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ROTOR BLADE FLAPPING MOTION*
BY

GABRIEL HORVAY
McDonnell Aircraft Corporation

1. Introduction. In an earlier paper a method was developed for the solution of a
class of Hill differential equations.1 In the present paper the method is applied to the
solution of the differential equation of flapping motion of helicopter rotor blades.
A brief review of the equation in Sec. 2 is followed by the solution of the homogeneous
equation in Sec. 3. In Sec. 4 the stability of blade flapping motion is established for
the range of the numerical parameters which usually arise in helicopter theory. The
stability of the equation for large values of p is discussed in Sec. 5. In Sec. 6 the possi-
bility of resonance is investigated.

2. Differential equation of rotor blade flapping motion. The blades of a helicopter
rotor are not attached rigidly to the rotor shaft, but are hinged so as to permit the
blades to flap out of the rotor plane. This prevents transmission of severe alternating
moments from the blades to the rotor shaft. The angle between a blade and the rotor
plane (the plane normal to the rotor shaft) is called the flapping angle /?; it is counted
positive upwards.

At a standstill, the blades of the rotor rest on the droop stops. When the rotor is
revolving at the angular velocity co, the centrifugal force

/» R /» R
I dC = I ru2dm (la)

J 0 J 0

(idm is the mass of the blade element at distance r from the axis of rotation, R the
blade length) lifts the blades off the stops and keeps them in approximately horizontal
position. The blades also experience lift forces

/* R 1 /• RdL — — I pca(<p + d)U2dr. (lb)
o 2 J o

Here p is the air density, c the chord of the blade profile, a the slope of the lift curve,
t? the blade pitch angle, <p-\-& the angle of attack, and U the resultant air velocity,
cf. Fig. la.

In vertical flight the equilibrium angle /3 of the blade is determined from the condi-
tion, cf. Fig. lb, that the moments of lift, weight and centrifugal forces balance each
other:

* Received Sept. 5, 1946. This paper is based on an investigation which was carried out at the
McDonnell Aircraft Corporation under sponsorship of the Bureau of Aeronautics, U. S. Navy Depart-
ment.

1 G. Horvay, Unstable solutions of a class of Hill differential equations, Quarterly Appl. Math. 000,
385-396 (1947). In the following, this paper will be referred to as I. (Note that A in Eq. (29) of I should
be written with a superscript 2 instead of 0.) The present paper is a continuation of the study, and deals
with the practical aspects of the problem. The writer's thanks are due to his colleagues, Elizabeth J.
Spitzer, Kathryn Meyer, and Frances Schmitz for checking the derivations and for help with the numeri-
cal calculations.
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. RfJ 0
r{dL — gdm — /3 dC) = 0.

(The drag has a negligible effect on the flapping motion.) It is assumed here as else-
where that the blade is rigid, and that /3 is so small that the approximation sin /3~/3,
cos /3~1 is valid. The same assumption is made also for the angles # and ^>.2

Let t denote the time and

if/ = cot (2)

the azimuth of the blade as measured from the rearmost position. In the course of
forward flight at the speed of isu>R (ju, the so-called advance ratio, is the ratio of forward

(&)
Fig. 1. Velocities and forces at a blade element.

velocity to blade tip speed), an advancing blade element (^ = 90°) moves with the
speed u (r+ixR), a retreating element (\f/ = 270°) moves with the speed u(r—fj.R).. The
variation in the relative air velocity brings forth a variable lift moment, and thus
produces a blade flapping which varies with the azimuth The tangential com-
ponent of the air velocity at element dm is

Ut = ru + nuR sin \f/, (3a)

and the perpendicular component is

Up = XcoR — r 'fi — fiwRfi cos\p. (3b)

Here Xcoi? is the difference between the sinking speed of the helicopter and the induced
velocity through the rotor disc. X is called the inflow ratio.

The flapping motion of the blade is governed by the equation

/» R
r{dL — gdm — fidC), (4)

o

where
. R

-/ J o
r2dm (4a)

is the moment of inertia of the blade with respect to the flapping hinge. Observing that

2 A brief list of the assumptions involved is given at the end of Section 4. For a more extended dis-
cussion cf. J. B. Wheatley, Aerodynamic analysis of the autogiro rotor, NACA Technical Report 487, 1934.



1947] ROTOR BLADE FLAPPING MOTION 151

(<P + &) U2 UtUp + t(3c)

performing the integration (4a), and dividing by 7, one arrives at the differential
equation of flapping motion

7(0) = £M, (5)
where

J(fi) = p + pm + s(t)l3 (5a)
with

p(t) - nco[ 1 + sin cct\, s(t) = co2[l + inn cos ait + nfi2 sin 2co/]; (5b)

and

E(cot) = — mgrcg/I + nco2{%\ + (1 + n2)t} + (2X/i + fyu#) sin cot — n2$ cos 2o/}. (5c)

The first term of the forcing function E{o)t) represents the moment of the blade weight
(rCo is the e.g. distance from the hinge), and is usually negligibly small. The remaining
terms constitute the aerodynamic excitation. Control of the helicopter is effected by
cyclic pitch variation:

& — &o + $c cos ut + d, sin cot. (5d)

Here is the "collective pitch" setting, dc the lateral, — the fore-and-aft control
setting.

