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TORSION OF A CIRCULAR TUBE WITH
LONGITUDINAL CIRCULAR HOLES*

BY

CHIH-BING LING
California Institute of Technology

Introduction. This paper presents a solution of St. Venant's torsion problem of a
circular tube having a ring of uniformly distributed longitudinal circular holes of equal
radii. The investigation of the stress distribution in such a tube is not only of theo-
retical interest but also of practical importance. The solution is found by constructing
three series of harmonic functions which are invariant with respect to rotation about
the axis of tube! The parametric coefficients attached to these functions are deter-
mined so as to satisfy the required boundary conditions. The case in which the central
hole does not exist is also investigated. Finally, the solution is illustrated by working
out several numerical examples.

Y It may be mentioned that the tor-
sion problem corresponding to the case
without a central hole was solved by
M. Kondo a few years ago by using the
so-called stress distribution method.1
The same method has been used by
Th. v. Karman with success to find the
potential flow around an airship, but
its application to the torsion problem
by Kondo seems to result in great com-
plication. In Kondo's paper, no formula
for the torsional stiffness is given.

Method of solution. Consider a cir-
cular tube defined by the exterior and
the interior radii a and c respectively.
Let there be a ring of longitudinal cir-
cular holes parallel to axis of the tube,

Fig. 1. Cross section of tube. each of radius b\ with their centers uni-
formly distributed over the circumfer-

ence of a concentric circle of radius b at points represented in the Argand plane by

z = be2m*i,k, (1)

where b is the distance from the center of the tube to the center of any eccentric hole,
k is the number of eccentric holes and m = 0, 1,2, • • • (& —1); the origin being at the
center of the tube. Fig. 1 shows the cross section of the tube.

Define the following two systems of polar coordinates

z = x + iy = are'*, if = z — b = bpeiS, (2)

where ar, ip are polar coordinates referred to the center of the tube as origin and bp, 6

* Received Sept. 18, 1946.
1 Masaiti Kondo, The stresses in a twisted circular cylinder having circular holes. Phil. Mag. (7) 22,

1089-1108 (1936).
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are polar coordinates referred to the center of one of the eccentric holes as origin,
r, p being dimensionless. Also, for brevity, denote the ratios of the radii by

b c
P = — > q = —> (q < P < 1) (3)a a

where a is the radius of the exterior boundary of the tube and c is the radius of the
central hole.

It is observed that the solution of St. Venant's torsion problem of the tube in
question requires a harmonic function ip, with its conjugate function single-valued,
which satisfies the following three boundary conditions:
(1) on the exterior boundary of the tube where |z| =a

V = i - (z2 + y2)/2 *= 0; (4)

(2) on the boundary of the central hole where |z| —c

^ = const. = a2^ i; (5)

(3) on the boundaries of the ring of eccentric holes p—\

\J> = const. = o2^2, (6)

where b\ is the radius of the eccentric hole under consideration, X being a dimension-
less quantity. Besides, by symmetry, the function \p must be invariant with respect
to rotation about the origin through angles Irmr/k and must be even with respect to
the lines of symmetry.

Hence we write

^ + ^2 + ^3 (7)

and construct

ipi = A,jnk cos nk<j>,
71=0

00 T>E-D in
■ cos nk<f>, (8)
~nk

71=1 '

00

iz = a^C.U,,
ia 1

where the quantities A, B and C are dimensionless parametric coefficients to be ad-
justed so as to satisfy the required boundary conditions. The class of harmonic func-
tions Us, first obtained by R. C. J. Howland2 is defined by

Wo = Uo — iVo - — log (zk — bk),

b' d'W* (9)
Ws = U8- iV,   

(5-1)! db'

A brief account of these functions will be found in Appendix A. Note that in the last

2 R. C. J. Howland, Potential functions with periodicity in one coordinate, Proc. Camb. Phil. Soc. 30,
315-326 (1934).
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Eq. (8) the function Uo is rejected on the ground that it gives rise to a multi-valued
conjugate function.

