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SURFACE WAVES IN WATER OF VARIABLE DEPTH*

J. J. STOKER
New York University

Introduction. The problem of irrotational gravity waves in water is, from the
mathematical point of view, a problem in potential theory which involves a nonlinear
boundary condition at the free surface. In addition, the shape of the free surface is
itself not given a priori but is to be determined as part of the solution along with other
quantities, such as the distribution of the velocity and the pressure. Very few success-
ful attacks on the problem in this formulation have been made; among these are the
proofs of the existence of steady periodic waves of special type by Levi-Civita [5],**
and Struik [l 1 ], and a partial treatment of the problem of the so-called solitary
wave by A. Weinstein [13],

Most of the literature on the subject of surface gravity waves is concerned with
theories which result from the general nonlinear theory when simplifying assump-
tions of one kind or another are made. The present paper is concerned with two such
theories:

1) Perhaps the best known and most extensively studied theory is that which re-
sults from the general theory when it is assumed that the amplitude of the waves at
the surface and the velocity of the particles there are small enough that the free sur-
face condition can be simplified by dropping the nonlinear terms; in addition, this
condition may be prescribed at the original undisturbed surface of the water. There-
suit is a problem in potential theory with a linear boundary condition of the mixed
type. The greater part of our work here makes use of this theory. We shall refer to it
as the exact linear theory, or simply as the exact theory.

2) The second theory furnishes an approximation to the exact linear theory which
is based on the assumption that the depth of the water is small. The resulting theory
yields a differential equation for the surface elevation of the water which turns out to
be the wave equation. This approximate theory, which is often called the shallow
water theory is used, for example, in discussing the tides in the ocean. In Sec. 7 we
give a brief derivation of the shallow water theory which brings out the role of the
depth of the water as the determining factor in the accuracy of the approximation.
The usual derivation of the theory based on assuming that the pressure in the water
is given by the same law as in hydrostatics does not bring this point out clearly. The

* Received Aug. 24, 1946. This paper presents results which were obtained at the Institute for Mathe-
matics and Mechanics of New York University while pursuing investigations of various kinds under a
contract with the Navy Department.

** Numbers in square brackets refer to the bibliography at the end of the paper.
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approach to the theory through the hydrostatic pressure relation also does not lend
itself easily to generalization to other cases, such as the derivation of the shallow
water theory when floating bodies are present.

Our principal object in this paper is to solve the problem of determining progress-
ing waves over a uniformly sloping bottom by making use of the exact linear theory,
to discuss the solutions numerically, and to compare them with the approximate solu-
tions furnished by the shallow water theory.

Solutions for waves on sloping beaches in terms of the exact theory have been ob-
tained by Hanson [3], Bondi [2], Miche [9] and H. Lewy [6]. The first author ob-
tained one type of standing wave solution. The second and third authors obtained
two types of standing wave solutions for the case of motion in two dimensions from
which progressing wave solutions can be constructed. The first three writers, as well
as the writer of the present paper, are concerned only with cases in which the bottom
slopes at the special angles x/2n, with n an integer. The method employed in the
present paper is different from those of the first three authors; in particular, the pro-
gressing wave solutions are obtained here in a closed form which lends itself well to
detailed discussion. Also, the method employed in the present paper yields three-
dimensional progressing wave solutions, that is progressing waves which approach an
arbitrary plane wave at infinity (cf. Sec. 9).

The investigations which led to the present paper were begun in collaboration
with H. Lewy, who then later extended the method to two-dimensional motions (cf.
[6]) for a bottom sloping at the angles pir/2n in which p is any odd integer and n is
any integer such that 2n>p. (The cases p 1 are very much more complicated than
those for p = 1, by the way.)

The basic idea of the method devised by H. Lewy and used by him and the author
is to obtain a differential equation for the desired velocity potential, through use of
the boundary conditions, which is not the potential equation and which, as it turns
out, permits an explicit integration. In the case of two-dimensional motions the prob-
lems can be treated, of course, by making use of analytic functions of a complex
variable; in this case Lewy's differential equation becomes an ordinary non-homo-
geneous differential equation with constant coefficients for the complex potential, and
this equation can be integrated to yield the desired solutions. In the three dimensional
cases the solutions can also be obtained, as explained in Sec. 9, but the results are
more complicated and more difficult to handle numerically. It may be of interest to
observe that the method developed here for the mixed boundary value problem in
wedge-shaped regions of angle tt/2m is not confined in its usefulness to solutions of
the potential equation—it could also be extended to other linear partial differential
equations.

In Sec. 1 the exact linear theory (which apparently goes back to Poisson) is formu-
lated briefly. In Sec. 2 the theory is applied to yield the well known solutions for
steady progressing waves in water of infinite depth. In addition, we show in Sec. 2
that these solutions are uniquely determined if the amplitude and velocity of the
waves is bounded at »-1 The method used to obtain this result is essentially the same
as that employed later to obtain progressing wave solutions over a sloping bottom.

1 The author was led to these rather general conditions guaranteeing the uniqueness of the solutions
as the result of a conversation with A. Weinstein, who had previously obtained the same result by quite
different methods for water of finite and constant depth (cf. [12]).
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In Sec. 3 convenient dimensionless independent variables are introduced, and
these variables are used in the remainder of the paper except in Sections 7 and 8.

In Sec. 4 the case of progressing waves coming from infinity in an ocean of infinite
depth but bounded on one side by a vertical cliff is treated in considerable detail.
Only the two dimensional case is considered—that is, the wave crests and all other
curves of constant phase are assumed to be horizontal straight lines parallel to the
cliff. Since the problem is then a potential problem in two dimensions, it is convenient
to solve it in terms of analytic functions of a complex variable. In Sec. 5 the method
used for the case of a vertical cliff is generalized to yield solutions in water over a
plane bottom sloping at any angle iv/2n, with n an integer. Again only the two di-
mensional case is treated. The essential step in the generalization requires the deriva-
tion of Lewy's differential equation, which turns out to be a differential equation of
order n for an angle 7t/2w. The solutions of the differential equation which satisfy the
boundary and regularity conditions are then given in this section. The solutions ob-
tained are shown to be uniquely determined if they have at most a logarithmic
singularity at the origin (that is, at the shore line) and satisfy certain boundedness
conditions at °°.2 The method of determining the arbitrary constants in such a way
that the boundary conditions are satisfied is discussed in Appendix I. In Appendix II,
the behavior of the solutions at °° is investigated; we find that the solutions behave
as one would expect, i.e. that they tend to the simple standing wave solutions for
water of infinite depth. It is then readily seen that standing waves of arbitrary phase
and amplitude at °° can be constructed from our solutions. In this way the existence
of a unique set of standing wave solutions is established. For the angles iv/2n, then,
the problem of progressing waves has been solved completely for the two dimensional
case.

In Sec. 6 the theory of Sections 4 and 5 is applied to the cases n = 1, n = 2, and
n = 15, i.e. to the cases of bottom slopes of 90°, 45°, and 6° respectively.3 The standing
wave solutions are given numerically in the form of graphs for a distance of a few
wave lengths from shore. The numerical evaluation requires the calculation of the
values of complex integrals of the form

£(z) = J +°°
dt

taken over appropritate paths in the /-plane. A table of values of E(z) for the range of
values of interest to us was computed and is included here as an Appendix. This table
was based on a previous table calculated by the Mathematical Tables Project [8].
It might be noted that the calculations for the case of the 6° slope were very laborious.

In all cases (except that of water of infinite depth everywhere) there are two types
of standing waves: the one type has a finite amplitude all the way to shore, the other
type has amplitudes which become logarithmically infinite as the shore is approached.
At infinity the amplitude and wave length may be arbitrarily prescribed for both
types, but the wave length at <» and the frequency are connected by the same rela-
tion as in water which is infinite in depth everywhere. These two types of standing

2 This result (which is not obtained in the papers by Miche, Bondi, and Lewy cited above) means
that no non-trivial solution exists which dies out at °°.

8 The paper of Miche [9], which gives the solutions in the general case, contains graphs for the 45°
and 30° cases as well as approximate solutions for small angles of slope.



4 J. J. STOKER [Vol. V, No. 1

waves are always out of phase at °o, but the ones remaining finite (for any fixed bot-
tom slope) at the shore all have the same phase at infinity. (The solutions obtained
by Hanson [3 ] are those which remain finite at the shore.) Thus all progressing waves
furnished by the exact theory necessarily have large amplitudes near shore.

In all three cases treated numerically, i.e. those with 90°, 45°, and 6° slopes, the
most striking general result is the following: The wave lengths and amplitudes change
very little from the values at °° until points about a wave length from shore (wave
length at «o is meant) are reached. Closer in shore the amplitude of any progressing
wave becomes large. It is curious, however, that the amplitude (that is, the relative
maximum or minimum) of a progressing wave at a point a wave length or two from
shore can actually be about 10 per cent less than the value at °o. This was found in
all three cases, including the 6° case.

In Sec. 7 the shallow water theory is derived. In this theory, the wave amplitudes
for a uniform bottom slope die out at oo like a:-1'4 (where x denotes distance from
shore) while the wave lengths (or, rather, the distances between successive nodes)
increase without limit. Thus if the wave lengths and amplitudes were to be taken with
the same value at a given point some distance off shore in the two theories (i.e. the
exact theory and the shallow water theory) the amplitude near shore as given by the
shallow water theory would be much too high while at great distances from shore it
would be too low.

In Sec. 8 the results of the exact theory are compared with those of the shallow
water theory for the case of water of finite and constant depth in order to bring out
the known fact that the accuracy of the shallow water theory for a simple progressing
wave depends upon having the ratio of depth to wave length sufficiently small.

Progressing waves moving toward shore as given by both theories for the case
of the 6° beach are compared graphically in Sec. 8 assuming the same frequency in
both cases and also the same phase and amplitude at a point two or three wave
lengths from shore.The results from there on toward shore do not differ greatly ex-
cept at points very close to shore. This was to be expected, since the depth of the water
at the point where the phase and amplitude are the same is about one-eighth of the
wave length and hence one might expect the shallow water theory to be quite accu-
rate. However, if the amplitudes had been made equal at a point 15 or 20 wave lengths
from shore, the amplitudes given by the shallow water theory three wave lengths
from shore would be 50 per cent to 60 per cent higher than those furnished by the
exact theory. In other words, the amplitude variation with decrease in depth cannot
be correctly estimated over distances of many wave lengths from a given point using
the inverse fourth root law unless the wave length at the point is eight or ten times the
depth of the water. On the other hand, as the results of the exact theory indicate, if
the depth remains an appreciable fraction of the wave length the amplitude changes
very little with changes in depth. We draw this conclusion from the fact that the wave
amplitudes as given by the exact theory approach their values at °° very quickly when
the depth approaches say half the wave length.

Another feature of our numerical results which is of interest concerns the variation
in the phase or propagation velocity c of a progressing wave when the depth h varies.
In Sec. 8 graphs are given which show the results of calculations of the phase velocity
for the 6° case, using both the exact theory and the shallow water theory. In the
case of the shallow water theory, it is found that the phase velocity c is practically
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identical with that given by the formula c — (gh)1/2. In the case of the exact theory, the
phase velocity is given very accurately by the formula c= [(Ag/2-n-) tanh (2-rrh/X) ]1/2,
that is, in both cases c is given by the formula which is exact (for that theory) only
when the depth h is constant. (In the second formula X is taken as the wave length
at oo.) In other words, the phase velocity at any point is given very accurately by
the formula which is exact only for water of uniform depth equal to that at the point
in question and for a steady progressing wave traveling in one direction only. At the
same time, the results for the phase velocity as furnished by the two theories agree
very well with each other for a distance of about three wave lengths from shore but
from then on out the shallow water theory furnishes a value which is too high by an
amount which increases without limit with increasing distance from shore. These re-
marks, it should be recalled, result from our calculations for a slope of 6°. With de-
creasing slope, it seems certain that the shallow water theory would be accurate up
to distances comprising more and more wave lengths from shore.

All progressing wave solutions discussed above were obtained on the assumption
that the wave comes from oo toward shore with no component which goes outward
at co. Once the frequency and amplitude at oo are prescribed, the additional condi-
tion that the wave at oo is a progressing wave moving toward shore leads to a unique
solution, which, as we have already mentioned, has a logarithmic singularity at the
shore line. The solution is also uniquely determined if the singularity at the shore line
is prescribed—the behavior at °° is then determined. Our theory thus furnishes us
with two types of standing wave solutions from which solutions behaving like arbi-
trary simple harmonic progressing waves at oo can be constructed, but it furnishes no
criterion by which one can decide what type of wave would actually occur in practice.
Our assumption, in the numerical cases treated, that the waves move from oo toward
shore with no reflection from the shore back to oo was the result of information on
the phase velocities as measured on beaches with small slopes; these measurements
agree rather well with the theoretical results discussed in the preceding paragraph
for a progressing wave moving toward shore. The physical mechanism which prevents
the reflection of waves from the shore can be understood as the result of the partial
loss of energy from turbulence and the conversion of the remainder into an undertow
through the occurrence of breakers. If, however, the slope of the beach is large it may
well be that a standing wave, denoting perfect reflection, could occur.

In Sec. 9 we solve the problem of progressing waves in an ocean of infinite depth
bounded on one side by a vertical cliff when the wave crests are not assumed to be
parallel to the shore line (as in Sec. 4); that is, we solve a three-dimensional problem
using the exact theory. Solutions are obtained which tend at oo to an arbitrary plane
wave. In all of the solutions obtained in the preceding sections by means of the exact
theory the discussion was greatly facilitated by the use of analytic functions of a
complex variable. In the present three-dimensional case this approach is no longer
possible. Nevertheless, the process of obtaining the solutions remains analogous to
that using complex functions. The solution for the case of a vertical cliff only is ob-
tained, but it is readily seen how three-dimensional progressing wave solutions for
slopes of angles 7r/2w could also be found. The solution for the case of the vertical cliff
is also evaluated numerically in Sec. 9 for the case of a progressing wave with wave
crests tending to a straight line at oo which makes an angle of 30° with the shore line.
One of the figures given in Sec. 9 shows the contours of the wave surface. In this case,
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as well as in the previous two-dimensional cases, it turns out that there is a point
near the cliff where the wave crests are lower than they are at oo , although the eleva-
tion of the wave crests becomes infinite upon approaching the cliff.

Finally, the author takes pleasure in acknowledging the help and advice he re-
ceived from a number of his colleagues and co-workers. The actual solution of Lewy's
differential equation and the determination of the constants to satisfy the boundary
conditions—no small task in itself—was carried out by E. Bromberg and E. Isaacson.
The extensive numerical computations were completed by E. Isaacson, B. Gross-
mann, and J. Butler.

