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p0(x) = l/(6Nyi\ p,{x) = 21/2x/(6iV)1/2, p2(x) = (3/2)2'/2(2x2 - 1)/(6A01/2,

/>g(*) = 2(2/65)1/2(18x3 - 11 x)/(6N)1'1, -

pt{x) = (l/4)(2/31)1/2(288x4 - 306x2 + 65)/(6iV)1/2.

The roots of pi(x) are

xi = — .8769, x2 = — .5418, x3 = .5418, x4 = .8769.

Thus, from (9c) we see that

Xi = X* = (.2172) (6iV), X2 = X3 = (.2828)(62V).

Thus, choosing the function f(v) to be

/M = J(xvl) = &(x0)2/sink2 dx,

where 6 = hv\J/2kT we obtain from (1), (11), and (18

C„ ~ 3iV&{(.4344)(.87690)2/sinh2 (.87690) + (,5656)(.54180)2/sinh2 (.54180)}.

Qualitatively our method is equivalent to replacing the entire frequency spectrum
by a small number, say n, of specially chosen sharp frequencies. These frequencies
and their weight factors are chosen so that the values obtained for all averages over
polynomials of degree {In — 1), or less, are exact. In conclusion, it might be men-
tioned that in general analogous methods can be used in evaluating averages over
characteristic values of linear operators.

THE SUBSONIC FLOW ABOUT A BODY OF REVOLUTION*
By E. V. LAITONE (Cornell Aeronautical Laboratory)

In cylindrical coordinates the Laplace differential equation, which defines the ir-
rotational incompressible fluid flow, becomes

1 1
4>xx 4" <#>rr H 4>r H   <t>BB = 0, (1)

r r2

where the last term vanishes when the flow has axial symmetry about the x axis.
In this case a solution of Eq. (1) based on a source distribution fix) per unit

length along the x axis from x = 0 to x = L is

/(€)<*€<j) = u„x
4tt J n4tJ o [(x — £)2 + r2]1/2

, i cL mtx-mu = <j)x = -1   I ~r~ - > (2)
4irJ0 '

v = <i>T = ~f4:ir J o

4tJ0 [(x - £)2 + r2]8'2

Km
[(* - f)2 + r2]3'2

where v/u = (dr/dx)0 satisfies the fixed boundary conditions given by the body shape.

* Received Dec. 9, 1946.
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The linearized differential equation for the velocity potential of a compressible
fluid flow with axial symmetry is given by

1
P24>XX + <t>rr H <t>r = 0, (3)

r

where for subsonic flow

0 = \/l - M2 > 0.

The first method of Goldstein and Young1 may be used to convert Eq. (2) into a
linear perturbation solution of Eq. (3) in the following manner

A <t>

Am

1 rL

4ir|3 J o

-~f4ir/3 J o

am
[(jf-fl. + flSr)!]!/!'

L /©(* - m
4ir/3 J o [(x - £)2 + (/3r)2]3/2

Av = — fL /(^)^
V~4tJ0 [(x - J)2 + (/3r)2]3'2'

/ A®\ _ /dr\ r + /_A»\ "I
V Moo /o \(2x/0 L \ w» / o J

Equation (4) can then provide a solution for a fixed given body shape for all Mach
numbers less than unity (0</3^1) as shown in ref. 1.

If the substitution £ = x+/3rz is introduced into Eq. (4) and the Taylor Expansion
is written as

°° (Rrz) »
/(£) = fix + 0rz) = £  —fMix),

n-o n\

then Eq. (4) becomes

(fir) n~1f(n)(x) z"+1dz
Am = —

n-0 n\ J-247T0n_o m! J _x/0r (1 + 32)3'2

1 * (/3r)"-!/(")(x) /•»—)/*■ zndz
Av = — >.   I  > (5)

4x^0 «! (l+s2)3'2

or, to the first order terms in fir,

1 (fix) /I - 2x/L \
Am = - — < (- — ) + /'(*) [log (4x/L)(l - x/L) - 2 log 0r/£ - 2]

