$$
\begin{gathered}
p_{0}(x)=1 /(6 N)^{1 / 2}, \quad p_{1}(x)=2^{1 / 2} x /(6 N)^{1 / 2}, \quad p_{2}(x)=(3 / 2) 2^{1 / 2}\left(2 x^{2}-1\right) /(6 N)^{1 / 2} \\
p_{3}(x)=2(2 / 65)^{1 / 2}\left(18 x^{3}-11 x\right) /(6 N)^{1 / 2} \\
p_{4}(x)=(1 / 4)(2 / 31)^{1 / 2}\left(288 x^{4}-306 x^{2}+65\right) /(6 N)^{1 / 2}
\end{gathered}
$$

The roots of $p_{4}(x)$ are

$$
x_{1}=-.8769, \quad x_{2}=-.5418, \quad x_{3}=.5418, \quad x_{4}=.8769
$$

Thus, from (9c) we see that

$$
\lambda_{1}=\lambda_{4}=(.2172)(6 N), \quad \lambda_{2}=\lambda_{3}=(.2828)(6 N)
$$

Thus, choosing the function $f(\nu)$ to be

$$
f(\nu)=f\left(x \nu_{L}\right)=k(x \theta)^{2} / \operatorname{sink}^{2} \theta x
$$

where $\theta=h \nu_{\mathrm{L}} / 2 k T$ we obtain from (1), (11), and (18

$$
C_{v} \simeq 3 N k\left\{(.4344)(.8769 \theta)^{2} / \sinh ^{2}(.8769 \theta)+(.5656)(.5418 \theta)^{2} / \sinh ^{2}(.5418 \theta)\right\} .
$$

Qualitatively our method is equivalent to replacing the entire frequency spectrum by a small number, say n, of specially chosen sharp frequencies. These frequencies and their weight factors are chosen so that the values obtained for all averages over polynomials of degree ($2 n-1$), or less, are exact. In conclusion, it might be mentioned that in general analogous methods can be used in evaluating averages over characteristic values of linear operators.

THE SUBSONIC FLOW ABOUT A BODY OF REVOLUTION*

By E. V. LAITONE (Cornell Aeronautical Laboratory)

In cylindrical coordinates the Laplace differential equation, which defines the irrotational incompressible fluid flow, becomes

$$
\begin{equation*}
\phi_{x x}+\phi_{r r}+\frac{1}{r} \phi_{r}+\frac{1}{r^{2}} \phi_{\theta \theta}=0, \tag{1}
\end{equation*}
$$

where the last term vanishes when the flow has axial symmetry about the x axis.
In this case a solution of Eq. (1) based on a source distribution $f(x)$ per unit length along the x axis from $x=0$ to $x=L$ is

$$
\begin{align*}
\phi & =u_{\infty} x-\frac{1}{4 \pi} \int_{0}^{L} \frac{f(\xi) d \xi}{\left[(x-\xi)^{2}+r^{2}\right]^{1 / 2}} \\
u & =\phi_{x}=u_{\infty}+\frac{1}{4 \pi} \int_{0}^{L} \frac{f(\xi)(x-\xi) d \xi}{\left[(x-\xi)^{2}+r^{2}\right]^{3 / 2}} \tag{2}\\
v & =\phi_{r}=\frac{r}{4 \pi} \int_{0}^{L} \frac{f(\xi) d \xi}{\left[(x-\xi)^{2}+r^{2}\right]^{3 / 2}}
\end{align*}
$$

where $v / u=(d r / d x)_{0}$ satisfies the fixed boundary conditions given by the body shape.

[^0]The linearized differential equation for the velocity potential of a compressible fluid flow with axial symmetry is given by

$$
\begin{equation*}
\beta^{2} \phi_{x x}+\phi_{r r}+\frac{1}{r} \phi_{r}=0, \tag{3}
\end{equation*}
$$

where for subsonic flow

$$
\beta=\sqrt{1-M^{2}}>0 .
$$

The first method of Goldstein and Young ${ }^{1}$ may be used to convert Eq. (2) into a linear perturbation solution of Eq. (3) in the following manner

$$
\begin{align*}
\Delta \phi & =-\frac{1}{4 \pi \beta} \int_{0}^{L} \frac{f(\xi) d \xi}{\left[(x-\xi)^{2}+(\beta r)^{2}\right]^{1 / 2}} \\
\Delta u & =\frac{1}{4 \pi \beta} \int_{0}^{L} \frac{f(\xi)(x-\xi) d \xi}{\left[(x-\xi)^{2}+(\beta r)^{2}\right]^{3 / 2}} \tag{4}\\
\Delta v & =\frac{\beta r}{4 \pi} \int_{0}^{L} \frac{f(\xi) d \xi}{\left[(x-\xi)^{2}+(\beta r)^{2}\right]^{3 / 2}} \\
\left(\frac{\Delta v}{u_{\infty}}\right)_{0} & =\left(\frac{d r}{d x}\right)_{0}\left[1+\left(\frac{\Delta u}{u_{\infty}}\right)_{0}\right]
\end{align*}
$$

Equation (4) can then provide a solution for a fixed given body shape for all Mach numbers less than unity $(0<\beta \leqq 1)$ as shown in ref. 1 .