1. Resume of general theory of surface waves of small amplitude. In this section
we state briefly the well-known mathematical formulation of the problem of surface
waves of small amplitude in water. (See, for example, Lamb: Hydrodynamics, Chap
IX; or Milne-Thompson: Theoretical Hydrodynamics, Chap. XIV.) The water is as-
sumed to fill the region —h{x, z)^yiS0 when at rest. The non-negative quantity h
is the (variable) depth of the water. The motion is assumed to be irrotational, so that
a velocity potential $(x, y, z\t) exists, in which depends not only on x, y, z but also
on the time t. Hence $ satisfies the Laplace equation

d2<j> 02$
V2$ = 1 1—-— = 0. (1.1)

dx2 dy2 dz2

A solution of this differential equation in the region —h^y^O is to be found which
satisfies appropriate boundary conditions. The condition to be satisfied at the free
surface y = 0 is

d2$ d$

^ + (1'2)
which results from the Bernoulli law and the assumption that nonlinear terms in the
displacement and velocity of the free surface can be neglected. At the bottom
y = —h(x, z) we require of course that the derivative of <1? normal to the bottom sur-
face should vanish:

= 0. (1.3)
dn v-

We shall be interested solely in phenomena which are periodic in the time t. It
is therefore convenient to replace $ in the above equation by eiat<p, in which <p depends
only on x, y, z and not on t.

The conditions on <p are the same as those on $ except that (1.2) becomes

d(f>g — -<rV = 0. (1.2')
dy

In addition to the differential equation (1.1) and the boundary conditions (1.2')
and (1.3), the functions <p(x, y, z) should be required to satisfy certain conditions at
infinity which lead to unique solutions of the type desired on physical grounds. These
conditions will be formulated in the following sections for the special cases of interest
to us.

Once <p has been determined, the vertical displacement rj{x, z; t) of the free surface
is determined (see the books of Lamb and Milne-Thompson cited above) by the for-
mula
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1 d
(e^'ip)

dt (1.4)
l/=0

2. Plane traveling waves in water of infinite depth. We seek solutions of the
boundary value problem partially formulated in equations (1.1), (1.2') and (1.3)
which have the form of plane traveling waves for the case of infinite depth of water.
The potential function ip may be assumed to depend only upon x and y and not on z:
tp = <p(x, y), and it is to be determined in the entire half plane y Si 0.

The functions

(p = emy cos (mx + a), with m and a arbitrary, (2.1)

are familiar potential functions which obviously yield "standing waves" upon rein-
troduction of the time factor.4 The amplitude of these waves decreases exponentially
with the depth. The condition (1.2') at the free surface is satisfied if the following
relation holds:

<r2 = gm = g ■ —— > (2.2)
A

in which X is the wave length. This yields, of course, a relation between the frequency
and wave length which characterizes the type of dispersion encountered with surface
gravity waves in water of infinite depth.

Since our problem is linear and homogeneous, we may take linear combinations
of the standing wave solutions to obtain "traveling wave" solutions given by the
velocity potential $(a:, y, z, t) as follows:

$ = e">v cos (mx + at + a), (2.3)

in which a is an arbitrary phase shift. This would represent a wave traveling in the
direction of the negative x-axis. Of course, the relation (2.2) between wave length
and frequency must always be satisfied. The above theory is the well-known classical
theory, which is due to Poisson.

A point which seems not to have been raised in the standard treatises is that con-
cerning the uniqueness of the solutions given by (2.1). It is of interest to deal with
this question here since the reasoning used is later on generalized in such a way as to
yield the solutions for the problem of waves in water over a uniformly sloping bottom.

We wish to show the following: If <p is a regular potential function in the half-
plane y 0 which satisfies the free surface condition a2(p = gd<p/dy on y = 0 and if the
function <p(x, y) and its first derivatives <px and <p„ are uniformly bounded in (x, y)
as x2+y2—><*>, then (p=Aemy cos (m+«), that is, if the velocity and the vertical dis-
placement of the water are bounded at °o, then <p(x, y) is either identically zero or it is
of the type (2.1) with A ^0. The mixed boundary condition at the free surface in con-
junction with the relatively weak condition at <» thus leads to this rather narrow class
of solutions.6

Our proof of this theorm requires the introduction of the analytic function

4 It is a curious fact that this theory, which deals with what is perhaps the most familiar of all wave
motions in nature, is governed by the potential equation rather than the wave equation. Nevertheless,
we shall use the terms wave-length, amplitude, phase, etc. with a meaning which is obvious from'the context.

6 The author's attention was called to this possibility by A. Weinstein, who had already proved the
same theorem for the case in which the fluid has a finite and constant depth. See [12].
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/(z) =ip-\-i\{/ of the complex variable6 z = x-\-iy, the real part of which is the potential
function <p. It is convenient at this point to translate our conditions at eo on <p(x, y)
into conditions on/(z) at oo. In both cases, of course, these functions are defined in
the half-plane ;yiS0. On account of the Cauchy-Riemann equations it follows at once
that | df/dz | is not greater than
this is the case for | <px| and | cpy

<Px\ +|<pj/| and thus is uniformly bounded at °° since
. Since/(z) = /*/'(£)d£ it is clear that we have

| /(z) | < M | z |,
where M a positive constant, for all sufficiently large \z\.

In addition, it is readily seen that \ df/dz\ tends to zero when |z|—>00 along any
ray in y ^ 0 which is not parallel to the real axis. Since we wish to make use of a
slightly more general result later on it is convenient to formulate here the following
Lemma : If f(z) =<p-\-i\p is analytic and regular in the interior of a sector of the complex
plane and ip is uniformly bounded at 00, the absolute value of any derivative of f(z) tends
to zero when \ z | —>00 along any ray which is not parallel to either of the boundary rays
of the sector. The lemma is an almost immediate consequence of the assumption that (p
is uniformly bounded at °°. We consider (p(x, y) to be expressed in terms of its values
on the circumference of a circle with center at (x, y) and radius R through use of the
Poisson integral formula. By differentiating both sides of this relation one easily ob-
tains bounds for <px and <py at the point (x, y) of the form \ yx\ <2M\/R, \(py\ <2M\/R
with Mi a constant which may be taken as the maximum of |<p| on the circle of
radius R. It therefore follows that \df/dz\z=x+iy<kM\/R in view of the Cauchy-
Riemann equations. We now assume that M\ is a fixed upper bound for ip for all suffi-
ciently large z—that such a bound exists was assumed. As | s | —> 00 along any ray not
parallel to the sides of our sector, it is clear that \df/dz\—>0 since we may allow R
to tend to infinity (i.e. our domain will accommodate circles of arbitrarily large radius
with centers on such a ray) while M\ is fixed. Since <px and <pv are potential functions
which are well known to be bounded at =o in any closed sub-domain of the sector7
it follows that the second derivatives of <p tend to zero and therefore also \d2f/dz2\
tends to zero along the rays in question. That the higher derivatives of/(z) behave in
the same manner is now obvious.

The condition on <p at the free surface leads to the following condition on /(z)
= <p-\-i\p on the real axis. We may write successively

(e 7, ('Ty~'')(*+
d

ii)

/(»•

(9?e means "the real part of" the expression which follows) the last step being a con-
sequence of the fact that /(z) is analytic. Thus the free surface condition may be
written

9fe ~d a^) ^ = ^ ^°r 2 rCa' ^^

6 In all but the final section of this paper we deal with two-dimensional problems only so that no con-
fusion between the complex variable z and the third space variable should arise, particularly since the
complex variable is not used in the final section.

7 The bounds 2M\/R for | <px\ and | obtained above could be used to yield this result.
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We next introduce the analytic function F(z) defined by

F(z) = (si — ~ o-2V(z)- (2.5)

Clearly F(z) is regular in the lower half plane. Since/(z) satisfies (2.4) it follows that
the real part of F(z) is zero on the real axis, and hence F(z) can be continued analyti-
cally by reflection into the entire upper half-plane; thus the resulting function is regu-
lar in the entire plane, and any bounds for | F(z) | in the lower half plane also hold in
the upper half plane. From (2.5) and our conditions on /(z) at <x> it is clear that
| F(z) | <ildT21 s| for all sufficiently large | z| in the lower half plane, and hence also in
the entire plane. It follows that F(z) is linear, by application of Liouville's theorem to
the function [F(z) — F(0) ]/z; that is, it can be written as F(z) =ciz+c2. If we now in-
troduce Ciz+C2 for F(s) in (2.5) and integrate to obtain/(z) the result is

/(z) = A<rim' + Bz + C, (2.6)

with m=ai/g. The constant A is an arbitrary complex constant. The constant B
must, however, be zero since \df/dz\ tends to zero along all rays not parallel to the
real axis by the Lemma proved above,8 and the same is true of \de~imz/dz\ since m
is real and 9Je( — imz)—> — =0 along such rays. The constant C must be pure imaginary
because of the boundary condition (2.4), as one readily sees. Thus the only non-van-
ishing potential functions <p for which the velocity and surface elevation are bounded
at 00 are of the form (2.1).

3. Introduction of dimensionless quantities. In dealing with surface waves in the
remainder of this paper it is convenient to work with dimensionless space variables
X\ and yi defined by Xi = mx, yi = my, in which m is given by

2x
a2 = gm = g-— > (3.1)

A

with a the circular frequency and X as wave length. We also replace the time variable t
by a new variable h given by ti=at. In these variables the surface condition (1.2')
is readily seen to take the form

dtp
■ (p = 0 for yi = 0, (3.2)
dyi

where ip of course satisfies VV = 0 in the new variables. However, since nearly all of
our work from now on is carried out in the new variables, we shall drop the subscripts
but retain the surface condition in the form (3.2). The original variables can always be
reintroduced by replacing x and y in all of our results by mx and my and t by at.
This means that the reciprocal of the quantity m defined by (3.1) is our unit of length.
In the course of our discussion on waves over a sloping bottom it will be shown that
the relation (cf. (2.2)) a2 = gm = 2ivg/\ between frequency and wave length for water
of infinite depth holds asymptotically as the depth of the water becomes infinite,
when X is the "wave length at Thus our unit of length in these cases is propor-
tional to the wave length at ».

8 At this point we use the assumption that <p is bounded.
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The standing wave solutions <J> corresponding to (2.1) are, in the new variables
(after dropping subscripts):

$ = eilev cos (x + «)• (3.3)

4. Plane traveling waves in an ocean of infinite depth bounded on one side by a
vertical cliff. As stated in the introduction, the main purpose of this paper is to study
plane traveling waves in an ocean with a uniformly sloping bottom. In this section
we deal in detail with the special case in which the "bottom" is vertical. Most of the
essentials of the method to be employed in the more general cases are well illus-
trated in this case, while the formal apparatus necessary is much simpler than that
needed for the general case. In our treatment of the more general cases we shall then
feel free to condense the presentation in many particulars.

We assume that all quantities depend upon x and y only so that all curves of con-
stant phase (the loci of the wave crests, for example) are parallel to the line of inter-
section of the free surface and the cliff forming the vertical boundary of the water.

if

7777777777777777777%
 Free Surface

ICliff ?

I
Fig. 1.

Thus we seek a potential function <p(x, y) in the shaded area of Fig. 1 which satisfies
the surface condition (see Sec. 3):

die
 <p = 0 when y = 0, x > 0 (4.1)
dy

and the condition at the vertical wall

d<p
— = 0 when x = 0, y < 0. (4.2)
dx

As we have already stated, our purpose is to obtain potential functions <p which
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satisfy (4.1) and (4.2) and which behave at °o like traveling waves moving toward
shore. It seems reasonable to expect that a velocity potential $(x, y, t) which behaves
at oo like the solution eitev cos (x+a) for water of infinite depth everywhere (cf. (3.3))
will exist in the present case. Or, as we could also put it, we may expect that two po-
tential functions <p\, <p2 can be found which behave on the surface at oo like sin x and
cos x respectively, since a reintroduction of the time factor e" would yield two "stand-
ing wave solutions" which could be combined linearly (since our problem is linear and
homogeneous) to yield a solution behaving like a traveling wave at oo.9 In what fol-
lows we shall obtain two such potential functions which are 90° "out of phase" at oo.
One such solution which is bounded and regular can be obtained immediately: The
boundary condition (4.2) permits an analytic continuation of <p by reflection in the
negative y axis into the entire half plane y ^ 0, and we have already obtained solutions
for this case in Sec. 2. Since only an even function of x is in question it follows that
<pi = Aey cos x is the only solution regular in the entire fourth quadrant which, together
with its first derivatives, is uniformly bounded at oo in this quadrant, because of the
fact that the solutions obtained in Sec. 2 were shown to be unique under these
circumstances. (It is clear that bounds for <p at oo in the fourth quadrant hold, after
reflection, in the half plane y ^ 0.) In other words, all non-singular solutions which are
bounded at oo have the same phase at oo, i.e. they behave like cos x there.10 To obtain
solutions "out of phase" with ey cos x at oo it is therefore essential to admit a singu-
larity. On the other hand, it is rather natural on physical grounds to expect a singular-
ity at the origin (i.e. at the water line on the vertical cliff) of the type of a source or
sink if a progressing wave coming toward shore from oo occurs.11 This point has al-
ready been discussed in the introduction.

We are now in a position to complete the formulation of our boundary value prob-
lem by prescribing conditions on <p at the origin and at oo. We require, in accordance
with the remarks above, that <p should possess a representation of the form

(p = <p log r + <p (4.30)

valid near the origin, with r=x2-\-y2 and ip and functions which together with their
first two derivatives are bounded in a neighborhood of the origin. At oo we require
that <p and its partial derivatives of the first two orders be uniformly bounded, i.e.
that a constant M exists such that

\v\ + ZU<n)l < M, (4.3.)
for all sufficiently large x2-\-y2, in which the sum is taken over all first and second
partial derivatives of <p.12 The conditions (4.1), (4.2), (4.30) and (4.3„) constitute the

9 Of course the motion will not be a steady wave motion in general, but one which "approaches"
a steady motion at .

10 Upon reintroduction of the original space variables it is seen that this type of solution includes
waves of all possible wave lengths.

11 The paper of Hanson [3] mentioned in the introduction contains only the regular solution. It
might be of interest to note that the starting point of the present investigation was the conjecture that
solutions out of phase with those of Hanson at °° could be obtained by admitting a singularity corre-
sponding to a source or sink at the origin.

12 These requirements are more stringent than would be necessary to ensure the existence and unique-
ness of the type of solutions desired. However, we are not interested in this paper in formulating condi-
tions at <» and at the origin in the most general way possible, but only in formulating conditions which
seem reasonable on physical grounds and which will lead to unique solutions of a type which interest us.
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complete set of conditions on <p. We shall obtain all non-vanishing solutions of this
problem by constructing them explicitly.

