic form of K-(w), |to|—>°o,
3tttTO<0 or of K+(w), | a;| —>», 3ntTO>0. The method of calculating these asymptotic
forms is the same as in I. We find now that

K-(w) ^ to-1'2, <0 | to | —» oo,

provided x(w) is chosen as —(iwd/ir)[(a—ir/2 cot a) —ln2 sina]. If we let |w|—>»,
3mTO<0, it is clear that the integral function of separation in Eq. (3.7) approaches
zero in the lower half plane. A similar calculation for Eq. (3.6) shows that the integral
function approaches zero in the upper half plane |w|-*oo, 3niTO>0. Since this in-
tegral function is everywhere bounded and approaches zero for | w \ —»<», it is identi-
cally zero. From (3.7) we then get the Fourier transform of 10(z)

2kK+(k cos 9) sin 9
J(w) = ——      ■ (3.8)

K—(w) [to — k cos a J

4. Investigation of the far fields. In order to find the amplitudes of the reflected
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and transmitted waves we must find the asymptotic form of \f/(y, z) as | z| —>». This
can be done by noting that-Eq. (2.1) may be written in Fourier integral representa-
tion as

\p(x, z) = i/'incCy, z)   f dwJ(w)eiw'+i
4 xJ c

( kfx—wg)»

cos (y — dn — d)%/k2 — w2 — cos (dn — y)y/k2 — w2

cos y/k2 — w2 d — cos (ftju — wg)

where the contour C is a path in the strip of regularity cos (2a — 0)<Qmw
< cos 6 and is closed above or below by a semi-circle which passes between the
poles of the integrand, depending on whether z is greater or less than zero. The in-
tegration along the semi-circular arc gives no contribution to the integral (4.1) when
its radius becomes infinite, n is the largest integer in y/d.

Let us first consider the asymptotic form of \p(y, z) as z becomes large and posi-
tive. In the integral in Eq. (4.1), we see that the two poles which give propagating
mode contributions are at w = <ri = &cos 9, and w = k. All other poles give exponential
factors in z which attenuate for z large and positive. The contour C is, of course, closed
in the upper half plane. The integral in (4.1) is then

1 c kK+(k cos 6) sin deiwzei<-k',-w»)H
dw ■-±f2ir J c (w — k cos 0)\/k2 — w2 K+(w) sin Ay/k2 — w2

■ [cos (y — dn — d)\/k2 — w2 — cos (dn — y)y/k2 — w2]
—   gik(zcos 0+ysin 0)

ik sin 6K+(k cos Q)eik*+ikndsine
     1 (1 _ en*<«-»»))

2kd(l — cos 0)K+(k)
+ exponential terms in y and z which are attenuated for z large and positive.

Thus, for z large and positive, ip(y, z) is asymptotic to

— i sin 9K+(k cos 8)eiknd,in9+ikz(i — eikdtiut)

2kdK+(k)(l - cos 6)

that is, the correct lowest mode functional form in the parallel plate region for "E
plane" polarization. The magnitude | T\ of the transmission coefficient is then

sin 9 I K+(k cos 9) sin [feGu — g)/2] I
I TI = ^ — r— , , (4.2)

kd( 1 - cos 9) | K+(k) j

which reduces to
sin (a — 0)

T =
sin (a — 59) cos

provided now k is taken to be purely real.
We now compute the amplitude of the reflected wave by the same method that

we employed in I. That is, for y fixed and z large and negative, we close the path by
a large semi-circular arc in the lower half plane which passes between the poles in
this half plane. If we allow the radius of this semi-circle to become infinite, the usual
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arguments show that there is no contribution to the integral from this circular arc.
The residue calculation then gives us for y fixed, z large and negative,

eik[ysin(2«—«)+*cos(2a-0)]_g; (fc cos Q) sin 0
i(y, z) = \^inc(y, 2) +

2kK'+[k cos (2a — 0)] sin a sin (2a — 0) sin (a — 0)

+ terms which attenuate exponentially for z large and negative.

With the amplitude of the incident wave taken as unity, the amplitude of the reflected
wave, that is, the reflection coefficient is

K+(k cos 0) sin 0
R =

2kK'+[k cos (2a — 0)] sin a sin (2a — 0) sin (a — 0)

which simplifies to
R = tan §0 cot (a —

when k is taken real. $ is the phase angle of the reflection coefficient and is of the
same functional form as the 0/ — ©2' found in I, Section 5, save now for the fact that
a has been replaced by d. We have finally

| R | = tan j0 cot (a — §0).

Conservation of power flow from free space to any parallel plate region gives the fol-
lowing relation between |i?| and | T\ :

sin (a — 0) r . , . , ,
   i [1 - | r\*] = | t |2.

sin a

The values of |i?| and | T\ clearly satisfy this condition. Finally, we note that the
condition for a single reflected wave is the same as it was in I, namely

2d sin a
— < f r • (4-3)
X cos2 [(0 - a)/2\

Since 0 <d/\<\, the inequality (4.3) is not as severe as the comparable relation in I.
It is illuminating to introduce an angle i into the formulas (4.2) and (4.3). This

angle i is the angle which the direction of propagation of the incident wave makes
with the normal to the trace of the edges of the parallel plates and is equal to
5ir—a + 0. The magnitude of the reflection coefficient then becomes

, sin a — cos i1*1= 'sin a + cos i

while the magnitude of the transmission coefficient becomes

2 cos i
T =

sin a + cos i

There will be no reflection from this structure if \R\ =0 or a = %w— i, that is, the
direction of propagation of the incident wave is parallel to surfaces of the parallel
plates. In this case, of course, | T| is unity.