It will be convenient to call the equation

70S) = 0 (6)
the "homogenized" flapping equation. The term /3 of 7 (£0 is the inertia term. The ex-
pression p(t)(3 represents the damping which is produced by the change in the angle of
attack caused by flapping. The dimensionless quantity

n = pcaRt/SI (7)

can be called the aerodynamic damping coefficient.3 The leading member, oj2/3, of the
spring term s(t)(3 represents the restoring moment of the centrifugal force. The fre-
quency co of the coefficients p{t) and s{t) can be called the parametric frequency.4
In the present problem this frequency coincides with the frequency impressed by the
function E(cot).

The solution of Eq. (5) can be written in the form

fi = /3o + hifii + (8)
where /30 is the particular integral and represents the forced (steady state) response;
/3j and /?2 are the two solutions of the homogeneous equation, and represent the natu-
ral modes (transients), hi and h2 are numerical coefficients determined by the initial
conditions.

Two papers appear in the literature on the solution of the homogeneous equation,

3 The Germans refer to t=8n as the "Locksche Tragheitszahl."
4 N. Minorsky, On parametric excitation, Journal Franklin Institute 250, 25, 1945.
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J(j3)=0. Bennett6 has investigated the solution for the particular values n = 1.5,
/x = 1.0, /3(0) = 1, j3(0)=0, in the following manner. He determined the coefficients of
the expansion

m = m + tm/\ i + fm/21 + ■■■ (9)
by repeated differentiation of Eq. (6), plotted /3(^) from \p = 0 to ^ = 4ir, and noted
that j3(47t)/jS(0) <1. From this result Bennett concluded that stability is insured for
all /x<l. In an earlier paper Glauert and Shone6 solved Eq. (6) by omitting the ft
term for simplicity, and concluded that the motion is unstable.

Evidently, the above approaches to the stability problem are approximate and
inconclusive.

More extended investigations are available for the particular integral. jSo can be
assumed in the form7

/3o = oo + ai cos a>t + bi sin ut + cos 2cot + bi sin 2ut + • • • . (10)

The constant part, do, is called the coning angle of the blade. The angles a\ and bi
determine the tilt of the cone axis (forward and to the port side, respectively, when w
is counterclockwise); the higher terms determine the motion of the blade in and out
of the cone. Substituting (10) into Eq. (5), one obtains the infinite system of equations

1: ao + \iJ--nbi = — mgrcg/Iw2 + -|»X + (1 + n2)nd o +

cos \p: ^na0 + (1 + hn2)bi — ffia2 + %n2b3 = (1 + iiu2)#c

sin yp- — (1 — i/x2)a! — §/xb2 — i/x2a3 = 2juX + |^0 + (1 + %»2)d,

cos 2\p: %tinai — 3a2 + 2nbi — %nna3 + ■ • • = — yu2m?o — (11)

sin 2ip: n2naa + \xnb\ — 2na2 — 3b2 — %txnb3 + • • • = 4snn&c

cos 3ip: %fi2nbi — 2nna2 + 803 — 3nb3 + • • • = —

sin 3\p: %fi2nai + 2fxnbi — 3na3 — 8b3 + • • ■ = —

in the flapping coefficients a0, 01, 61, • ■ • . Placing an = bn = 0 for n>N, one can solve
the first 27V+1 equations for a0, ffli, • • • , air, bff. For instance, for the numerical values

n = 1.7, mgrC0/Iu2 = 0.03, X = - 0.10, i>0 = 0.2, = d, = 0, n = 0.34738 .(12a)

which are representative for a helicopter, one finds that

/30(ip) — 0.124 — 0.125 cos \p — 0.057 sin — 0.012 cos 2\p
+ 0.007 sin 2\p - 0.001 cos + ■ ■ ■ (12b)

is the forced response.
Glauert8 initiated the above method of approach in his fundamental paper on

6 J. A. J. Bennett, Rotary-wing aircraft, Aircraft Engineering, May, 1940. An account of the work of
Glauert and Shone6 is also given in this paper.

6 Glauert and Shone, R.A.E. Report BA 1080, 1933.
7 This is a departure from the commonly accepted notation Pa=aa—ai cos wt—bi sin at—a^ cos 2at

— 62 sin 2a)t— ■ ■ ■ .
8 H. A. Glauert, A general theory of the autogyro, R. & M. No. 1111, British A.R.C., 1926.
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rotor blade theory, and carried the expansion of /3o to first harmonics. Subsequently
Lock,9 Wheatly2 and others determined also the second and higher harmonic flapping
coefficients. They found from numerous examples (for /x~0.5) that the convergence
of /So is sufficiently rapid to permit termination of the series with the second harmonic
terms.