Our method of solving this boundary value problem requires the introduction of
the analytic function/(z) of the complex variable z=x-\-iy, the real part of which is
the potential function <p:

f(z) = <p + if.
We must reformulate our conditions on ip in terms of f(z). The boundary conditions
(4.1) and (4.2) can be written as

(1-1 )„ = <*,(!-!)(„+«

= SRe — l^/(z) = <tRtL\{D)f = 0 on the positive real axis (4.4)

and
d d
— (<p) = 9?e — (tp + if)
dx dx

df{z)
= 1 = $ttLi(D)f = 0 on the negative imaginary axis. (4.5)

dz

The last step in each case is justified by the fact that/(z) is analytic. The symbol 9fe
means, of course, that the real part of what follows is to be taken, and the symbols
L\ and Li refer to the linear operators defined by (4.4) and (4.5). (D=d /dz.)

The conditions (4.3*,) at « on <p lead to the following conditions on f(z) at <*> :
1) Because of the fact that <p is uniformly bounded at °o, the Lemma of Sec. 2
shows that | df/dz\ and | d2f/dz2\ tend to zero along all straight lines in the quarter-
plane which are not parallel to its boundaries. 2) Because of the Cauchy-Riemann
equations | df/dz\ and | d2f/dz2\ are uniformly bounded in z as | z \ —*oo.

We shall make use of the condition (4.30) at the origin in the following form : The
analytic function/(z) is such that \df/dz\ <Jkfi/|z| and |d2f/dz2\ <ikf2/|z|2 with Mi
and Mi constants, in a neighborhood of the origin. This statement follows immedi-
ately from the conditions (4.30) since r<px, ripy, r2<pxx, r2<pxy are as a result bounded near
the origin and this leads to finite bounds for |z/'| and |z2/"| through use of the
Cauchy-Riemann equations.

Our method of solution depends essentially upon the observation that the linear
operators Li and L2 defined by (4.4) and (4.5) have the following property:

WtLiLtif) = WeLtL i(/) = 0 (4.6)

on both boundaries of our domain, i.e. on both the positive x-axis and the negative
y-axis. This property is an immediate consequence of the linearity and special form
of Li and L2 and the boundary conditions (4.4) and (4.5). We are thus led to consider
the analytic function F(z) defined by (see (4.4) and (4.5))

d / d \
= L2Lx/(z) = l

dz\ dz /
F(z) = L2Li/(z) = — ( * — - 1 )f(z). (4.7)
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We shall prove the following: If the analytic function f{z) having the properties we have
postulated exists, then F(z) =Ai/z2, with A an arbitrary real constant; hencef{z) would
satisfy an ordinary differential equation with constant coefficients.

What are the properties of F(z), assuming that our/(z) exists? From (4.6) we ob-
serve that the real part of F(z) vanishes on both boundaries of the quarter-plane (i.e.
on the positive real axis and the negative imaginary axis). F(z) can therefore be con-
tinued analytically by the reflection process into the entire plane; the result will ob-
viously be a single-valued function whose real part vanishes on the entire real as
well as the entire imaginary axis. (Here we make essential use of the fact that the
original domain is a sector of angle ir/2.) At the origin F(z) has at most a pole of
order two since \df/dz\ <Mi/\z\ and \d2f/dz2\ <M2/\z\2 hold near 2 = 0, and these
bounds for the derivatives of / in the quarter-plane lead to the bound [ F{z) | < M3/1 z |2
in a full neighborhood of the origin as one sees from (4.7) and the fact that F(z) is
continued by reflection into a single-valued function in the entire plane. Hence F(z)
has at most a pole of order two, and not an essential singularity, at z = 0. In the same
way the conditions at » on f(z) yield for F(z) the condition that | F(z) | is uniformly
bounded at ». Also | F(z)| tends to zero when |z|—>°o along any ray which is not
parallel to the real or the imaginary axis, since | df/dz\ and | d2f/dz2\ have this prop-
erty. The only analytic function F(z) with all of these properties is F{z) =Ai/z2, with
A an arbitrary real constant (zero included): It is well known that a single-valued
analytic function defined in the entire plane is determined by its singularities, which
in this case consist of a pole at the origin. This fact, together with the additional con-
ditions on F{z), leads easily to our result.

We can now be certain that the solutions ip(x, y) of our potential problem must be
the real part of an analytic function/(z) which satisfies the ordinary differential equa-
tion

d / d \ i
~7\ ~ 1 = A ~7' A reaL (4-8)
dz\ dz / z

Our problem is therefore reduced to that of determining integration constants
in the solution of (4.8) in such a way as to satisfy the boundary conditions (4.4) and
(4.5) and the conditions at the origin and at °o. We shall see that such solutions of
(4.8) can be determined, which means that potential functions ip(x, y) =9?e/(z) satisfy-
ing our conditions will be shown to exist. It will also be shown that the solutions (p
of our problem behave on the water surface at « like C cos(x+a) in which C and a,
the "amplitude" and "phase" of <p, may have any values. Once the phase and ampli-
tude at are prescribed, however, the solution is uniquely determined.

We proceed to solve the differential equation (4.8) and to fix the constants appro-
priately. One integration can evidently be carried out at once to yield

Os-O/(z) = — A—i A real. (4.9)

The additive constant which arises through the integration would be imaginary be-
cause of the boundary condition (4.4); we have taken it to be zero since it would upon
integrating (4.9) give rise only to an additive imaginary constant in the general solu-
tion for/(z) and this in turn would contribute nothing to the real part <p of/(z).
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A solution /i(z) of (4.9) for A=0 (i.e. a solution of the homogeneous equation)
can be found which satisfies all of our conditions. The solution is

fi(s) = Be~", (4.10)
with B a real but otherwise arbitrary constant, as one can readily verify. The homo-
geneous differential equation thus furnishes solutions of the problem which are
bounded. The corresponding real potential function <px = 9?e/i(s) is, evidently

y) = Be" cos x. (4.10')

We observe that these solutions differ in amplitude but not in phase. They are, in
fact, the non-singular solutions of our problem mentioned earlier in this section.

Other types of solutions result from the non-homogeneous equation, i.e. for the
case A 9^0 and these will be singular at the origin. One solution of the non-homogene-
ous equation is given by

C ~*z 6~1

f{z) =Ae~" I  dt, (4-11)
" +0O t

in which the path of integration is taken along the positive real axis from + », then
along a circular arc about the origin, and then along a ray to the point zfik with
1Qk = — i, as indicated in Fig. 2. The integral evidently converges. However, it is

Fig. 2. Path of integration.

necessary to add an appropriately chosen solution of the homogeneous equation in
order to satisfy the boundary condition on the negative imaginary axis. (The bound-
ary condition on the real axis is automatically satisfied since/(z) satisfies (4.9) with A
real.) From (4.11) we find

— —.dt + — 1, (4.12)
dz L. +00 ^ 2 J

and we are interested in the value of the expression on the right when z is a point on
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the negative imaginary axis. One sees readily that the straight line portions of the
path of integration (both of which lie on the real axis in this case) contribute purely
real quantities to J~iz(e"t/t)dt, but that the semicircular part yields an imaginary
contribution of amount13 plus ni. Thus the real part of the right hand side of (4.12)
for z on the negative imaginary axis reduces to the real part of Aire"" there, since l/z
and ie~iz are both pure imaginary on this axis and A is real. If, therefore, we add the
function -}-Airie~i* to the right hand side of (4.11) the result

r r er* 1
f2(z) = - A^e~il J -dt-irier" J (4.13)

will be a solution of the non-homogeneous equation for which SReaJ/i/iiz = 0 on the
negative imaginary axis, i.e. it will be a function satisfying the boundary condition
on the imaginary axis.

Thus/^z) and/2(z) as defined in (4.10) and (4.13) are two linearly independent
analytic functions which satisfy the boundary conditions. We observe also that/i(z)
and/2(z) behave in the prescribed manner at the origin: The function/i(z) is regular
there while /2(z) obviously has a logarithmic singularity.

We have still to check the conditions at <x>. For/i(z) the conditions are obviously
satisfied. To investigate the behavior of/2(z) as z—>oo we must consider the asymptotic
behavior of the integral fZ(e~~'/t)dt. We shall show in Appendix I that the integral
possesses the following asymptotic representation :14

/.-it e-t r l i
 dt^ 2tri - ieiz   ■

+«. t L z J
the dots representing higher order terms in 1 /z. Assuming that such a development
holds, then/2(z) clearly possesses the following asymptotic development:

/2(z) =— Airie~ie = — Aire~'(*~r,2) (with A real). (4.14)

The derivatives of /2(z) have essentially the same asymptotic behavior, as one can
readily see. Thus all conditions at oo are satisfied. The function <p2(x, y) =9ie/2(z) be-
haves as follows at oo :

<Pi(x, y) = — Arey sin x. (4.14')

The solutions tpi(x, y) (cf. (4.10')) and <pi(x, y) are thus out of phase at » and we have
therefore achieved one of our main objects. Our conjecture that solutions behaving
like (p2 at » would result by imposing a logarithmic singularity at the origin proves to
be correct.

It is important to show that the set of all analytic functions f(z) which satisfy our
boundary and regularity conditions is given by

f(z) = Mz) + f2(z) (4.15)
with/i(z) and/2(z) the above defined solutions of (4.9) — fi of the homogeneous equa-
tion and /2 of the non-homogeneous equation. This one proves as follows: Suppose
that g(z) is any solution of our problem and set G(z) =/(s) — g(z), with f(z) given by

13 This is readily seen by expanding e~' in powers of t and observing that the term 1 /t furnishes the
entire value of the integral.

14 The present case corresponds to the case fo = —i of Appendix II, which in turn arises for k =2, n = 2.
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(4.15). It is clear that G(z) satisfies the same boundary conditions as/ and g. Since/
and g both satisfy (4.9) with the same value of the constant A it follows that
(id/dz — 1)G = 0 and the only solution of this equation satisfying our conditions is
G = Ce~iz, with C real. Thus g(z) could differ from/(z) only by an additive real multiple
of /i(z)—that is, g and / are really the same manifold of solutions. We observe that
the set of solutions (4.15) contains two real constants A and B which are at our dis-
posal.

From (4.10') and (4.14') we conclude that real potential functions solving our
problem and having any prescribed amplitude and phase at °° can be obtained by
superposition of <p\ and <ps, since A and B may be chosen arbitrarily, and since our
boundary value problem for the function <p is linear and homogeneous. Conversely,
it is evident that the constants A and B are uniquely determined when the phase and
amplitude of any solution <p at oo are prescribed. Once this has been done the complex
potential function/(z) is uniquely determined (cf. (4.15) and the remarks concerning
it) and hence also the real potential function <p(x, y). In other words, our solutions ip
exist and are uniquely determined when we prescribe the phase and amplitude at oo.

We now reintroduce the original space variables by replacing x and y in all rela-
tions by mx and my, in which m satisfies the conditions a2 = gm = 2irg/\ (cf. Sec. 3)
and <r is the circular frequency. At oo our solutions <pi and have been shown to be-
have as follows:

<£>i = C\emy cos mx,

= C2emy sin mx,

and consequently the quantity X = 2ir/w is the "wave length" at oo . This substantiates
the remark made in Sec. 3 that the asymptotic relation between the wave length
at ob and the frequency is the same as that for water which is everywhere (i.e. for all
values of x) infinite in depth.

The standing wave solutions <pi and ipz will be discussed in detail in Sec, 6.
5. Traveling waves over a sloping beach. In this section we shall generalize the

method of the preceding section to yield solutions for waves on a beach which slopes
at an angle ir/2n with the horizontal, with n any integer.16 The method we use is in
principle exactly the same as for our previous case of a vertical cliff. The only differ-
ences arise from the fact that the differential equation corresponding to (4.11) cannot
be obtained quite so easily: it will be, in fact, a differential equation with constant
coefficients of order 2n instead of one of order two. Naturally, the actual determina-
tion of the desired solution will therefore become more and more complicated as n
increases, i.e. as the inclination angle of the beach decreases.

We formulate our problem at the outset in terms of the analytic function
/(z) =ip+i\p. We seek such a function in the sector of angle ir/2n indicated in Fig. 3.
The function/(z) should be regular in the interior of this domain, and have at most a

15 The problem can be solved for other angles by similar methods, and probably also for any angle by
extensions of the theory along the lines of the method of Sommerfeld used in diffraction problems. How-
ever, it seems certain that such solutions would be very complicated and would involve functions not easily
handled numerically with the tables of functions now available. The cases we discuss in this section are,
it happens, amenable to numerical treatment. In any case, for angles less than 90°, it seems certain that
the main features of the wave motion will be completely revealed through study of our special cases. For
angles greater than 90°—that is, for overhanging cliffs or docks—new features could be expected to arise,
and these cases deserve study. As we mentioned in the introduction, H. Lewy [6] has solved the problem
for angles pir/2n with p any odd integer and n any integer such that 2n >p.
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logarithmic singularity at the origin, which we interpret to mean (cf. the remarks on
this point in the preceding section) that | dkf(z)/dzk\ <Mk/\z|* for k = 1, 2, • • ■ ,2 n,
with Mk certain constants. At «> we require that |3fe/(z)| and |dhj(z)/dzk\ for
ft = l, 2, • • • , 2n should remain uniformly bounded when z—>°o in the sector.16 As
a consequence, all derivatives of/(z) tend to zero along certain rays. On the boundary
the conditions on <p(x, y) = 9Je/(z) lead, as before, to the following conditions on/(s)
at the boundary (cf. (4.4) and (4.5)):

3?eLi(Z)) /(z"! = = 0 f°r 2 = re~i('r'2"), r > 0 (5.1)

dteL2n(D) -f(z) =  Ij'f = d for ! = j>0, (5.2)

By D we mean, of course, differentiation with respect to z. The boundary condition
(5.1) should state that the derivative of <p(x, y) normal to the bottom vanishes; that
it does can be checked
easily, for example by
inserting <p+i\J/ for /,
replacing d/dz by d/dx,
and using the Cauchy-
Riemann equations. The
condition (5.2) at the
free surface is the same
as (4.4).