Now, to apply the first and the second boundary conditions, we first express ^
in terms of the polar coordinates (r, <j>) referring to the center of the tube as origin.
The expansion of Wo into a power series is different according as |z| is greater or
smaller than b. When Izl >b,

A 1 /b\
Wo = - k\ogz + £ — (— >

n-1 n \ z

and when Izl <b,

n k

I i

i -(!)"71=1 tt \ b /
Wo = xf- £logfc + 2. — ( —) . (10)

Differentiation gives

™ /nk — 1 \( b \"k

" (nk -f s — 1\ / z \
H'. - C- s_( )(T)

(11)
)

respectively. It is noted that the binomial coefficient (") vanishes when s>n. Taking
the real part and observing that p = b/a, we have

Z^/nk - 1 \( p\nk
U. = k2_,y ^ —J cos nk<t>,

ZU (nk + s — 1\ ( r \nk
Us = (— l)s£Xj^ j jy—J cos nk</>.

(12)

Hence the last Eq. (8) becomes

where

°° Pn
^3 —   cos nk<j>, when z > b

rnk71=1 '

^3 = Qnrnlc cos nk<f>, when | z | < b
n=0

(nk — 1\
p.-*#"*£( )c8,

S=1 \ i   1 /

k " (nk + s — 1\
Cn = — E(-D'( , )C-

Pnk 8=1 \ 5 — 1 /

(13)

(14)

Applying the boundary condition (4) at | z[ =a or r = 1 and using the first series
for we find

1
0 = Ao   h (An "I" Pn + Pn) COS nk<j>.

2 n«=l
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This relation is satisfied, provided that the coefficient of each term vanishes identi-
cally, i.e., that

^o-| = 0, An + Bn + Pn = 0. (15)

Applying the boundary condition (5) at \z\ = c or r = q and using the second series
for \p3, we obtain

oo

= A0 + Qo - q2/2 + XI + Bn/q"h + Qnqnk) cos nk<j>.
n=l

Equating the constants from both sides and setting each coefficient equal to zero, we
find

A0 + Qo - q2/2 = ¥i, Anq"* + Bn/q»k+ Qnq"* = 0. (16)

To apply the third boundary condition, we first transform ^ in terms of the polar
coordinates (p, 0) referring to the center at (x, y) = (b, 0) as origin. Thus,

x2 + y2 = 62(1 + p2 + 2p cos 0)

and

(17)

** / flfa\
rnk cos nk<j> = R(z/a)nk — pnkR( 1 + peie)"k = pnk^[ )pm cos md,

m_0 \ m)

cos nk<t> / a \nk 1
 ^ = ^(_) = R(1 + peie)-"k

rnk \j/ pnk

1 " /nk + m — 1\
= y, (— l)m( \pmcosmd.

p"k m=0 \ m. )

Consequently, the first two Eq. (8) become
OO 00

= a2 ^ Mmpm cos md, \]/z = a2^ Nmpm cos md,
TO=0 t»=0

where

™ /nk\ " /«£ + m — 1\Mm = Z( JpnkAnt Nm = (- D-Z )Bn/pnk. (19)
n=0 \ W/ r._l \ m /

Again, according to Appendix A, Eq. (A.12),
00

£/, = cos s0/ps + 23 (— 1)" "asp" cos w0.
71=0

(18)

71=0

Thus

where

= a2 |l0 + X) (Cm/pm + Lmpm) cos m61 , (20)
V m= 1 /

' I ■

oo

I- = (- l)mZ (21)
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Applying the boundary condition (6) at p=X, we obtain

*2 = Mn + No + U - pK 1 + X2)/2 - p*\ cos 6
00

+ X) (MmXm + Nm\m + Cm/xm + Lm\m) cos wfl.
m=l

Equating the constants and setting each coefficient equal to zero, we find

Mo + No + U ~ p\ 1 + X2)/2 =
M{K + Ni\ + Ci/X + - p2\ = 0, (22)

Mm\m -f- Nm\m + Cm/Xm + Lm\m = 0.