Although a numerical determination of /3o has thus been accomplished, (in con-
trast with the lack of similar solutions for /3i and jS2,) the problem of forced vibrations
cannot be considered as completely solved so long as the convergence of series (10)
is based solely on an appeal to numerical examples. It will be shown in Section 6 that
for definite values of ju and n the expansion (10) diverges. The motion /3 is then said
to be in resonance with the excitation E(ut).

3. Solution of the homogeneous equation. Determination of the transients is very
simple in vertical flight. Placing /x = 0 in Eq. (6) one obtains the familiar equation of
damped motion

d^p/dxp2 + ndf}/d\p + /3 = 0. (13)

This has the solutions

/Si = exp (— • cos \/l — 1p,

/S2 = exp ( — \wp) - sin V1 — i»2 4/-

For fjt>0 one can write in analogy

Pi = eiWO'PiM,
Pi = eo(^)<P2(^),

where

ei(i) = exp (- \navvii),

e2(£) = exp (- \navv$),

(14)

(15a, b)

(16a, b)

and <Pi(i/') and <P2(\p) are oscillatory functions. napp can be called the apparent damping
coefficient.

The functions ei, e2, <Pi, <P2 can be determined in the following manner. One sub-
stitutes10,11

0 GW =!#)■« WO, (l7)

e(\f/) = exp ^ —J p(t)di*j = exp (— %mp + f n/j. cos yp) (17a)

into Eq. (6). This leads to an equation for the factor v(\j/) in which the first derivative
is absent. Replacing the trigonometric functions by exponentials, the equation can
be written in the form

  rfV#2 + [tier** + dfe-'* + d0 + die+ e2eu+]v = 0, (18)

9 C. N. H. Lock, Further development of autogyro theory, R. & M. No. 1127, British A.R.C. 1928.
10 Whittaker and Watson, Modern analysis, p. 194, Cambridge, 1927.
11 The notation /' indicates that only the upper limit, t, is to be substituted into the indefinite in-

tegral of p(t).
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where

00 = 1 — \n2 —

01 = 1m«(1 + in), (19a, b, c)

02 = — hi),
and 6* denotes the conjugate complex of 0. By writing v(\p) in the form

+0O

v(iP) = ef* £ Ckeik+ (20)
—oo

the differential equation (18) is reduced to an infinite system of«linear homogeneous
equations in the C*.

For the values

i q
+ a = — arctan —-== -f- mi for — 1 ^ q 1 (21a)

7T V 1 — ?2

— log {q + vV ~ 1) + (.m — |)i for q ^ — 1, q ^ 1 (21b)
7T

where

— log (q' + \Zq'* + 1) + mi for q imaginary (21c)
ir

m = 0, ± 1, ± 2, ■ • • (22a)
q — \/<D sin ■wy/da or \/—<D sinh 7r\/ — 0o (22b)

9' = V- D sin xv^ or \/D sinh ir\/ — 0o C22c)

= l/(0o - £2) (2 2d)

and12

<D =

1 0i*y2 02*3*2 0 0

0iyi 1 0i*3'i 02*3-1 0

023-0 013-0 1 0 *3-0 02*3-0

0 023-1 0i3-i 1 0*3-1

0 0 023-2 013-2 1

(22e)

the system of equations is consistent, and the expansion coefficients Ck can be de-
termined. Two solutions are obtained, Ct" and C®. The first set for, say,

<r = <t\ = <rr + icri, <rT = 0, (23a)

n It was shown in I that the infinite determinant D may be expanded (for small into a power
series in 8=|0i|a, e = j j2 and ^ = i(®i®2+®i"®2)- The leading term of the expansion is 1; the higher
coefficients are functions of 0o only and may be obtained from the Tables of I.
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the second set for

a = a 2 = — £Ti. (23b)

The two solutions are linearly independent, except when <rr = 0, and 2<r, = integer.
The trigonometric function cPi(\p) is now obtained as the product

+00

<Pi(^) = exp (f nn cos i) ■ X) exp i(<n + k)i (24a)
k=—oo

and the exponential function as the product

eity) = exp ( — Jw^)-exp (o>^). (24b)

The determination of tfV^) and e2{\p) (call these Eqs. (25a, b)) is similar. It is seen
now that e\ involves the apparent damping coefficient

naVv i = n — 2 o> (26a)

which is smaller than n, and e2 involves the apparent damping coefficient

fiapp2 — w [ 2o*j- (26b)

which is larger than n. Evidently, nappi is the critical damping coefficient.13 It will be
written without the subscript 1.