In the case treated
in the preceding sec-
'ion, the operators L, ^ Surfacg

■L\f(z) = 0 on both    
boundaries (cf. (4.6)). o // '//Trnz 
This is, however, not DOTTOrY)  
the case for the corre-  
sponding operators L\ UTl
and Lin defined in (5.1)
and (5.2). It is neces- Fig- 3-
sary for our purposes,
in fact, to make use of a set of 2n linear operators L\, L2, ■ ■ ■ , L2n-1, Lin, of which
L\ and L2n are the first and last members of the sequence, and which are so defined
that 9Je(Li i2-is- • • • L2n~i- L2„f) =0 on both boundaries. It would be possible to
derive these operators through geometrical constructions and arguments (involving
essentially a succession of reflections in the lines re~'(kTlin), k = l, 2, • • • ), but we
prefer to give them at once and then examine them to see that they have the proper-
ties we wish. They are defined as follows:

((aicD) if k is odd,
Lk= { (5.3)

(.(afcD — 1) if k is even,

16 It would be possible to weaken this requirement considerably.
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in which the a.k are the following complex numbers:

at = e-iT»i«+iwt k = 1, 2, • • • , In. (5.4)

It is useful to bear in mind the location of the points at in the complex plane, as given
in Fig. 4. These numbers lie on the unit circle spaced at equal angles 7r/2w, all of
them except a2„=i having negative real parts.

We show that these operators have the required properties. To begin with, we
verify at once that the operators L\ and Lin as given by (5.3) are the same as those
given in (5.1) and (5.2). We write:

L(D)f = Lx-U ' • ■ Ltn-fa) = (aJ))(aJJ -!)■■■ («,._iD)(atJ> - 1 )/(z). (5.5)
Our object is to show that 9JeL(Z))/ = 0 on both boundaries of the sector. We know
that ?fte(a2nD — l)/(z) =0 on the real axis (condition (5.2)). We proceed to show that
the operator P\{D) defined through (5.5) by L(D) = Pi(D) ■ (ainD — 1) has all of its
coefficients real. It is clear that we may write the polynomial P\{D) as the product
of two factors: P\(D) =P{ (D)P{' (D), with P{ (D) and P{' (D) defined as follows :

P\(D) = [ai<X2n-lD2\ {pLsCLln-dD2} • ■ • ,

Pi' (D) = [(«»D - 1)(«„ tD - 1)][(«4D - l)(«2n-4D - 1)] • • • .

That is, we separate the linear factors of Pi into two groups, one containing all fac-
tors for which k is even, the
other all those for which k is
odd; these two groups are
then arranged in the manner
indicated. From the defini-
tion (5.4) of the oik (cf. also
Fig. 4) it is clear that ak
= a2n-k, in which the bar
over a quantity means that
the complex conjugate of
the quantity is taken, and
also | ait\ =1 for all k. Hence

X both a,c- a2n-k and ak+a2n-k
are real numbers for all k
= 1,2,---, 2n — 1, and
hence all of the quadratic
factors in Pi and Pi' obvi-
ously have real coefficients.
Since Pi(D) contains an odd
number of linear factors it
follows that either Pi or P'
will contain one unpaired
linear factor, i.e. the factor

Fig- containing anD. But since
an= —1 (cf. (5.4)) it follows

that the polynomials Pi and Pi' have all their coefficients real and hence also the
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polynomial operator P\(D). Consequently when z varies along the real axis we may
write

= Pi(£)-9Ma2„£> - 1)/,

since D may be replaced by d/dx in this case and the coefficients of the operator
Pi(d/dx) are all real. Therefore, in view of (5.2) we may write

= 0 on the real axis. (5.6)

To prove that the same relation holds along the bottom, i.e. for z — re~tirl2n, we con-
sider the operator Pz(D) defined by L(D) = (aiD)Pi(D). Along z = re_i'r/2n the opera-
tor D = d/dz may evidently be replaced by the operator e",2nd/dr. By d/dr is
meant, of course, the directional derivative along the bottom line. If, then, D
is replaced by eiw,2nd/dr in Pz(D) we observe that a^D, a3D, • • • , a2rlD become
a\d/dr, a^d/dr, • • • , oiiv-\d/dr since a*+i*eiT'2" =ak from the definition (5.4) of the

It follows that the operator Pi(D) along z = re"12" may be replaced by an operator
P3(d/dr) such that all coefficients of P3 will be real. This can be seen in exactly the
same manner as in the preceding case. We may write, therefore, along this line:

MeL(D)f(s) = = Ps^m^D)f(z),

and, in view of the boundary condition (5.1), we see that

5ReL(D)f(z) =0 on z = re~"l2n. (5.7)

Consequently, ?HeL(D)f(z) = 0 on both boundaries.
We now continue in the same fashion as in the preceding section by introducing

the analytic function F(z) defined in our sector by

F(z) = L(D)f(z), (5.8)

and obtain a differential equation for/(z) by determining F(z) uniquely through use
of the properties postulated for/(z). The properties of F(z) are the following: 1) Its
real part vanishes on both boundaries of the sector, 2) It is either regular at the origin
or it has a pole of order at most 2n, 3) | F(z) | remains uniformly bounded as z—»oo
in the sector. We know therefore that the derivatives of F(z) will tend to zero along
any rays not parallel to the sides of the sector when |z| —><», by the Lemma intro-
duced in Sec. 2. The first property has just been established, and the second and
third follow immediately from our conditions on/(z) at the origin and at °o, through
the definition (5.8) of F{z).

Because of property 1) and the fact that we are working in a sector of angle 7r/2n,
with ri an integer, it is clear that F(z) can be continued over the boundaries of the
sector by successive reflections to yield a single-valued function regular in the en-
tire plane except possibly at the origin where it may have a pole of order 2n at most.
In addition | F(z) | is bounded at °o and the real parNt of F(z) vanishes on all rays
through the origin for which z = re<kTl2n, k = 1, 2, • • • , 4n. The only analytic function
with these properties is F(z) =Aini/z2n, with Ain an arbitrary real constant (zero not
excluded). (We rejected a possible additive constant in F{z) through use of the fact
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that F(z) tends to zero along certain lines.) It follows therefore that the solutions/(z)
of our problem satisfy the differential equation

L(D)f = («iD)(a2D - 1 ){a3D)(aJ) - 1) • • • (aU-iD)(a2nD - 1)/ = A2n —, (5.9)
z2n

with Azn an arbitrary real constant. This differential equation may also be written
in the form

aia3a6 " " ' a2n-iDn(a2D — 1 ){aj) — 1 ){aJD — 1) ■ • ■ (a2nD — 1 )/(z) = A2n   (5.10)
22»

If we integrate (5.10) once with respect to z on both sides the only change
on the left side is that Dn becomes Dn_1 while the right hand side becomes
— Aini/(2n — l)z2n-1 + Ci in which C\ is an integration constant. But since \dkf/dzk\
for k = 1, 2, • • • , 2n tends to zero as | z| —> a> along any ray not parallel to the sides
of the sector it follows that Ci = 0. The same process can be repeated—in particular,
the successive integration constants will be zero for the same reason—until we ob-
tain17

(aj) - - 1) • • • (a2nD - 1 )f = A —, (5.11)
zn

with A real (but otherwise arbitrary) since the product aia3otb • • • «2»-i is real. The
wth integration would also yield an additional constant on the right hand side of
(5.11) which would not necessarily be zero, but which would be pure imaginary. This
follows from the boundary condition 9te(a2„.D —1)/=0 on the real axis, the fact that
(a^D — — 1) • ■ • (a2„_2.D — 1) =P{' (D) has only real coefficients (as we have
seen a little earlier), and the obvious fact that '8ttAi/zn (A real) is zero for real z.
However, such an imaginary constant on the right hand side of (5.11) would clearly
contribute to the general solution/(z) of (5.11) only an additive pure-imaginary con-
stant which would contribute nothing to the real potential function <p. Consequently
we take this constant to be zero.

Once we have the differential equation (5.11) the general procedure as well as the
results are exactly analogous to those of the preceding Section 4: the arbitrary con-
stants in the general solution of (5.11) can be fixed so that two types of solutions
/i(z) and /2(z) are obtained which satisfy the boundary conditions18 as well as the
conditions at the origin and at °o. The solutions /i(z) are obtained from the homo-
geneous equation, while the/a(z) are solutions of the non-homogeneous equation. The
solutions/i(z) are regular at the origin, while the solutions/2(z) have a logarithmic
singularity there. All solutions/(z) of our problem are then given by/(z) =/i(z)+/a(z)
and this set of solutions depends only on two real constants which occur as factors in
/i and /2. At °o the behavior of fi and /2 is such that the real potential functions
<Pi = 9?e/i and <p2 = 9?e/2 behave like C\ev cos (#+ai) and C2e" cos (x+a2) in which Ci and

17 The differential equation (5.11) was obtained by H. Lewy in a different way through reflecting in
the bottom and then working in a sector of angle ir/n instead of one of angle ir/2n. At <» Lewy assumes
at the outset that the solutions behave like those in water of infinite depth, in contrast to the above
treatment in which only the boundedness of certain derivatives is assumed.

18 That this can be done is far from trivial, since our boundary conditions must be satisfied at all
points on the straight lines composing the boundary of the sector.
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C2 are arbitrary, but «i and 0:2 are fixed and differ by -k/2. It then follows that any solu-
tion <p of our problem is uniquely determined once the phase and amplitude of ip at <»
are prescribed.

The general solution of (5.11) containing n arbitrary constants is of course ob-
tained by straightforward and elementary methods. However, the determination of
these constants in order to satisfy the boundary conditions is not entirely trivial,
particularly in the case of the solution /2(z) of the non-homogeneous equation. In
Appendix I we discuss the method of determining the integration constants in such a
way as to satisfy the boundary conditions; in the present section we simply give
the results. The solutions are also seen to satisfy the conditions at the origin and at oo.

In the homogeneous case, the solution is

Mz) =   - ■ £) cke*-, ft = 1, 2, • • • , n. (5.12)
(n — 1) IV n k=i

The numerical factor before the summation sign is chosen for convenience in later
computations. The constants ck and (3k are the following complex numbers:

pk = e«(*/»+i/2> (5.13)

X 2 IT (k — l)fl"
Ck = cot — cot — • • • cot    for k = 2, 3, ■ • ■ , n,

2 n 2n 2n (5.14)
C\ — cn.

By comparison with (5.4) we note that ft, = aw- (The bar on cn and a-zk means that the
complex conjugate of these quantities is taken.) The constants ck are uniquely de-
termined (see Appendix I) within a real multiplying factor.

As | z | -—> co in the sector, all terms clearly die out exponentially except the term
for k=n, which is cne"iz, since all /3j,'s except fin have negative real parts. Even the
term for k = n dies out exponentially except along lines parallel to the real axis. (The
value of c„, by the way, is e_i,r(n_1)/4 since the cotangents in (5.14) cancel each other
for k=n.) This term thus yields the asymptotic behavior of/x(z):

(5'15>

The general solution/2(z) of the non-homogeneous equation (5.11) when the real
constant A is set equal to one is as follows:

» r e-t -1
fz(z) = ezPk I '— dt — irie^k . . (5.16)

*=1 L J +co t J

The jSfc's are defined by (5.13); and the ak's are defined by

a* = Ck/(n — V)Wn, (5.17)

that is, they are a fixed multiple (for given n) of the ck s defined by (5.14). The ak's,
like the Ck's, are uniquely determined within a real multiplying factor. The path of
integration for all integrals in (5.16) is indicated in Fig. 2. That the points 2/3* lie in
the left half of the complex plane (as indicated) can be seen from our definition (5.13)
of the (3k and the fact that z is restricted to the sector O^arg zgir/2w.

The behavior of /2(z) at 00 of course depends on the behavior of the integrals in



22 J. J. STOKER [Vol. V, No. 1

(5.16). In Appendix II it is shown that these integrals behave asymptotically as
follows:

/ e~*^k /I \ 7r
( —  1 !-•••), — < arg zfik g it,

re~'dt \ j3 k \z ) 2
I  (5.18)

J +oo t ) e / 1 \ 3t
2ir i 1 h • • • ), r < arg z@k g

/3i \ z / z

Once this fact is established it is clear from (5.17) and (5.16) that/2(z) behaves asymp-
totically as follows:

~ 7 7^7="cJe~iz' <5 •19>
(n — lj'.y/n

since the term for k=n dominates all others (cf. (5.18)) and arg zfik>Tr in this case.
Comparison of (5.19) with (5.15) shows that the real parts of/i(z) and/2(z) would be
90° out of phase at .

That the derivatives of ft(z) behave asymptotically in the same fashion as /a(z)
itself is easily seen, since the only terms in the derivatives of a type different from
those in (5.16) are of the form bk/zh, k an integer 2^1. Finally, it is clear that/2(z)
has a logarithmic singularity at the origin. Hence /i(z) and fi(z) satisfy all require-
ments. Just as in the 90° case (cf. the preceding section) it can now be readily seen
that/(z) = b\f\(z) +62/2(2), with bi and Z>2 any real constants, contains all standing wave
solutions of our problem. The proof that the real potential function ip = ?Hef(z) is
uniquely determined once the phase and amplitude at are fixed can also be carried
out exactly as in the previous section for the 90° case.

The relations (5.15) and (5.19) yield for the asymptotic behavior of the real po-
tential functions (pi and ^>2 the relations:

(5.20)
7r / n — 1 \

<Pi(x, y) = 9?e/i ~    _ e« cos I aH — x)
(n — l)!v n \ 4 /

7r / n — 1 \
<Pi(x, y) = 9fe/s ~    - e" sin I X H   x) (5.21)

(n — l)!v n \ 4 /

when it is observed that c„ = e-i'r<'!-1)/4. It is now possible to construct either standing
wave or progressing wave solutions which behave at °° like the known solutions for
steady progressing waves in water which is everywhere infinite in depth. In particular
we observe that it makes sense to speak of the wave length at 00 in our cases and that
the relation between wave length and frequency satisfies asymptotically the relation
which holds everywhere in water of infinite depth. For this, it is only necessary to
reintroduce the original space variables by replacing x and y by mx and my, with
m=<ri/g (cf. Sec. 3), and to take note of (5.20) and (5.21).

Finally, we write down a solution $(x, y; t) which behaves at °° like e" cos («+/+«),
i.e. like a steady progressing wave moving toward shore :

$(x, y; t) = A[(pi{x, y) cos (/ + «)— <p2(*, y) sin (t + a)J. (5.22)

The solutions (5.22) will be discussed numerically in Sec. 8 for the case of a beach
sloping at an angle of 6° (i.e. for the case n = 15).
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6. Numerical discussion of standing wave solutions for 90°, 45°, and 6° slopes.
In this section we give graphs of the two types of standing wave solutions for the case
of a vertical cliff (cf. Sec. 4) and for bottom slopes of 45° and 6°. We continue to
make use of the dimensionless variables of Sec. 3. In particular, it should be re-
called that the variable x means the distance from shore divided by \/2ir, in which X
is the wave length at infinity. In other words the quantity x is proportional to the
wave length at ».