From the first Eqs. (15), (16) and (22), we see that

A0 = 1/2, ¥, = Q0 + (1 - ?2)/2, *2 = Mo + tfo + £0 - ^2(1 + X2)/2 (23)

and are thus determined, if the parametric coefficients can be found. The sys-
tem of simultaneous linear equations represented by the other equations is just suffi-
cient for the determination of all parametric coefficients involved. They may be re-
written as follows:

A„ + Bn + Pn = 0, An + q~2nkB„ + Qn = 0,

X-2Cx + Mi + Ni + h = P\ + Mm + Nm + Lm = 0.
The first two equations gi.ve, for n ^ 1,

An = (q2nkQn - Pn)/{ 1 - q2nk), Bn = y*»*(P, ~ <20/(1 - i?2"*). (25)

Substituting these values into Mn and Nn in the last two equations, we find with the
aid of (19), (14) and (21)

OO 00

Ci = />2X2 + X2X &C8, Cm = X2">X m|3,C„ (26)
«=i «-i

where, in general,

= - (- 1)™
» / pink /nk\ r/nk — 1\ / q \'nk (nk + s — 1\~|

+ «)[(»-1)"(_l)\V ( ,-i )]
(—1)mq2nk (nk + m — 1\ T (nk + s — 1\ (nk — 1\T)

+ (i-AV"( - )[(-n 5-i <27)
This system of linear equations can be solved by successive approximations as follows.
Write

oo

Cm=Zc!n\ (28)

where
^<0) A2X2 r(0) - r,Ci = p X , Gm — 0,
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and, by iteration,
oo

CIT = X2™ £ (29)
8=1

With the values of Cm thus found, the coefficients An and Bn can be obtained without
difficulty from (25) with the aid of (14).

It is to be observed that the validity of the solution by successive approximations
depends upon the convergence of the series (28). From physical considerations alone,
it seems likely that there will be convergence as long as the boundaries do not over-
lap, i.e.,

q + p\ < p < 1 — p\, X < sin (ir/k). (30)

To establish convergence of such a series analytically is usually difficult. However,
we may proceed by first using some inequalities for the coefficients so that the series
(29) can be summed, and then applying the ratio test to ascertain the range of con-
vergence. Obviously some convergence is lost in thus using the inequalities, but it is
often possible to establish a considerable range of convergence in this way. In the
interest of brevity, no details will be given here.

Torsional stiffness. The torsional stiffness of the tube is given by

H = 2 JJ Vdxdy + 2ircV*i + 2 kir\^b2a^2, (31)

where the double integration is extended over the entire cross-sectional area of the
tube, excluding the holes. Let

Hi = 2 J J i;dxdy, (j = 1, 2, 3), H, = f f (x> + y*)dxdy.
Then,

r r *dxdy = Hi+ H2 + H3 - Ht. (32)'If
These integrals, save H3, can be evaluated by ordinary methods of integration with-
out difficulty. The following results are obtained:

Hi = iro4(l - q2 - kpW), Hi = 0, (33)

Hi = 7ra4{ 1 - q* - kp*\\2 + X2) \/2.

The integration of H3 by ordinary methods fails since there exist singularities at
the centers of the eccentric holes. However, H3 can be evaluated by using the follow-
ing relation derived from Green's theorem, in which F is a function of the complex
variable z regular in the domain S enclosed by a contour C.

f f —dS = — i f Fdz, (34)
J J s dz 2 J c

the contour C being taken in a counter-clockwise direction. In this equation set
W, = dF/dz, so that
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F = J W,dz, (35)

and let the contour C be taken around the sector of \/2k of the cross section, as shown
in Fig. 2. Then

If U,dxdy = 2kR J"J" W,dS — kRi J" Fdz. (36)
Using the appropriate series of W, in
different parts of the contour, we find \
that this integral vanishes identically \
for all values of 5 except for 5 = 1. The \ \
term arising from 1/f in Wi does not S \ \
vanish when the integration is taken ^ \
along the semicircle p=X. Here A s* \

rd.  _*= J J = b log f, 0     ..
Fig. 2. Contour C of l/2k of section.r

and when p = X,

F = 6(log X + id), dz — b\de~ie.

We thus find

Hence,

and consequently,

/:
Fdz = b2X(2 + 2 log X + iir).

J"J" Uidxdy = — irk\b2, (37)

H3 = 2a2 X C.J J U,dxdy = - 2*kU*aKi. (38)

Summing up, we find the torsional stiffness

H = iro4{ (1 - ?2)2 + kpW (2 + X2) - 2kp*\ (2Ci + X) + 4^i + 4^2X2*2) /2. (39)

The resulting twisting couple is given by

T = htH, (40)

where ju is the modulus of rigidity of the material and r is the angle of twist per unit
length of the tube.