If the substitution $\xi=x+\beta r z$ is introduced into Eq. (4) and the Taylor Expansion is written as

$$
f(\xi)=f(x+\beta r z)=\sum_{n=0}^{\infty} \frac{(\beta r z)^{n}}{n!} f^{(n)}(x),
$$

then Eq. (4) becomes

$$
\begin{align*}
& \Delta u=-\frac{1}{4 \pi \beta} \sum_{n=0}^{\infty} \frac{(\beta r)^{n-1} f^{(n)}(x)}{n!} \int_{-x / \beta r}^{(L-x) / \beta r} \frac{z^{n+1} d z}{\left(1+z^{2}\right)^{3 / 2}}, \\
& \Delta v=\frac{1}{4 \pi} \sum_{n=0}^{\infty} \frac{(\beta r)^{n-1} f^{(n)}(x)}{n!} \int_{-z / \beta r}^{(L-x) / \beta r} \frac{z^{n} d z}{\left(1+z^{2}\right)^{3 / 2}}, \tag{5}
\end{align*}
$$

or, to the first order terms in βr,

$$
\begin{align*}
\Delta u= & -\frac{1}{4 \pi \beta}\left\{\frac{f(x)}{x} \cdot\left(\frac{1-2 x / L}{1-x / L}\right)+f^{\prime}(x)[\log (4 x / L)(1-x / L)-2 \log \beta r / L-2]\right. \\
& +f^{\prime \prime}(x) \cdot(L / 2)(1-2 x / L)+f^{\prime \prime \prime}(x) \cdot\left(L^{2} / 12\right)\left[(1-x / L)^{2}+(x / L)^{2}\right]+\cdots \\
& \left.+f^{(n)}(x) \cdot\left[\frac{(\beta r)^{n-1}}{n!} \int_{-z / \beta r}^{(L-x) / \beta r} \frac{z^{n+1} d z}{\left(1+z^{2}\right)^{3 / 2}}\right]+O(\beta r)\right\}, \tag{6}
\end{align*}
$$

[^1]$\Delta v=\frac{1}{4 \pi}\left\{2 f(x) / \beta r-f^{\prime \prime}(x)[\beta r \dot{\log }(\beta r / L)]+O(\beta r)\right\}$,
for $0<x .<L$.
On the body surface to a first order approximation
\[

$$
\begin{equation*}
\left(\Delta v / u_{\infty}\right)_{0}=(d r / d x)_{0}=f(x) / 2 \pi \beta r_{0} u_{\infty} \tag{8}
\end{equation*}
$$

\]

or

$$
\begin{equation*}
f(x)=2 \pi \beta u_{\infty} r_{0}(d r / d x)_{0}=\beta u_{\infty} S^{\prime} \tag{9}
\end{equation*}
$$

where

$$
S=\pi r_{0}^{2}
$$

Then

$$
\begin{align*}
2\left(\frac{\Delta u}{u_{\infty}}\right) & =-\frac{1}{\pi}\left\{\frac{S^{\prime}}{2 x} \cdot\left(\frac{1-2 x / L}{1-x / L}\right)-S^{\prime \prime} \cdot\left(1+\log \frac{\beta r}{L}-\log 2 \sqrt{\frac{x}{L}\left(1-\frac{x}{L}\right.}\right)\right) \\
& \left.+\frac{S^{(3)}}{4} L\left(1-\frac{2 x}{L}\right)+\frac{S^{(4)}}{24} L^{2}\left(1-\frac{2 x}{L}+\frac{2 x^{2}}{L^{2}}\right)+\cdots\right\} \tag{10}
\end{align*}
$$

for any x other than 0 or L.
Eqs. (8) and (10) provide the pressure distribution on (or along the streamlines $r \rightarrow 0$) a slender symmetrical body of revolution in either incompressible or subsonic potential flow. They also provide a first order Mach number correction for the subsonic potential flow on any body of revolution. For example, the surface pressure coefficient (C_{p}) at $x=L / 2$ for a symmetrical body of revolution at any Mach number (M) less than unity would be given by

$$
\begin{equation*}
\left(\frac{C_{p}}{C p_{M=0}}\right)_{\max }=1+\frac{\log \sqrt{1-M^{2}}}{1-\left(L^{2} S^{(4)} / 48 S^{\prime \prime}+\cdots\right)+\log (r / L)} \tag{11}
\end{equation*}
$$

Eq. (11) agrees with the expression obtained by Lees ${ }^{2}$ for a slender prolate spheroid ($S^{(n)}=0$ for $n>2$).