In the case of the vertical cliff, or 90° case, two standing wave solutions are
given by

<3?i(#, y\ t) — ireiley cos x (6rl)

and

[Cx cos £ r x sin £ ~|
cos x I  d£ + sin x I - d% + x sin x , (6.2)«/«, £ J* { J

As one can readily verify, either from (4.10) in Sec. 4 or from (5.12) in Sec. 5 with
n — 1.

Fig. 5. Standing waves for a vertical cliff.
$i(.x, 0, 0)   - x = distance from shore/(\/2ir)
<t>2(x, 0, 0)   X = wavelength at »

The functions and <J>2 for y = 0 and t = 0 are plotted19 in Fig. 5 together with the
function ir sin x, which yields the asymptotic behavior of $2 on the surface. The most

19 The curves for <f>i and $2 differ from the corresponding surface elevations iji and 7)2 (cf. (1.4)) only
by a phase shift and a constant multiplier.
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notable feature of the curves of Fig. 5 is that the standing wave solution <I>2, although
it tends to become negative infinite as x—>0, nevertheless differs little from the func-
tion 7T sin x until a point within a distance from the cliff of a fraction of the wave
length at « is reached. In other words, the asymptotic development of <J>2 for x large
holds with good accuracy until x is rather small. In addition, the last maximum of $2
(i.e. the crest nearest to the cliff) has an amplitude slightly less by a little more than
10 per cent than the amplitude at 00. The distance between the two zeros of $2
nearest to shore is also 10 per cent less than half the wave length at ».

An interesting additional fact which is not difficult to prove is that the velocity
of the water does not decrease exponentially with the depth y (as it does when no cliff
is present), but only like l/y. The presence of the cliff thus reinforces the velocity.
(The velocity of the water along the cliff is given by 91e(idf(z)/dz) with/(z) defined
by (4.15); the result indicated follows by calculating idf/dz and using the known
asymptotic behavior of the complex integral which occurs.)

The standing wave solution $1, <f>2 for the case of a beach sloping at 45° are ob-
tained from (5.12) and (5.16) with n = 2. For $1 we write

<$!(*, y; t) = -^= e''9te[eil/4e~* + e~iTlie~iz]. (6.3)
v 2

The unbounded standing wave solution is given by

eil ( . T Cz e~t • "1
<I>2(x, y; f) = —-= 9?e <^e,,r'4 ' J  dt — trie ZJ

jijr/4 |"eJ+ e"'41 e u I  dt — irie iz (6.4)

The surface values of $1 and $2 for t = 0 are plotted in Fig. 6. These curves are ob-
tained by using tables of the functions Ci, Si, and Ei20 computed by the Mathematical
Tables Project [7 ]. In fact, $2 can be written in the form

euey (
$2(3:, y; t) = _ \Ci{x) [sin x — cos x\

v2 I

-[f + «,)] [„. + *.] (,)}. (6.4')
At 00, $i(x, 0; 0) behaves like (ir/\/2)(cos x — sin x) while $i(x, 0; 0) behaves like
— (Tr/s/2) (cos x+sin x).

The same general comments can be made about the curves of Fig. 6 as were made
for those of Fig. 5. In particular, the minimum of $2 at x = 1 is about 10 per cent less
in numerical value than the amplitude of $2 at °°, but $2 differs very little from its
asymptotic representation until x is quite small. The regular solution <3?i attains a
maximum on shore which is\/2 times the amplitude at 00. The distance between suc-
cessive zeros shortens on approaching shore, as in the preceding case, but the shorten-
ing is now more pronounced.

20 We use i unconventionally as a subscript to avoid confusion with i = V — 1; in M.T.P. [7] the nota-
tion Ci, Si, and Ei is used.
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$

Fig. 6. Standing waves for a 45° bottom slope.
$i(x, 0, 0)   x = distance from shore/(X/27r)
3>2(x, 0, 0)   X = wavelength at «
— t/V2 (cos x+sin x) 

Finally, we describe the two types of standing wave solutions for the case of a bot-
tom slope of 6°. These solutions are obtained from (5.12) and (5.16) by taking n = 15.
The regular standing wave $1 is taken in the form (cf. (5.12)):

y, t) = e''$Re/i(z) (6.5)

with/i(z) defined by
15

/i(z) = S cke^k,
k=1

Qk _ eiT«/15+l/2)

_ g-jrf/2 C0(-
30 30
7T (k — 1)7T

ck = e~iwkl2 cot — • • • cot j k 7^ 1,

(6.6)

Cl = — 1,

The fifteen quantities C;: are alternately real and pure imaginary and they vary in
absolute value from 1 to approximately 819. For large values of x the function
^(tf, 0; 0) behaves as follows (cf. (5.20)):

<E>i(x, 0; 0) ~ ir sin x. (6.7)
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The standing wave solution $2, which is infinite at the shore line, is defined by

$20, y; t) = — 14K/1S eL«JRe/i(a) (6.8)

with/;(z) defined by

m(6-9>

in which the Ck and /3j- are defined as in (6.6). The path of integration is shown in Fig. 2
of a preceding section. This solution behaves for large x and fory = 0, t = 0 as follows
(cf. (5.21)):

$2(», 0; 0) ~ t cos x. (6.10)

In order to determine numerically the function

r" e-<
E(z) = e* I  dt

J Z t

was computed for values of z on the rays s = reil(i;/15+1/2), = 1, 2, • • • , 7.
The function E(z) defined by (6.11) has been tabulated for values of z in the second

quadrant by the Mathematical Tables Project [8]. However, the entries in this table
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$ (%, o, 0) og x)

Fig. 7. Standing waves for a 6° bottom slope.
&,(x, 0, 0) —   x = distance from shore/(X/27r)
$z(x, 0, 0)  X = wavelength at °o
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are for a rather wide rectangular net of points in the z-plane. We therefore found it
necessary to compute E(z) along the above described rays as follows: For r = | z| =3.00
and r = 3.50, we interpolated in the M.T.P. tables of E{z) by means of a Taylor series
expansion about the nearest tabulated points. (The derivatives of E(z) are easily
calculated.) The values at r = 3.00 and 3.50 were checked by using them to compute
the values at r = 3.25. Power series developments were thus obtained for points along
each of the seven rays for the range 1.00 rSriS 7.00 at an interval of 0.25, which means
that more than 100 power series were derived. A table was then constructed by using
these series to obtain values at intermediate points. Since integrals of this form would
always occur in solving differential equations having constant coefficients and rational
right hand sides, it seems worth while to include this table as an Appendix. The table
is believed to be accurate within one unit in the fourth decimal place. The table
would, of course, also be useful if computations were to be made for beach slopes at
angles other than 6°.

Fig. 7 shows the surface values of $i and $2 near shore, while Figs. 8 and 9 are
graphs of $1 and $2 together with their asymptotic representation for large x. Again
the same general comments are in order as in the preceding cases, except that it is
now necessary to go further out from shore to obtain close agreement with the
asymptotic solution in deep water. This is not very surprising since the depth of the
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Fig. 8. Comparison of standing wave solution for a 6° slope, $!, with
its asymptotic limit r sin x (see Fig. 7).

<I>i(3C, 0, 0)   x = distance from shore/(X/2?r)
iv sin (jc)   X = wavelength at «>
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Fig. 9. Comparison of standing wave solution for a 6° slope, <J>2, with

its asymptotic limit t cos x (see Fig. 7).
®i(x, 0, 0)    x = distance from shore/(X/27r"l
ir cos (k)   X = wavelength at °°

water at x = 7 (the largest x for which we have numerical values) because of the small
slope is less than 1/8 of the wave length at oo. Comparison of Fig. 7 with Figs. 5
and 6 shows that the distance between successive zeros near shore has now shortened
very materially as compared with the preceding cases. In fact, this effect would be-
come more and more pronounced with decrease in the slope.21 We observe also that
the relative maximum of <J>2 at x = 5.4 and the relative maximum of $1 at x = 6.5 are
less than the amplitude at ». Progressing waves for the case of a 6° slope will be
discussed in Sec. 8.

7. Shallow water theory. In some gravity wave problems it is possible to obtain
an accurate approximation to the exact linear theory by relatively simple means.
Such an approximate theory, which is commonly referred to as the linear shallow
water theory, has long been the basis for the theoretical study of the tides in the
oceans and large estuaries. In this section we give a derivation of the shallow water
theory for water of variable depth; in the next section we shall compare the results
from both theories numerically in the case of progressing waves in water of constant
depth and over a beach with a 6° slope. In what follows we consider only the two-
dimensional case. We revert also to the original space and time variables.

21 See the next section, where an approximate theory valid for water in which the depth is small
compared with the wave length is discussed.
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The exact linear theory requires the determination of a potential function
$(*> y\ t) in the region indicated in Fig. 10). As before, y = 0 is the original undis-
turbed surface of the water and y= — h(x) is the bottom profile. The elevation of the

, .. "Hater Surface
X-xM)

b(%)

bottom
Fig. 10.

free surface in the course of the motion is denoted by ri(x, t). The conditions to be
satisfied by "I1 are (cf. Sec. 1).

$*1 + = 0 for 0 ^ y ^ — h(x) (7.1)

= - g<t>y for y = 0 (7.2)
= — hx$x for y = — h(x). (7.3)

For the purposes of the present section it is not necessary to formulate conditions
at oo. The surface elevation rj is given by

1
v(x, t) = -— (7.4)

y=0

In the following derivation it is convenient to denote quantities evaluated for y = 0
by a bar over the quantity, and for y= — h{x) (i.e. at the bottom) by a bar under the
quantity. Thus conditions (7.2) and (7.3) could be written in the form <E>((= — g$y
and $» = — hx<bx.

We may write

/

0

<&yydy = i>„ — f v = <£„ + hx$x (7.5)
-*(»)
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from (7.3). On the other hand we may also write

/0 /. 0 Q r. 0$vydy = — I <bxxdy = I <i>xdy + hx$x (7.6)
-h(x) J —h(.x) dxJ-h(x)

by using (7.1) and observing that the lower limit h(x) depends on x. By equating the
right hand sides of (7.5) and (7.6) we find

d r"
3>„ = - — I 4>xdy.

ox J -h{x)
(7.7)

We consider next the relation

'0 0

$xdy = h$x — I ;
-h(x) J -h

obtained through integration by parts, and also the relation

/0 0
$xdy = h$x — I y$xvdy (7.8)

-h(x1 J -h

f h(x)$xydy = h(x)$x — k(x)$x. (7.9)
J -h (x)

The quantity in (7.8) can be eliminated by using (7.9), and this in turn lead-
through use of (7.7) to

9 r= - — h(x)<
dx L )&x— f (y + A)$x^y~|

J-h(x) J

= — (h<i>x)x + f [(y + h)<&xxV + hx$xy]dy.
J -h

From the boundary condition (7.2) we may replace <£y by —l/g&tt to obtain

$(( = (gh$x)x - g f [(> + h)$xxv + hx$xy]dy. (7.10)
J —h

Up to now we have made no assumptions in addition to those made in deriving the
exact linear theory—we have simply carried out integrations with respect to y in
such a way as to yield (7.10). We now assume that and <&xy are bounded for all x
and t, and for — h^y^ 0, and that hx is small of the same order of magnitude as h. It
follows at once that (7.10) may be written in the form

= (***,),+ 0(A*) (7.11)

in which 0(h2) is a quantity of order h2. Thus, if the depth h and slope hx are suffi-
ciently small, the surface value $ of the potential function $>(x, y; t) should be given
with good approximation by the differential equation

*u=(gh$x)x. (7.12)

In the case h = const. (7.12) is the wave equation in one space variable with
c=(gh)lli as propagation speed. Equation (7.12) is the differential equation of the
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linear shallow water theory.22 The above derivation of the theory is due to F. John.
Instead of <J? we may introduce the surface elevation r}(x, t) =$«/g (cf. (7.4)) as

dependent variable; this leads easily to the equation

ltt = (gh-qx)x. (7.13)

It is possible to derive the shallow water theory in such a way as to obtain in
place of (7.10) a relation in which the integral on the right hand side is replaced by a
power series in h which converges if the initial conditions (i.e. conditions for t = 0)
are assumed to be sufficiently smooth. That is, it would not be necessary in this ver-
sion of the theory to assume at the outset that <&xxy and <3?^ are bounded for all time.

We proceed to derive standing wave solutions of (7.12) for the case in which

h(x) = qx, q = const., (7.14)

i.e. for the case of a uniformly sloping bottom profile.23 For this purpose it is con-
venient to set

i(z, /) = e^"+^Z(x). (7.15)

The function Z(x) satisfies

m a2
(xZx)x-\ Z = 0, m = —> (7.16)

g S
in which the quantity m has the same definition in terms of <s as in the exact theory of
the preceding sections (cf. Sec. 3).

The differential equation (7.16) is a Bessel equation with the general solution

f /mx\ / /tnx\Z{x) = AJ,[2yJ + BYoi^y — J. (7.17)

Jo and Fo are the regular and the singular Bessel functions of order zero respectively;
thus Yo has a logarithmic singularity at x = 0. For large values of x these functions are
well known to behave as follows:

Jo
/ /mx\

mx
  cos( 2/

t)

. / /mxV'V-r
22 The derivation often given for this theory (cf. for example [4] p. 254) starts with the assumption

that the pressure p is determined by the same relation as in hydrostatics, i.e. p=g(y—y). One would be
inclined to think that such a relation would be on the whole more accurate the deeper the water since all
motions die out in the depth, but it is easily seen on the basis of the simplest examples that the approxi-
mate theory cannot be accurate in sufficiently deep water: The exact solutions for steady periodic waves
in water of constant depth yield waves in which the wave length depends essentially on the frequency,
but the steady waves given by (7.12) in the case h = const, are without dispersion. In other words, the
derivation of the approximate theory by means of the hydrostatic assumption is open to criticism since
it does not indicate clearly the essential role played by the depth in determining the accuracy of the ap-
proximation. Cisotti has given another derivation of the shallow water theory (cf. [10] pp. 357, 379) which
does not start with the hydrostatic assumption.

23 This theory is, of course, well known. See, for example [4], p. 291.
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(7.18)

/ /mx\

H2Vt )'
sin I 2

-t)

. / /mxV'V-
With this theory it is therefore not possible to obtain either standing waves or pro-
gressing waves with non-vanishing amplitudes at «, in sharp contrast to solutions
given by the exact theory. Also, for large values of x the wave length (defined as the
distance between successive nodes, say) as given by the approximate theory would
be roughly 2ir(gx/m)112 and would therefore increase indefinitely with x. This is also
in marked contrast with our exact solutions, in which the wave length at °o tends to
a constant.