Stress components. The non-vanishing stress components of the tube are two
shear stress components given in terms of the polar coordinates (r, <f>) by the following

fir /lit dty
Zr = > Z* = J (41)

ar dtj> a dr
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while in terms of the polar coordinates (p, 9), they are

ut dty ht dty
z„ = — ■—- > ze =     (42)

bp dd b dp

It is now a straightforward matter to find the stress at any point of the cross section.
By using appropriate series, the shear stresses on the three boundaries are found as
follows:

[z*]r=l = HTd (' — 2k nA» cos nktf^j ,

( 2 ™ mCm \
|znjp_x = p\ H 2^  cos md), (43)

\ p\m-i Xm /

r i / 2k " nB„ \
[z<p\r~Q = p-ra I q H 2s —r cos nk<t> )•

\ q n=i qnk )

CASE I CASE 31 CASE HI

Fig. 3. Illustrative examples.

The maximum shear stress occurs on the boundary across the narrowest sections.
Due to the presence of the holes, the greatest shear stress does not necessarily occur
on the exterior boundary.

The case without central hole. It is interesting to investigate also the case in which
the central hole of the tube does not exist. A solution is obtained for \p by merely
omitting in Eq. (7), such that

i = ti + i3- (44)

Consequently, the relations obtained from the boundary conditions become

Ao = |, *2 = Mo + L0 - \pK 1 + X2), (45)

An — — Pn, X-2Cl + Ml -f- L\ = p2, \~2mCm + Mm + Lm — 0,

so that the coefficient in (27) is simplified to

"0. = - (- " /nk\ (nk — 1\
l)m ma, + )( )P2nk- (46)

„_i \m / \ s — 1 /
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Numerical examples. The foregoing method of solution will be illustrated by work-
ing out the following three examples:

Case k p q X No. of Holes

1 2 f 0 f 2
II 2 1 I ! 3

III 6 | | | 7

The arrangements are shown in Fig. 3. In each case the holes have equal radii and the
nearest distance between any two adjacent boundaries is equal to the radius of one
hole. These cases probably represent the most crucial ones ever met in practice.
Tables of the coefficients are first prepared, with which the parametric coefficients
Cm are found by the method of successive approximations; the results being shown in
Appendix B and in the accompanying Table I. The shear stresses along the bound-
aries are then computed and shown in Table II. Fig. 4 shows the results diagram-
matically.

Table I. The coefficients Cm

Case I Case II Case III

7.8560X10-2
3.1549X10"3

-3.0714X10"4
9.6791X10-6

-1.7036X10-6
3.9811X10-'

-8.0836X10-'
1.7422X10"'

4.2392X10-2
3.1240X10—1
1.9115X10-5
3.2509X10-'
1.8686X10"7

-1.2587X10-8
2.5340X10"9

-2.7810 X10-10

3.0593 XIO-2
5.8718X10"*
4.9273 X10-5

-7.4587X10"6
4.9622X10-'
5.9963X10"8

-1.0635 X10"8
4.7674X10""

Table II. Shear stress/jura along boundaries.

k<p
or

Case I

Exterior
boundary

Eccentric
holes

Case II

Exterior
boundary

Eccentric
holes

Central
hole

Case III

Exterior
boundary

Eccentric
holes

Central
hole

0
30°
60°
90°

120°
150°
180°

1.185
1.125
1.022
0.956
0.928
0.918
0.916

1.194
1.049
0.660
0.198

-0.199
-0.396
-0.392

1.308
1.124
0.967
0.930
0.928
0.931
0.932

1.547
1.327
0.793
0.145

-0.451
-0.871
-1.033

0.459
0.402
0.277
0.160
0.081
0.039
0.026

1.127
1.105
1.050
0.988
0.938
0.907
0.897

1.247
1,053
0.583
0.068

-0.259
-0.529
-0.678

0.214
0.212
0.207
0.200
0.193
0.188
0.186

It appears that in all the cases the greatest shear stress occurs at those points on
the boundaries of the holes which are nearest to the exterior boundary. The magni-
tudes are equal to 1.194, 1.547 and 1.247 respectively except for a factor fira. The
points of greatest shear stress will, however, shift to the exterior boundary if the
eccentric holes are sufficiently remote from the exterior boundary. It is seen that in
each case there exist two null points or points of zero stress on the boundary of each
hole at an angle 6 numerically between 90° and 120° or, to be more precise, at 105°,
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96° and 95° respectively. It is also seen that due to the presence of holes the maximum
shear stress on the exterior boundary is increased by 18.5%, 30.8% and 12.7% re-
spectively. From the stress distribution on the boundaries it appears that among
the three cases the case II is the most unfavorable arrangement in which, it is re-
called, the centers of the holes are situated collinearly on the same diameter of the
section. The stress distribution on the boundary of the central hole is less important
since the magnitude is smaller.