The flow about any body of revolution is given to the first order by Eqs. (4) and (9) as

$$
\begin{align*}
2\left(\frac{\Delta u}{u_{\infty}}\right) & =\frac{1}{2 \pi} \int_{0}^{L} \frac{S^{\prime}(\xi)(x-\xi) d \xi}{\left[(x-\xi)^{2}+(\beta r)^{2}\right]^{8 / \Omega}} \\
\left(\frac{\Delta v}{u_{\infty}}\right) & =\frac{\beta^{2} r}{4 \pi} \int_{0}^{L} \frac{S^{\prime}(\xi) d \xi}{\left[(x-\xi)^{2}+(\beta r)^{2}\right]^{3 / 2}} \tag{12}
\end{align*}
$$

Eq. (12) shows that at large transverse distances from a body of revolution

$$
\frac{\Delta u}{u_{\infty}}=\frac{1}{4 \pi \beta^{3} r^{3}} \int_{0}^{L} S^{\prime}(\xi) \cdot(x-\xi) d \xi
$$

[^2]so that the subsonic flow wind tunnel wall correction for a body of revolution would vary as $1 /\left(1-M^{2}\right)^{3 / 2}$.

Eq. (7) may be written

$$
f(x)=2 \pi \beta r r^{\prime}\left(u_{\infty}+\Delta u\right)+\frac{(\beta r)^{2}}{2} f^{\prime \prime}(x) \log (\beta r / L)+O\left(\beta^{2} r^{2} f\right)
$$

Fig. 1. Prolate spheroid.

- Equation 12

O Equation 10
--- Exact Potential Flow Solution
\times Equation 14, [Equation $10-(d r / d x)^{2}$]

Fig. 2. Prolate spheroid, $x=L / 2$.

- Equation 12

O Equation 10

- Therefore, for $0<x<L$,

$$
\begin{align*}
f(x) & =2 \pi u_{\infty} \beta r r^{\prime}\left[1+(\log \beta r / L)\left(3 \beta^{2} r r^{\prime \prime} / 2+\beta^{2} r^{2} r^{(3)} / 2 r^{\prime}+r r^{\prime \prime}+r^{\prime 2}\right)+O\left(r^{2}\right)\right] \\
& =\beta u_{\infty} S^{\prime}(x)+O\left(r^{4} \log r\right), \text { for } \beta>0 . \tag{13}
\end{align*}
$$

Eq. (13) shows that at least for incompressible flow ($\beta=1$) Eq. (12) will provide the surface velocities accurate to the order $r^{4} \log r=0$. A corresponding statement cannot be made for subsonic flow however since the compressibility effects of the flow have been considered only to the first order in Eq. (3).

Fig. 3. 10% parabolic arc body of revolution

- Equation 12- $(d r / d x)^{2}$

O Equation 10- $(d r / d x)^{2}$
The pressure coefficient for compressible flow is given to the second order by

$$
C_{p}=-2\left(\Delta u / u_{\infty}\right)-\left(\Delta v / u_{\infty}\right)^{2}-\left(\Delta u / u_{\infty}\right)^{2}\left(1-M^{2}\right)+O\left(\phi_{x}^{3}, \phi_{r}^{4}\right)
$$

which in view of Eqs. (8) and (10) becomes

$$
\begin{equation*}
C_{p}=-2\left(\Delta u / u_{\infty}\right)-\left(r^{\prime}\right)^{2}+O\left(r^{4} \log r\right) . \tag{14}
\end{equation*}
$$

Figure 1 shows a comparison of the exact incompressible potential flow pressure distribution on a prolate spheroid (ellipsoid of revolution) with that obtained from Eqs. (10), (12) and (14). Figure 2 shows the effect of Mach number on the maximum C_{p} of various thickness ratio prolate spheroids as computed from Eqs. (10) and (12). Figure 3 shows the effect of Mach number on the pressure distribution of a parabolic arc body of revolution as obtained from Eq. (14) in conjunction with Eqs. (10) and (12).

[^0]: * Received Dec. 9, 1946.

[^1]: ${ }^{1}$ S. Goldstein and A. D. Young, The linear perturbation theory of compressible flow, with applications to wind tunnel interference, Brit., A.R.C., R. \& M. 1909 (1943).

[^2]: ${ }^{2}$ Lester Lees, A discussion of the application of the Prandtl-Glauert method to subsonic compressible flow over a slender body of revolution, NACA, TN 1127 (1946).