Nevertheless, it is possible to reintroduce the time factor and obtain for i)(x, t)
solutions which have the form of progressing waves traveling toward shore, as follows:

l>(x, t) = A [cos (at — e)Y0(2\/mx/q) + sin (at — e)J0(2\/mx/q)\. (7 19)

One could expect that such a solution might furnish in some cases at least a fair ap-
proximation to the exact solution for a not too large range of values of x. In particu-
lar, we note that the singularity at the origin (i.e. on the shore line) is of the same type
as in the exact theory. In the next section a numerical comparison with the exact
theory will be made.

8. Comparison of exact and shallow water theories. In the present section we com-
pare the results obtained using the shallow water theory derived in the preceding
section with those of the exact theory. We consider progressing wave solutions first
for the case of water of uniform but finite depth and then for the case of a bottom
slope of 6°. In this section it is preferable to use the original independent variables
rather than the dimensionless variables of Sec. 3.

In the case of water of uniform depth h the velocity potential $(x, y; t) is given
by (cf. [4], pp. 363-368)

cosh m(y + h)
$(», y;t) = A sin (mx + at), (8.1)

cosh mh

in which h represents the constant depth of the water. The undisturbed surface of the
water is the line y = 0. This potential function evidently satisfies the condition
d$/dy = 0 at the bottom y = —h. The free surface condition (1.2) is also satisfied if

a2 = mg tanh mh, (8.2)

or as we may also write

/ w2^2 \
a*/gh = m2(l V (8.3)

If we introduce the phase velocity c = cr/m we may write

/ / m2h2 \
c= ]/ ghll.- — + ■■■ ) (8.4)
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or

-tM'-K?)'* I
if the wave length ~k = 2ir/tn is used. The relations (8.2) to (8.5) characterize the type
of dispersion encountered in this case.24 If the ratio of wave length X to depth h is
large, the relation (8.5) for the phase velocity c becomes

c = \/~gh. (8.6)

In fact, if \/h = 5, c = .82(g/?)1/2; while if X//f = 10, c = .94(g&)1/2.
In the same case of constant depth the shallow water theory gives the following

approximation <3?(;e, t) to the surface value 4?(x, 0; t):

$ = A sin (mx + at). (8.7)

Fig. 11. Progressing waves for a 6° bottom slope. (Exact theory.)
X = wavelength at °°
x = distance from shore/(X/27r)

This is a solution of (7.12) only if

o2/gh = ot2, (8.8)

i.e. if the phase velocity c=cr/m is given by

c = Vgh. (8.9)

24 This theory appears to be due to Airy [l], who published it in 1845.
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In other words, the approximate solution (8.7) furnished by the shallow water
theory yields the phase velocity with good accuracy only if the ratio of the wave
length to the depth is sufficiently great, as we see by comparing (8.9) with (8.5).
In fact, (8.9) yields c correct, within about 5 per cent, only if the wave length is more
than ten times the depth. For steady waves, therefore, the approximate theory is ac-
curate only if the water is shallow compared with the wave length. For this reason the
approximate theory is sometimes referred to as the long wave-shallow water theory.

We turn next to a comparison of the results of the two theories for progressing
waves over a beach sloping at 6°. The progressing wave solution of the exact theory
is given by (5.22), which behaves at °° like ir sin (mx+at). Graphs of the numerical
solutions for times crt = 0, 7t/4, and ir/2 are shown in Fig. 11. (Again we note that
the dimensionless variables of Section 3 are not used.) We observe that the "ampli-
tude" of the progressing wave increases as the wave moves from the point 2irx/\ = 6

I Z 3 + 5 6
Fig. 12. Progressive waves for a 6° bottom slope (shallow water theory).

X = wavelength at » in exact linear case
x = distance from shore/(X/2x)
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toward shore. However, the maximum at this point is 6 per cent less26 than the am-
plitude at oo.

In the preceding section it was already explained that the shallow water theory
could not, in principle, furnish a good approximation to the progressing waves in the
present case over the whole range of values of x since the amplitude tends to zero at »
in this theory. We have therefore chosen to make a comparison by assuming that the
circular frequency a is the same for both theories and that both solutions have the
same relative maximum for <r2=ir/4 and 2jnx/\ = (>. This yields for the approximate
solution <i>(x, t) the following (cf. (7.19)):

$(*, t) = - 14.5 [cos (at - .98)F0 (V?)

+ sin (at — ,98)/0 (V?)] (8.10)

5
+

3

2

/

0

-I

-2

-3
s.

/
~h.

//

%

\

Fig. 13. Comparison of surface values from both theories.
<b=Exact linear theory — — X = wavelength at « (exact theory)
<J> = Shallow water theory  — x = distance from shore/(\/27r)

Phase and amplitude are the same at (* = 6, at — ir/4)
Frequencies are equal

M The author is told that this effect has been observed experimentally.
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Fig. 12 is a graph of <J> for <rt — 0, ir/4, ir/2. The curves have the same general appear-
ance as those of Fig. 11, but the amplitude increases somewhat more rapidly in the
present case. This is brought out more directly by Fig. 13, which gives graphs of 4>
and $ for at = ir/4. The two theories agree fairly well as the shore is approached, al-
though the amplitude given by the approximate theory at 2m;/X~2 is about 15 per
cent greater than that furnished by the exact theory. We have at our disposal the
information necessary to describe how the continuation of the curves of Fig. 13 would
appear for values of 2m;/X greater than 7, since both curves are given with good ac-
curacy in this range by their respective asymptotic representations. Thus $ will be
very closely the same as ir sin (27rx/X+ir/4)-—that is, the exact solution would be
one having an almost constant amplitude equal to ir—while the amplitude of $ de-
creases like 1 /(27tx/X)_1/4 (cf. (7.19)). If, therefore, we were to compare the amplitudes
at 27tx/X = 24, the amplitude of $ would be about 40 per cent less than that of $>,
while at 2irx/X = 12 the error would be about 20 per cent. On the other hand, it should
be stated that at 2irx/\ = l the depth of the water for the 6° slope is somewhat less
than 1/8 of the wave length. Thus the shallow water theory might be expected to
yield fairly accurate results from this point in toward shore, but it could not be ex-
pected to do so for 2irx/\ — 12, much less for 2irx/X = 24, on the basis of our discussion
above for the case of water of uniform depth.

It is of some interest to compare the phase velocity c furnished by the two theories
for 2tvx/\<1 . This was done by calculating the position of the zeros and the maxima
and minima for a series of closely-spaced values of t \ the velocities were then obtained
by taking difference quotients. The results of such calculations for 2irx/\^7 are
shown in Fig. 14. The asymptotic value for c as furnished by the exact theory is indi-
cated. Up to a distance of about a wave length from shore the two theories yield the
same phase velocity, but from this point on the phase velocity predicted by the
shallow water theory is too high and becomes more and more inaccurate as the dis-
tance from shore (and therefore also the depth of the water) .increases. At a distance
of about 3 wave lengths from shore the phase velocity as given by the shallow water
theory is in error by 10 per cent.

We remark, finally, that the curves of Fig. 14 can not be distinguished (to the
scale used there) from the curves

  / g\ 2 tvh
c = Vgh, and c = \f ■—tanh  (8.11)

' 2ir X

in which h is the depth corresponding to any given x and X is the wave length at °o.
In other words, the phase velocities actually computed by using the two theories for
2ttx/X ^ 7 are practically identical in each of the two theories with those which would
be obtained by calculating c for each value of x through use of the corresponding
theory applied to water of the correct uniform depth.

9. A problem in three-dimensional wave motion. Except for the present section,
we consider in this paper only motions which are the same in all planes parallel to an
x — y-plane, and which therefore can be treated by using functions of a single complex
variable. (The exact linear theory is, of course, in question here.) For motions which
depend essentially upon three space variables it is not possible to make use of com-
plex functions, but it is possible to extend the basic idea of the method used in the
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two-dimensional cases to surface wave problems in three dimensions. In this section
we illustrate the method by treating the problem of progressing waves in an infinite
ocean bounded on one side by a vertical cliff—in other words, the same problem as
that of Sec. 4 except that we no longer require the waves to move with their crests
parallel to the shore line.

Fig. 14. Phase velocity for progressing waves over a 6° sloping beach

x = distance from shore/(X/2?r)
X = wavelength at « (exact theory)
c = phase velocity.

We seek solutions <i>(x, y,z;t) of V2(i,„,2)<I> = 0 in the region x^O, y ^0, — °o <z< °o
with the y-axis taken normal to the undisturbed free surface of the water and the
z-axis26 taken along the "shore," i.e. at the water line on the vertical cliff x = 0.
Progressing waves moving toward shore are to be found such that the wave crests
(or other curves of constant phase) at large distances from shore tend to a straight
line which makes an arbitrary angle with the shore line. For this purpose we seek solu-
tions of the form

$(x, y, z; t) — ei(-t+kz+^yip(x, y) (9.1)

211 It has already been pointed out that functions of a complex variable are not used in this section,
so that the reintroduction of the letter z to represent a space coordinate should cause no confusion with
the use of z as a complex variable in earlier sections.
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that is, solutions in which periodic factors in both z and t are split off. Of course, the
function <p(x, y) is not, as in our previous cases, a potential function; instead, it satis-
fies the differential equation

V(x,v)V — k <p = 0, (9.2)

as one readily sees. The free surface condition is taken in the form

dtp
 <p = 0 for y = 0. (9.3)
dy

which implies that the dimensionless space and time variables of Sec. 3 (including now
z as well as x and y) are assumed at the outset. The condition at the cliff, is, of course,

d<p
- = 0 for i = 0. (9.4)
dx

At the origin x = 0, y — 0 (i.e. at the shore line on the cliff) we require, as in former
cases, that ip should be of the form

<P — V log r Pt r « 1, (9.5)

for sufficiently small values of r = (x2-j-y2)1/2, with <p and certain bounded functions
with bounded first and second derivatives in a neighborhood of the origin. The func-
tions <p and ^ should be considered at present as certain given functions; later on,
they will be chosen specifically.

For large values of r we wish to have 3>(x, y, z, t) behave like evei(-t+kz+ax+P> with
£2-fa2 = 1 but k and a otherwise arbitrary constants, so that progressing waves tend-
ing to an arbitrary plane wave at =o can be obtained. This requires that <p(x, y)
should behave at «o like eyei(ax+^2) because of (9.1). However, it is no more necessary
here than it was in our former cases to require that <p should behave in this specific
way at °o ; it suffices in fact to require that

I f> \ + | Vx \ + | <Pxy \ < M for r > Ro, (9.6)

i.e. that tp and the two derivatives of (p occurring in (9.6) should be uniformly bounded
at oo. As we shall see, this requirement leads to solutions of the desired type.

We proceed to solve the boundary value problem formulated in equations (9.2)
to (9.6). The procedure we follow is analogous to that used in the former cases in every
respect. To begin with, we observe that

d /d \
— I 1)^ = 0 for both x = 0 and y = 0, (9.7)
dx\dy )

because of the special form of the linear operator on the left hand side together with
the fact that (9.3) and (9.4) are to be satisfied. A function ^(x, y) is introduced by the
relation

d /d \
♦ -sfc-'r (9'8)
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The essential point of our method is that the function xp is determined uniquely within
an arbitrary factor if our function <p, having the properties postulated, exists. Further-
more, xp can then be given explicitly without difficulty. The properties of ip are as
follows.

1) xp satisfies the same differential equation as <p, i.e. equation (9.2), as one sees
from the definition (9.8) of xp.

2) \p is regular in the quadrant x>0, y <0 and vanishes, in view of (9.7), on 5c = 0,
y<0 and y = 0, xX). Hence \p can be continued over the boundaries by the
reflection to yield a continuous and single valued function having continuous
second derivatives ipxx and xpyy (as one can readily see since V-xp — khp = Q, and
^ = 0on the boundaries) in the entire x, y-plane with the exception of the origin.
(Here we use the fact that our domain is a sector of angle ir/2.)

3) At the origin, ip has a possible singularity which is of the form \p(x, y)/r2, with
xp regular, as one can see from (9.5) and (9.8). This statement clearly holds for
the function \p when it has been extended by reflection to a full neighbor-
hood of the origin.

4) The condition (9.6) on tp clearly yields for ip the condition that xp is uniformly
bounded at «> after xp has been extended to the whole plane.

Thus \p is a solution of V2xp — k2xp = 0 in the entire plane which is uniformly bounded
at oo. At the origin xp — \p/r2 with \p a certain given regular function (i? = 0 not ex-
cluded). In addition, xp = 0 on the entire x and y axes. It is not difficult to prove that
the solution of this problem is unique.27

On the other hand, a solution xp of the problem for a special function28 ip charac-
terizing the singularity at the origin is readily given in polar coordinates (V, 9); it is

xp(x, y) = AiH2 \ikr) sin 2d, r = \/ x2 + y2, 0 ^ k ^ 1, (9.9)

in which is the Hankel function of order two which tends to zero as r—> «>, and A
is any real constant. The function xp has real values when r is real. (The notation given
in Jahnke-Emde, Tables of Functions, is used.) One can readily verify that this func-
tion really does satisfy all conditions imposed on xp. For our purposes it is of advantage
to write the solution xp in the following form:

27 One way to do so is the following: The difference, of two solutions would have all of the proper-
ties of \j/ except that it would be regular at the origin. If is the value of ^ at any point (x0, yo) in the
plane, then it is known (see, for example, Courant, Hilbert, Methoden d. Math. Phys., Bd. II, S.261) that
the mean value formula

Mv Jo(ikR) = M
holds. Here M is the mean value of St over any circle of radius R and center at (xo, yo). The function /0
is the regular Bessel function of order zero. If R is chosen large enough M remains less than a certain con-
stant since SP is uniformly bounded at co. On the other hand, Jo(ikR) behaves for large R like ekR(2wkR)~112
(see Jahnke-Emde, Tables of Functions, p. 138) and hence as R—♦«>, Sto would tend to zero. But since
'i'o is independent of R it follows that is zero at any arbitrary point (xo, yo). Thus ^sO, and the unique-
ness of the function is proved.

28 Our uniqueness theorem is less general in the present case than in the earlier cases since we pre-
scribe the singularity at the origin so specifically in the present case.
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a2
tp = Ai Ho \ikr), r = \/ x2 + y2, (9.10)

dxdy

in which A is any real constant and. is the Hankel function of order zero which is
bounded as r—>oo. It is readily verified that this solution differs from that given by
(9.9) only by a constant multiplier; one can do so, for example, by using the well-
known identities involving the derivatives of Bessel functions of different orders.

Once \p is determined we may write (9.8) in the form

5/3 \ ,32 (1,
— (——l)<p = Ai Ho (ikr), vl arbitrary. (9.11)
dx\dy / dxdy

This means that our function <p, if it exists, must satisfy (9.11) as well as (9.2). By
integration of (9.11) it turns out that we are able to determine <p explicitly without
great difficulty on account of the simple form of the left hand side of (9.11).29 This we
proceed to do.