Table III shows the cross-sectional area A and the torsional stiffness H of the tube,
in which the last two columns indicate their percentage reductions due to the presence
of holes respectively. The relative reductions in torsion stiffness due to 1% reduction
in area are equal to 0.729%, 1.589% and 0.963% respectively. Again, it appears that
the case II is the most unfavorable arrangement among the three where the effective-
ness of torsion modulus is concerned.

Table III. Cross-sectional area A and torsional stiffness H.

Case A/ita? H/fra* % reduction of A % reduction of H

I
II

III

0.8367
0.8800
0.7200

0.8809
0.8093
0.7305

16.33
12.00
28.00

11.91
19.07
26.95

The author wishes to express his deep appreciation to Dr. H. S. Tsien of the
Guggenheim Aeronautical Laboratory, California Institute of Technology, for helpful
criticism and suggestions.

APPENDIX A

Class of functions invariant with respect to rotation. Let there be on the circle
|s| =b in the Argand plane a series of k points

z = beimTilk, (A.l)

where m— 0, 1, 2, ••• • , (& — 1).
A function with a logarithmic singularity at each such point is defined by

k-1
Wo = — log (zk — bk) — — log (z — b) — 2 I°g (z ~~ beim*ilk). (A.2)

m= 1

Writing z — b = b{, we have except for a constant
fc-i

Wo = — log f — X) tog (! _ (A.3)
771= 1

where
\/um = 1 - e2mirilk,

such that um is a root of the equation
(« - 1)* - uk = 0. (A.4)

Expansion yields
oo

Wo = - log r + X) (- 1)" n«of". (A.5)



1947] TORSION OF A CIRCULAR TUBE WITH LONGITUDINAL HOLES 179

where

1 k~l n
"ao = — E = "n/n,

n OT_1

<r„ denoting the sum of the nth power of the roots of Eq. (A.4), which may be calcu-
lated for any given values of k and n.

It is readily shown that functions derived from Eq. (A.2) by differentiation with
respect to b are invariant with respect to rotation about the origin through angles
2miv/k. If we define

b' d'Wo=  , (A. 7)
(s - 1)! db'

we find

1 ^»(1-«„•)* 1 A /n + s- 1\
W' = 77 + £ , x- ■ = 77 + E («- - D' E (- D"( W>\r m=l ~f" f) r m= 1 n=0 \ fl /

or

1 00
w. = - + E (- 1)B W, (A.8)

f* n-0

where

/n + s— l\ti » /« + s — 1\ ' /j\
"«» = ( I E ("«■ -!)*«» = ( ) E(~ D'l )ffn+.-t

\ » / m-1 \ n / t=0 \ < /

(n + j — 1\
= ( ^ J A'ffn, (A. 9)

A'<r„ being the sth finite difference of the series <rn, <rn+1, a-„+2, • • • . From Eq. (A.4)
we obtain

mk / mh\
un +mk — ( — 1)< ( J

<=0 \ t /

where w is an integer. Summing over the roots,

2^ / m k\
On+mk = 2-,{— 1)' ( I On+mk-t = Amk(Tn.

(=0 \ t /

Hence

Aml+V„ = i'A-V, = AV,+ml, (A. 10)

so that all the coefficients can be found from the values of <rn and its first (& — l)th
finite differences.

Now, if we define

Wo = U0 - iVo, W,= Us- iV, (A. 11)

and f = peif, we find by equating the real and imaginary parts
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00

U0 = — log p + YL (— *)" "<*»P" cos nS

Vo = 0 — 21 (— 1)" "aoPn sin nd,

cos s6 "
£/*, = h 2J (— 1)" naspn cos w0

P* n=0

sin sd "
F„ =   = 2_/ (— 1)" "a»P" sin »0.

P* n-l

APPENDIX B. TABLES OF COEFFICIENTS m/3.