4r/3 { x \ 1 — x/L /

+ /"(x)-(Z/2)(1 - 2x/Z) + /'"(x)(L2/12)[(l - x/L)2 + (x/L)2] +
(\L-x)IPr zn+1dz '

(1 +22)3'2

r(/3r)1 /• zB+1dz I }

1 S. Goldstein and A. D. Young, 77ie linear perturbation theory of compressible flow, with applications
to wind, tunnel interference, Brit., A.R.C., R. & M. 1909 (1943).
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A* = i- {2f(x)/(3r - f"(x) [fir log 08r/L) ] + 0(/3r)}, (7)
4ir

for 0 <x <L.
On the body surface to a first order approximation

(A»/mm)o = (dr/dx)0 = f(x)/2Tpr0ux, (8)

or

/"(a:) = 2irpUaro(dr/dx)o = fiuxS', (9)

where
c 2i = irr0.

Then

S<3> / 2a;\ S<4> / 2* 2a:2\ )
+ tl(' ~r)+"24"i'(1 ~ t+w+"' }■ <10)

for any x other than 0 or Z,.
Eqs. (8) and (10) provide the pressure distribution on (or along the streamlines

r—>0) a slender symmetrical body of revolution in either incompressible or subsonic
potential flow. They also provide a first order Mach number correction for the sub-
sonic potential flow on any body of revolution. For example, the surface pressure co-
efficient (Cp) at x = L/2 for a symmetrical body of revolution at any Mach number
(M) less than unity would be given by

= 1 + 
\CpM=0/max 1

log VI - M2
(11)

^M-o/max 1 - (L'S^/i&S" +■■•) + log {r/L)

Eq. (11) agrees with the expression obtained by Lees2 for a slender prolate spheroid
(S(n> =0 for n>2).

The flow about any body of revolution is given to the first order by Eqs. (4) and
(9) as

s'(0(» - m
[(*-s)2 + (/fr)2:K

s\m
\ ux / 2% J o

/ Av \ /32r r

\ux / 4ir J o [(* - £)2 + (0r)2]3'2

Eq. (12) shows that at large transverse distances from a body of revolution

Am —fLs'(o-( x-m,
4-77/3 V3 J o

2 Lester Lees, A discussion of the application of the Prandtl-Glauert method to subsonic compressible
flow over a slender body of revolution, NACA, TN 1127 (1946).
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so that the subsonic flow wind tunnel wall correction for a body of revolution would
vary as 1/(1 — ilf2)3'2.

Eq. (7) may be written

(/3r)2
fix) = 2t firr'iux + Am) H —fix) log (0r/Z,) + O(0V2/).
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Therefore, for 0 <x <L,

fix) = 2wu„^rr'[l + (log /3r/Z)(3/3Vr"/2 + /3V2r<3>/2r' + rr" + r'2) + 0(r2)]

= fiu^S'ix) + 0(r4 log r), for /3 > 0. (13)

Eq. (13) shows that at least for incompressible flow ((3 = 1) Eq. (12) will provide the
surface velocities accurate to the order r4 log r = 0. A corresponding statement cannot
be made for subsonic flow however since the compressibility effects of the flow have
been considered only to the first order in Eq. (3).

cP

Fig. 3. 10% parabolic arc body of revolution
 Equation 12—(dr/dx)2

O Equation 10—(dr/dx)2

The pressure coefficient for compressible flow is given to the second order by

Cp = - 2(A«/«») — (At)/ux)2 - (Am/mc0)2(1 - M2) + Oi<t>l, <t>l),

which in view of Eqs. (8) and (10) becomes

Cp = - 2(A«/«») ~ (r')2 + 0(r4 log r). (14)

Figure 1 shows a comparison of the exact incompressible potential flow pressure
distribution on a prolate spheroid (ellipsoid of revolution) with that obtained from
Eqs. (10), (12) and (14). Figure 2 shows the effect of Mach number on the maximum
Cp of various thickness ratio prolate spheroids as computed from Eqs. (10) and (12).
Figure 3 shows the effect of Mach number on the pressure distribution of a parabolic
arc body of revolution as obtained from Eq. (14) in conjunction with Eqs. (10) and
(12).