Integration of both sides of (9.11) with respect to x leads to

/ d \ d (i)
(—- l),p = Ai—H0 (ikr)+g(y), (9.12)
\dy / dy

in which g(y) is an arbitrary function. But g(y) must satisfy (9.2), since all other
terms in (9.12) satisfy it. Hence (Pg/dy1 — k2g = 0. In addition g(0)=0, since the
other terms in (9.12) vanish for y = 0 because of (9.3) and the fact that d/dyHjf*
= ik(y/r)dH§)/dr. Finally, g(y) is bounded as y—» — » because of condition (9.6) and
the fact that dH^/dy tends to zero as r—>». The function g(y) is therefore readily
seen to be identically zero. By integration of (9.12) we obtain (after setting g(y) =0):

Cv d r m , 
(p = Aiey I e~'— [Ho (ik\/x2 + t2)]dt + B(x)ev. (9.13)

J +oo dt

The function B(x) and the real constant A are arbitrary. The integral converges,
since d/dt(H^) dies out exponentially as t—.

We shall see that two solutions <pi(x, y) and <p2(x, y) satisfying all conditions of
our problem can be obtained from (9.13) by taking A =0 in one case and A =^0 in the
other case, and that these solutions will be 90° "out of phase" at oo. (This is exactly
analogous to the behavior of the solutions in our previous cases.)

Consider first the case 4=0. The function <p given by (9.13) satisfies (9.2) only if

d2B(x)
—— + (1 - k*)B(x) = 0. (9.14)

dxz

29 It can now be seen how the differential equation corresponding to (9.11) could be obtained for the
case of waves coming in toward shore over a uniformly sloping beach at inclination ir/2« to the horizontal:
The left hand side would be a differential operator on 4> of order 2n, which could be obtained from (5.9)
by going over to real operators. The right hand side would be essentially the Hankel function H%" {ikr)
of order 2n multiplied by sin 2nd. In fact, the entire discussion of sec. 5) for the angles ?t/2m could be gen-
eralized to yield three-dimensional progressing wave solutions by proceeding in the manner of the present
section.
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It is important to recall that k2<\. The boundary condition <px — Q for x = 0 requires
that Bx(0) =0. The condition <py — <p = 0 for y = 0 is automatically satisfied because of
(9.12) and g(y) = 0. Hence B(x) =Ai cos\/l — k2x, with A\ arbitrary, and the solution
<Pi(x, y) is

<pi(x, y) = A iey cos \/l — k2 x. (9.15)

This leads to solutions $i in the form of standing waves,30 as follows:

   (cos kz-)
$i(x, y, z, t) = A\euey cos \/\— k2 xA > (9.15')

(sin kz)

for k2<\. If k = \, the solution given by (9.15') is valid, although it could not be
obtained by our process since B(x) would be identically zero then.

As we have already stated, we obtain solutions <pi{x, y) from (9.13) for A ^0 which
behave for large x like sin y/\ — k2x rather than like cos y/\— k2x, and with these two
types of solutions progressing waves approaching an arbitrary plane wave at so can
be constructed by superposition.

We begin by showing that (9.2) is satisfied for all 3e>0, y <0 by <p as given in
(9.13) with A 9^0, provided only that B(x) satisfies (9.14). Since rc >0, it is permissible
to differentiate under the integral sign in (9.13), even though t takes on the value zero
(since the upper limit y is negative). By differentiating we obtain

VV - k2<p = Aiiey fe~' — f— + (1 - k^Ho^dt
I J x dt \_dx2 J

oHo a Ho ^
+ -—- + ^—> +B"(x) + (1 - k2)B. (9.16)

ay dy2 j

Since H,q1' is a solution of (9.2) the operator (d2/dx2 — k2) occurring under the integral
sign can be replaced by —d2/dy2 and hence the integral can be written in the form

ry r d° 61 (i)I e ' 1 \Ho (ikr)dt.J „ L a/3 dt J
We introduce the following notation

dm (i)
e~' Ho (ikr)dt,

and obtain through two integrations by parts the relation

m— 1 m—2 m—2 (1)
ra a i w r» a h0

Im{x, y) — - - +     Fo + ey I e ——
Lay"1-1 dym~2 J J +M dt m—2

in which we have made use of the fact that the boundary terms are zero at the lower
limit + co, since all derivatives of H^iikr) tend to zero as r—»+ ». The integral of
interest to us is given obviously by I\ —13 and this in turn is given by

30 The standing wave solutions of this type (but not of the type with a singularity) for beaches sloping
at angles ir/2n were obtained by Hanson [3] by a quite different method.
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d Ho dHo fy dHo
— 13 *4" I x = —    —   — €y I 6 1  dt

dy2 dy JK dt
„ 2 (1) „„U)

/'v dHo d Ho dHoe-t dt = — —   —
qq dt dy2 dy

by use of the above relations for Im. Hence the quantity in brackets in (9.16) is
identically zero—in other words the term containing the integral on the right hand
side of (9.13) is a solution of (9.2). Hence <p is a solution of (9.2) in the case A 7*0 if
B(x) satisfies (9.14). Since (-9.12) holds and g(y) =0 it follows that the free surface con-
dition (9.3) is satisfied by <p in view of the fact that dH^ (ikr)/dy = 0 for y — 0.

We have still to show that a solution B(x) of (9.14) can be chosen so that <px = 0
for x = 0, and that <p has the desired behavior for large values of r. Actually, these
two things go hand in hand, just as in former cases. An integration by parts in (9.13)
yields the following for (p:

<p = Aie" f e^'H^iikx/x2 + t2)dt + A illo\iWx* + y2) + B(x)e , (9.17)
oo

provided that x>0. It should be recalled that the upper limit y of the integral is
negative; thus the integrand has a singularity for x = 0 since t = 0 is included in the
interval of integration and Ho\ikr) is singular for r = 0. We shall show that
\imx^id\p/dx = 0 provided that -B*(0) = —2^4 p*0. We have, for x>0 and y <0:

dip Cy d (i) ,  d
— = Aie" ' — 1 *• '
dx

' f e~'— [HoV(ik\/x2 + t*)]dt + Ai— [H^\ikVtf~+ y2)] + Bx(x)ey.
J^ dx dx

The second term on the right hand side is readily seen to approach zero as x—>0 since
this term can be written as the product of x and a factor which is bounded for y <0.
For the same reason it is clear that the only contribution furnished by the integral
in the limit as >0 arises from a neighborhood of Z = 0 since the factor x may be
taken outside of the integral sign. We therefore consider the limit

Ikn /* e"'— [iHo^iiks/x* +
x->0 J e dX

t2)dt, t > 0.

The function iHg\ikr) has the following development valid near r = 0:

2
iH^iikr)   [Jo(ikr) log r + p(r) J

7r

in which p(r) represents a convergent power series containing only even powers of r
(including a zero power), and Jo is the regular Bessel function with the following de-
velopment

(kr)2
Jo(ikr) = 1 H ——{-••••

2L

It follows that
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9 r (1) 2 f X x
— [iH0 (ikr)] = — Jo(ikr) + Jo (ikr) —log r + xg(r)
dx x Lr2 r J

2 f x "1
= — — I ■— Jo(ikr) + %kx log r + xg(r) J

in which g(r) = (1 /r)dp/dr is bounded as x—>0 since y <0. The contribution of our in-
tegral in the limit is therefore easily seen to be given by

2 r -• x 2 [•-' x
lim I e~~' dt = lim — — I  dt.
x—»0 IT J t x2 + t2 X—*0 X J t X2 + t2

By introducing u=t/x as new integration variable and passing to the limit we may
write

2 r~t x 2 r du
lim — — I   — dt = — ■— I ——— - 2.
x—*0 X J I X2 + t2 X J 00 1 + U2

It therefore follows that \imI.,od<p/dx = 0 provided that

Bx(0) =- 2A. (9.18)
The function B{x) which satisfies this condition and the differential equation (9.14) is

2A , 
B(x) =  sin \/l — k2 x. (9.19)

VI - k2
Since H^iikr) dies out exponentially as r—»°o it follows that the solution y given by
(9.17) with B(x) defined by (9.19) behaves at like ev sin [(1 — k2)1,2x].

A solution <p2 of our problem which is out of phase with <pi (cf. (9.15)) is therefore
given by

y) — J" e 'Ho^iiky/x2 + t2)dt

(i)   2ev   "1
+ iHo (iky/x2 + y2) — ^ sin \/l — k2 xJ, (9.20)

with Ai an arbitrary real constant. A standing wave solution is then given by

(cos kz)
$2 = A2eitip2(x, y) ■ < . > . (9.20')

(.sin kz)

By taking appropriate values of k progressing waves tending at oo to any arbitrary
plane wave solution for water of infinite depth can be obtained by forming proper
linear combinations of solutions of the type (9.15') and (9.20'). For a progressing wave
traveling toward shore, for example, we might write

f y/\ - k2 1
$(£, y, z; t) — A \ <pi(z, y) cos kz H vz{x, y) sin kz cos t

2  (9.21)
r Vi - k2 1

— A I vi(x, y) sin kz   <p2(», y) cos kz\ sin t
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in which A\ and A2 in (9.15) and (9.20) are both taken equal to A. The solution (9.21)
behaves at «> Hke Aev cos (\/1 — k2x-\-kz+t) as one can readily verify by making use
of the asymptotic behavior of <pi(x, y) and y).31

<k(xo)

-/

~Z

-J

^3

0 / z 3 4- *
Fig. 15. Standing wave solution for a vertical cliff (with crests at an angle of 30° to shore).

The special case k = \ has a certain interest. It corresponds to waves which at °°
have their crests at right angles to shore. One readily sees from (9.15) and (9.20) that
as >1 the progressing wave solution (9.21) tends to

$(y, 3; t) = Ae" cos (z + t) (9.22)

that is, the progressing wave solution for this case is independent of x, is free of a
singularity at the origin, and the curves of constant phase are straight lines at right
angles to the shore line.

The progressing wave solution (9.21) has been discussed numerically for k = \/2,
i.e. for the case in which the wave crests tend at =0 to a straight line inclined at 30°
to the shore line. The function (pi(x, 0) is plotted in Fig. 15. With the aid of these val-

31 We remark once more that the original space and time variables can be reintroduced simply by
replacing x, y, z by t»i, my, mz and t by art (cf. Sec. 3).
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ues the contours for 4>(x, 0, z; 0), i.e. for the surface of the water at time t = 0, were
calculated and are given in Fig. 16. The water surface is shown between a pair of
successive "nodes" of <!>, that is, curves for which $ = 0. These curves go into the z-axis
(the shore line) under zero angle, as do all other contour lines. This is seen at once
from their equation (cf. (9.21) with< = 0).

VI ~ k2
<pi(x, 0) cos kz -\ ^ 0) sin kz — y = const. (9.23)

Since <p2—* <=° as x—>0 while <pi remains bounded, it is clear that sin kz must approach

£

0 / Z 3 4-
Fig. 16. Level lines for a wave approaching a vertical cliff at an angle.

zero as x—>0 on any such curve. That the contours are all tangent to the z-axis at the
points z = 2irn, n an integer, is also readily seen. It is interesting to observe that the
height of the wave crest is lower at some points near to the cliff than it is at oo (where
the value is minus one), so that a saddle point occurs. We observe also that a contour
for r]= — 1 occurs at the right hand edge of Fig. 16. It is believed that the numerical
calculations are sufficiently accurate to guarantee the existence of such a contour for
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7j = — 1; if so, then this contour is likely to be a closed curve, since 77—>1 at 00. It may
be that the wave crest is a ridge with a number of saddle points.32

Appendix I. Solution of the complex differential equation in the
GENERAL CASE

In this appendix we give some of the details of the methods used to obtain explicit
solutions of the differential equation (5.11) for the analytic function/(z) which satis-
fies the boundary conditions (5.1) and (5.2). The differential equation (5.11) is

f[ - 1 )-f= A A real. (1.1)
*= 1 zn

The symbol XJ means, as usual, a continued product, and D=d/dz. The boundary
conditions are

9lt(iD — 1)/ =0 for z real, and (1-2)
SKe(je_iT/2n£>)/ =0 on z = re~i*l2n, (1-3)

in conformity with (5.1) and (5.2) for a beach sloping at the angle ir/2w.
In order to obtain all phases at 00 it is sufficient to obtain solutions/i(z) and/2(z)

for A =0 and for A 5^0, respectively.
We begin with the simpler case A=0. In this case the general solution of (1.1) is

obviously
n

/l(z) = X) ckezfik, with (1.4)
k= 1

with'
/J*, = eir<-kln+im, k = 1, 2, • • • , n. (1.5)

The ca- are arbitrary constants. (The quantities 0 k are the same as those used in Sec-
ton, 5, cf. (5.13).)

We wish to determine the Ck so that the boundary conditions (1.2) and (1.3) are
satisfied. That this really can be done for all points on these lines is far from obvious
a priori. To satisfy the condition (1.2) we first write

n n

H(z) = (iD - l)/i = Z - I)**1* = - E («iT<:/n +
i-l k-1

and observe that in this relation the coefficient cn may be chosen arbitrarily since
eiT+l =0. We note also that 18* = $„_*, in which the bar over a number denotes the
complex conjugate of the number so that ez^k = e'^n~k if z is real. In order to ensure
that 3fe//(z) vanishes for all real z, it is therefore necessary to choose the constants c*
in such a way that

//(z) = — H(z), for z real.

82 It should be pointed out that we are no more able to decide in the present case than we were in the
two-dimensional cases whether the waves are reflected back to infinity from the shore, and if so to what
extent. Our numerical solution was obtained on the assumption that no reflection takes place, which is
probably not well justified for the case of a vertical cliff, but would be for a beach of small slope.
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To satisfy the above condition, we equate the pair of terms

(girkln _|_ 1 )CkezHk- _ [ei*<»-*)/» -|_ l]C„_,( jfe = 1, 2, ■ • • , » — 1)

Since eif<k and are conjugate for z real, we need only require

[gixkln _
(girkln + ^ = _ [gi,( — »)/. + ^ or Cjfc = —— - Cn-k.