Case I. k = 2, p = 3/7, g=0

(A. 12)

m — \ m = 2 m=3 m = 4

1 — 1.0547 X10-1
2 4.1472X10"'
3 —1.5511 Xip-1
4 1.3952X10"1
5 —7.4973X10-2
6 4.7899X10-2
7 —2.7106X10"2
8 1.5692X10-2

m = 5

2.0736X10"'
-7.2751 X10"2

2.4167X10"'
— 1.2817 X10-1

1.2605X10"'
-7.8758X10"2

5.5633X10-2
—3.4860X10-2

m = 6

-5.1703X10"2
1.6111 X10_l

-1.1142X10"1
1.8679X10-'

-1.2240X10"1
1.1563X10"1

— 7.7962 X10"2
5.9407X10-2

m — 7

3.4879 X10-2
— 6.4085 X10-2

1.4009X10-'
-1.1476X10-'

1.5170X10-'
— 1.1495 X10-1

1.0623X10"1
— 7.9025X10-2

m = 8

1 — 1.4995X10-2
2 5.0421 X10-2
3 -7.3439X10-2
4 1.1797X10"1
5 -1.1196X10-'
6 1.3072X10-'
7 -1.0842X10-'

9.8847 X10-2

7.9832X10-'
— 2.6253 X10-2

5.7816X10-2
— 7.8946X10-7

1.0893 X10-1
-1.0718X10"1

1.1678X10-'
-1.0237X10-'

— 3.8723 X10~3
1.5891X10"2

— 3.4184X10"4
5.5966X10-2

— 7.7443X10"2
1.0010X10"1

-1.0180X10"1
1.0703X10-'

1.9615 X10"3
-8.7149X10-'

2.2278X10-*
—3.9978X10-2

6.1346X10-2
-7.7385X10-2

9.3473X10-2
— 9.6648X10"2.

Case II. k = 2, p=3/S, g = 1/5

m = 1 m = 2 m = 4

1 4.9867X10-'
2 1.1751
3 9.6041X10-'
4 1.6086X10-'
5 1.2869
6 -9.9512X10-'
7 2.0139
8 -2.3208

5.8617X10-'
1.3668
1.4633
2.4953
4.4025X10-'
3.1571

-1.6578
4.4190

3.2014X10-'
9.7830 X10"1
2.9506
2.3101
5.6549
9.7328X10-'
7.6527

-2.9699

4.0272X10-2
1.2483
1.7326
6.1916
4.1153
1.2122X10
2.5465
1.7278X10
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m = 5 m = 7 m »=8

2.5737X10-1
1.7611X10-1
3.3929
3.2923
1.2917X10
7.9600
2.5212X10
7.3042

-1.6585X10"'
1.0524
4.8664X10-'
8.0811
6.6271
2.6963X10
1.6097X10
7.4312X10

2.8770X10"'
-4.6363X10-'
3.3914
1.4551
1.8327X10
9.7852
5.6595X10
2.6870X10

-2.9011X10-'
1.1047

-1.1137
8.6392
4.0214
4.0734X10
2.9178X10
1.1962X102

Case III. k=6, p=3/5, g = l/5

m = 1 m = 2 m = 4

-2.8379
3.3118
3.2836

-7.0400
5.6284
6.0363

-1.3620X10
7.9354

m = 5

1.6559
-5.8522

8.9112
1.1769X10

-2.8311X10
2.2409X10
2.8477X10

-7.0520X10

m= 6

1.0945
5.9408

-1.7916X10
2.4523X10
3.8057X10

-1.0871 X102
8.8391X10
1.2148X10®

m = 7

-1.7600
5.8842
1.8392X10

-6.6469X10
7.6789X10
1.3393 X102

-4.1222X10''
3.4151X102

m =8

1.1569
-1.1324X10
2.2834X10
6.1432X10

-2.4343X102
2.6581X102
4.8145X102

-1.5696X103

1.0060
7.4698

-5.4335X10
8.9290X10
2.2150X102

-9.0308X102
9.4883X102
1.7598X103

-1.9457
8.1366
3.7881X10

-2.3555X102
3.4389X102
8.1328X102

-3.3856X103
3.4764X10s

9.9193X10-'
-1.7630X10
4.5598X10
1.7075 X102

-9.8099X102
1.3199X103
3.0419X103

-1.2761 X104