[g.T*/» J]

Therefore, if the Ck are chosen so that

Ck = i tan (irk/2n)cn-k, (k = 1, 2, • • • , n — 1) (1.6)

the boundary condition (1.2) will be satisfied.
The condition at the bottom requires a similar analysis of the expression

n

K{z) = eiT("_1)/2"Z)/i = ^ for z = re-'"''2"
k=l

or, upon insertion of the special values of z:
n

K(re~irl2n) = - £ eiT{2k-V)nnCkerei*Wb-\+n)lin =
1

The real part of Z,(r) should vanish for all r>0. We observe that ereir(-2k~1+n),2n is
conjugate to eTeiTl2(-n+1~k'>'~1+n^l2n. Hence our requirement that L(r) be real leads to

giT(2k— 1)/2n^.^ _   gi7r(2(7H-l—fc)—1+n)/2«£ ^

or, as one readily sees

Ck = Cn+i-k, for k = 1, 2, • • • , n. (1.7)

Thus, in order to satisfy the boundary conditions at the free surface as well as
at the bottom we must impose on the ck the conditions

ck = icn-k tan (irk/2n), k = 1, 2, • • • , n — 1
(1-8)

Ck Cn—k+ly R — If 2f f ft.

We proceed to show that these relations can be satisfied by a set of values c* which
are uniquely determined within a real multiplying factor.

From (1.8) we easily obtain the following recurrence relation by taking conjugates
and eliminating £k

irk
Cn—k 1Cn-~k+l COt J k 11 2 j ' ' ' t ft 1,

2 n

which may also be expressed in the form

x 2ir kir
cn~k = (i)kcn cot— cot— ■ • • cot —> for k = 1, 2, •••,«— 1. (1.9)

2n 2n 2n

For k =n we have the additional relation
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Ci = Cn. (1.10)

If we set k = n — 1 in (1.9) the cotangents cancel each other and the relation Ci= (i)n~1cn
results; this relation is easily seen to be compatible with (1.10) only if cn is given as
follows:

cn = re""'"-1)'4 (1.11)

in which r is any real number. In order to fix the ck in such a way as to satisfy the
boundary conditions it is therefore only necessary to choose c„ in accordance with
(1.11) and calculate the remaining quantities by using (1.9). The following somewhat
more convenient form might also be used to calculate the ck:

7r ir(k — 1)
Ck = reiTl(-n+1)li~kl^ cot — • • • cot —> k = 2, 3, • • • , n,

2 n 2 n (1.12)
C1 = Cn

the first relation resulting through combining the first of (1.8) with (1.9) and noting
afterwards that the relation holds for k = n since the product of the cotangents has
the value one in this case and ck for k — n thus has the value given by (1.11).

We turn next to the case A ^0 and, in fact, set A = 1 for the purpose of the present
investigation. It is clear that the results for any other value of A are obtained simply
by multiplication by A. A solution/2(z) of the non-homogeneous equations can be
obtained without difficulty, though the calculations are somewhat laborious. Instead
of proceeding constructively we prefer to give the solution and then verify that it
satisfies all conditions, particularly the boundary conditions. The solution /2(z) is*

« / f Zfik £—t \
/*(*) — akle'fc I  dt — itiez0k> . (1-13)

k=i I J +oo t ;

In this solution the fiu are given by (1.5) and the a* turn out to be multiples of the Ch-

ak = ck/{n — l)!\/w. (1-14)

These values of the ak are of course required in order that/2(z) should satisfy the in-
homogeneous equation. The path of integration for the complex integrals in (1.13)
has already been given by Fig. 2 of Sec. 4. The path of integration comes from + °o
along the real axis, then goes along a circular arc with center at the origin (leaving
the origin to the left), and finally along a ray from the origin to the point zft. Since z
lies in the sector for which — ir/2ra^arg z^0 and the /3j, are given by (1.5) itfollows
that z/3fc always lies in the left half-plane. We consider first the condition (1.2). We
write

{iD - 1)/, = £ (i/3* - l)fli{i4»} + —= M(z) + — £ ak
fc= 1 Z k=l z )fc_l

in which [Ak \ has an obvious significance. Since y^"i ak is real, (as one sees fro m (1.7)
and (1.14)) the last term is pure imaginary when z is real. We must verify that the ak
are so chosen that the real part of the remaining terms, M(z), vanishes for z real.

* Compare with (5.15) of Sec. 5.
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As with the similar problem with the ck above, we must verify that M(z) = —M(z)
for z real. In this case it is the terms

and l)&n_fc | A n~k}

y

Fig. 17

for which the real parts cancel on addition. By evaluating the residue of ^e~ldt/t
at the origin we find readily that

/ z0* e-t \ / ~ z/Sit e-t \
ak{Ak} = aky'"'cJ ~J~dt ~ *""7 = ak{"''cJ Tdt T*e j

in which the integral on the right hand side of this equation is taken along the path
C shown in Fig. 17, while the integral on the left is taken over the path C shown in
Fig. 2. The origin is kept to the right on C instead of to the left. We observe that
the exponential terms and e^n~k are complex conjugates for z real, so that —ie~z^
and are complex conjugates, since the same is true for /3* and /?„_&. In addi-
tion, the integrals in [Ak] and [An-k\ are complex conjugates, as one sees from the
above relation: if we replace k by n — k in the integral along C it is clear that it be-
comes the conjugate of the integral along the path conjugate to C, since the in-
tegrands are the same but the paths are complex conjugates of each other. Conse-
quently we have only to verify that

i
(ij8* — 1 )ak =

- — 1 )an_fc

But this is the same as the corresponding relation for the ck given above, and hence
is satisfied by the ak since the ak are the same as the ck except for a real multiplying
factor.

To check the condition (1.3) at the bottom we consider the expression



50 J. J. STOKER [Vol. V, No. 1

n n

e«<»-i>/2»Z?/a(z) = + z-1eirl2e~irl2n^l ak
k= 1 1

n

= iV(z) + z~1ei*l2e~i*lin ^ ak
i

evaluated for z = reiir/2n. The last term is pure imaginary for z = re~**l2n since yi?gi-
is real. It can be shown that SReiV(z) =0 for z = re~~ir,2n by proceeding in the same way
as above, except that the terms should be paired in a slightly different manner. In
fact, the terms

eiT l2e-i*i*npkak{Ak} and e"lh-"^n+^kan+^k {An+1^k J

are negative conjugates in this case, as one can readily verify.

APPENDIX II; ASYMPTOTIC BEHAVIOR OF f5?(er'/t)dt

In this appendix we prove a number of assertions made in Sec. 5 with regard to
the behavior of the integrals

/* zfik p tf  dt,. J+» t (II.1)

pk = e<T(fc/n+i/j)f k = 1, 2, • • • , n (II.2)

when z—> <*> in the sector S defined by

S: 0 ^ arg z ^  
2 n !

The path of integration is given by Fig. 2 of Sec. 4.
From (II.2) and the definitions of the sector S it follows that

tt/2 g arg z/3fc ̂ 3x/2. (II.3)

It might also be noted that arg zj3j, = 3ir/2 only for k~n, i.e. for (3k= —i, and z real.
We shall show that the integral (II.1) behaves for z in S and | z\ large as follows:

/» 20

J +00

2/3* t

 dt ̂
t

e-zSk ( \ \ x
j, — < arg zpk ^ 71-,

(II.4)e-*"* / 1 \ 3it
2iri ( (- • • • J, tt < arg z/S* g—>

18k \z ) 2

in which the dots refer to terms of higher order in 1/z.
We consider first the case in which 7r/2^arg zfik^ir and begin by integrating

twice by parts to obtain
f Zftt p— I p—zPk p—zfik c zftfc p— I

f = + i— + 2f '—dt. (II.S)
t zpk (zpky J oc t3

We shall show that
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> zftt p—t erzPk
■dt

r p—'f —<J- t3

for 2 in the sector S, with c a
positive number independent of
z. Clearly, this would suffice to
show that our integral behaves
at oo like —e^k/zfik-

We consider the integral
$(~'/t3)dt along the closed path
indicated in Fig. 17. Since the
integral over the closed path
vanishes, it is clear that the be-
havior of our integral as z—»»
can be reduced to the investiga-
tion of the behavior of J{e~'/t3)dt
over the circular arc PQR as
r—■* oo. The point P corresponds
to z/3k of course. Upon setting Z-X*i Y
t — r(cos 6-\-i sin 9) the integral
becomes

"'fJ 3

For |l| we have, obviously

Fig. 18

dd
r'eL

s6dd

(II. 6)

and we may write
g— rcosS /» 5 g— rcosS

| I | ^ 2  I dd = 25 > with 8 = arg zfilk,
r2 J o r2

since e~rcoaee~rcosS for O^0^5^7t. We observe that

| e~zl,h/(zpky | = r~2e~r cos 5, r = | z(3* |,

and this establishes (II.4) for tt/2 garg zPk^ir.
To establish (II.4) for arg z/34>ir, we write

f'fik g-t n. zfik e-t
 dt = 2iri + I  dt,

+x t c J +00 t

by evaluating the residue at the origin. The integral over C (see Fig. 17) can be
treated in the same fashion as above. The only difference is that J{e~t/ti)dt is taken
over a circular arc such that with — ir<Sg — 7r/2. The integral I' for this
case corresponding to I in (II.6) is the same as that for I except that 5 is replaced
by — 8. The inequalities for 1I'\ are thus exactly the same as for 11| since cos 6 is an
even function and 5 lies in the range ir < d^ir/2. Thus (II.4) is established in general.
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appendix hi: table of E(z)=ezf" (e~u/u)du
for z = reiffk; f3k = eir<k,lli+lll>; k = 1, ■ • ■ ,7

The following table of the function E(z) =ezfe~"du/u is an extension of the short
table of this function which has been prepared by the Mathematical Tables Project
[8]. The path of integration is that of Fig. 2, but taken in the opposite direction.

The calculations were begun with fourteen six-decimal place values of the function
E{z) obtained from the above mentioned source, M.T.P. [8]. [We then computed*
the rest of the numbers by means of power series expansions along each of the seven
rays in the second quadrant defined by re^k\ k = \, ■ ■ ■ , 7; 1 g7.] The values are
believed to be correct to within one unit in the last figure.

Real part of E{z)

1.00
.25
.50
.75

2.00
.25
.50
.75

3.00
.25
.50
.75

4.00
.25
.50
.75

5.00
.25
.50
.75

6.00
.25
.50
.75

7.00

+ .2650 +.1731 +.0657 -.0597 -.2063 -.3784 -.5817
.1901 .1013 -.0023 -.1232 -.2644 -.4304 -.6271
.1398 .0551 -.0434 -.1580 -.2912 -.4473 -.6315
.1046 .0242 -.0688 -.1763 -.3006 -.4449 -.6139

+ .0790 +.0031 -.0844 -.1849 -.2999 -.4322 -.5849
.0601 -.0117 -.0939 -.1875 -.2936 -.4140 -.5507
.0457 -.0222 -.0993 -.1864 -.2841 -.3933 -.5149
.0345 -.0296 -.1020 -.1831 -.2730 -.3719 -.4795

+ .0258 -.0348 -.1029 -.1784 — .2612- -.3507 -.4457
.0190 -.0385 -.1026 -.1731 -.2494 -.3304 -.4141
.0135 -.0411 -.1015 -.1673 -.2377 -.3112 -.3849
.0090 -.0428 -.0998 -.1615 -.2266 -.2932 -.3582

+ .0054 -.0439 -.0978 -.1556 -.2159 -.2766 -.3339
.0025 -.0445 -.0956 -.1499 ^.2059 -.2612 -.3119
.0001 -.0448 -.0933 -.1444 -.1965 -.2470 -.2920

-.0019 -.0448 -.0909 -.1391 -.1877 -.2340 -.2739

-.0036 -.0446 -.0885 -.1340 -.1794 -.2221 -.2576
-.0050 -.0443 -.0861 -.1292 -.1718 -.2111 -.2428
-.0061 -.0438 -.0838 -.1246 -.1646 -.2010 -.2295
-.0071 -.0433 -.0815 -.1203 -.1579 -.1916 -.2173

-.0079 -.0427 -.0793 -.1162 -.1517 -.1830 -.2062
-.0085 -.0421 -.0771 -.1123 -.1459 -.1751 -.1962
-.0091 -.0414 -.0750 -.1087 -.1404 -.1678 -.1870
-.0095 -.0407 -.0731 -.1052 -.1353 -.1610 .-.1785

-.0099 -.0400 -.0711 -.1019 -.1306 -.1546 -.1708

* See Sec. 6 for a description of the procedure employed.
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Imaginary part of E(z)

1.00
.25
.50
.75

2.00
.25
.50
.75

3.00
.25
.50
.75

4.00
.25
.50
.75

5.00
.25
.50
.75

6.00
.25
.50
.75

7.00

-.6999 -.7765 -.8510 -.9230 -.9925 -1.0593 -1.1239
-.6109 -.6723 -.7294 -.7811 -.8263 -.8633 -.8906
-.5411 -.5908 -.6345 -.6705 -.6969 -.7110 -.7092
-.4849 -.5253 -.5586 -.5826 -.5946 -.5913 -.5675

-.4386 -.4718 -.4968 -.5115 -.5127 -.4963 -.4565
-.3999 -.4272 -.4458 -.4532 -.4463 -.4204 -.3691
-.3672 -.3897 -.4031 -.4050 -.3919 -.3592 -.3002
-.3391 -.3577 -.3670 -.3645 -.3469 -.3094 -.2456

-.3148 -.3301 -.3361 -.3303 -.3094 -.2688 -.2022
-.2935 -.3062 - .31)95 -.3011 -.2778 -.2353 -.1676
-.2748 -.2853 -.2864 -.2761 -.2511 -.2075 -.1399
-.2582 -.2668 -.2662 -.2543 -.2283 -.1843 . - .1177

-.2435 -.2504 -.2484 -.2354 -.2087 -.1649 -.0998
-.2302 -.2358 -.2327 -.2188 -.1917 -.1485 -.0853
-.2183 -.2227 -.2187 -.2042 -.1770 -.1345 -.0735
-.2074 -.2109 -.2061 -.1912 -.1641 -.1225 -.0639

-.1976 -.2003 -.1948 -.1796 -.1528 -.1123 -.0559
-.1886 -.1906 -.1846 -.1693 -.1427 -.1034 -.0494
-.1803 -.1817 -.1753 -.1599 -.1338 -.0956 -.0440
-.1728 -.1736 -.1669 -.1515 -.1259 -.0889 .0395

-.1658 -.1661 -.1592 -.1439 -.1188 -.0829 -.0357
-.1593 -.1593 -.1521 -.1369 -.1124 -.0777 -.0325
-.1534 -.1529 -.1457 -.1306 -.1066 -.0730 -.0297
-.1478 -.1471 -.1397 -.1247 -.1013 -.0688 -.0274

-.1426 -.1416 -.1341 -.1194 -.0965 -.0651 -.0254

Table of «*'*
Real Imaginary

1 -.20791 +.97815
2 -.40674 +.91355
3 -.58779 +.80902
4 -.74315 +.66913
5 -.86603 +.50000
6 -.95106 +.30902
7 -.99452 +.10453
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