Example. Determine the flapping transients ft and /32 of a helicopter for which
n = 1.7. Choose an advance ratio n between 0.30 and 0.35 so that the Tables of I
(which cover the range 80 = —0.6 to +0.5 in 0.05 steps) be directly applicable.

One finds from (19a) that for

n = 1.7 (27a)

and

do = 0.2 (27b)

the advance ratio has the value

IX = 0.34738. (27c)

This yields, by (19b, c) the values

0! = 0.19685 + 0.33465i, d2 = 0.03875 - 0.10258i. (27d)

The characteristic exponents

<n = 0.30782 + K <?2 — — ci (28)

associated with the numerical values (27), were determined in I, Section 4. The cor-
responding functions fli(^) and v2(}p) were also given there. Eqs. (24) and (25) now
yield14

wn — 2<rr<0 implies instability. The arbitrariness in the value of m, Eq. (22a), is removed by
making Co the dominant term of v(\p).

14 The normalization is used: the sin -ji/- term of vt and the cos \>p term of Vi are written with the coeffi-
cient 1.



156 GABRIEL HORVAY [Vol. V, No. 2

ei(y) = e-o-ww, (29a)

<Pi(y) = ~ 0.0733 cos + 0.8369 sin + 0.1923 cos + 0.1717 sin #
+ 0.0268 cos + 0.0131 sin # + 0.0023 cos + 0.0023 sin ^
+ 0.0002 cos + 0.0004 sin f^ + • • • , (29b)

and

e2(^) = e-i.i678^ (29c)

= 1.2863 cos + 0.3795 sin + 0.4404 cos # + 0.1028 sin
+ 0.0676 cos # + 0.0229 sin # + 0.0068 cos ̂  + 0.0050 sin &
+ 0.0005 cos + 0.0006 sin f^ • . (29d)

+1.0

-id

Fig. 2. Transient blade flapping modes /SiO/-) =ei(^)<Pi(^) and /3a(i^) = £2 WP2OA) for
damping coefficient re = 1.7 and advance ratio ^ = 0.34738.

The factors gj, fPi and e2, f2 of the transient flapping angles /3i and |S2 are plotted
in Fig. 2 as functions of \J/. 'Piiip) and cP(\p) are drawn normalized to 1 at their maxima,
ei(\[/) and e20/0 are drawn normalized to 1 at \p = 360°. The graphs indicate that at the
very large advance ratio /j. = 0.347 the flapping motion of the blade, as given by Eq.
(6), is still so stable that a transient reduces to less than 4% of its original amplitude
within one revolution. The wave form <P(\p) of the transient contains a pronounced
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third harmonic component and unimportant higher harmonics. The frequency of the
transient (or more exactly, of the dominant term of the transient) is one half of the
rotor speed.

4. Stability, of blade flapping motion. It was seen in the preceding section that the
transient y3i is associated with an apparent damping coefficient nappi which is less than
n when <7r^0. aT can be called the "absolute degree of destabilization" of the system.
For a damped system (ra>0), like the present one, it is more convenient to charac-
terize destabilization in terms of the ratio

2 arln = 1 — napp/n. (30)

This can be called the "relative degree of destabilization" of the system, or briefly,
the degree of destabilization. For the example of the preceding section (n = 1.7, d0 = 0.2,
^ = 0.34738) the degree of destabilization is 2crr/n = 0.362.15

When

2 Gr]n 0, or naPPjn — 1 (31a)

a system is completely stable. When

0 < 2<r,/ra <1, or 1 > napp/n > 0 (31b)

the system becomes partially destabilized (transition region), and when

2crln > 1, or napp/n < 0 (31c)

the system is unstable.
For conventional rotor blades n ranges from 1.4 to 1.9 (at sea level), and /i-~0.35

represents the maximum attainable forward speed. By a systematic determination
of or associated with the values 1.4, 1.5, • • • , 2.4, 2.5 of n, and the values
— 1, —0.9, • • • , +0.4, +0.5 of 9o the writer computed the degree of destabilization
2<rr/n in a n, n region which covers the range of practical interest. The plots are shown
in Figs. 3a, b. The calculated points are indicated by crosses. The points on the ju-axis
(small circles in Fig. 3b) were obtained by means of an auxiliary graph giving the plot
of q and g' vs. n for various n. In Fig. 4 this construction is shown for n = 1.4, 1-9,
2.0, 2.1, 2.4. The intersections of the curves with horizontal lines of ordinates 0 and 1
yield the fx values for which cr = 0.

A replot of Fig. 3, with ju as abscissa, n as ordinate and napp/n as the index of the
curves leads to the stability diagram, Fig. 5. The diagram indicates two complete sta-
bility regions, and two transition regions. The complete stability regions are charac-
terized by napp/n — 1 and by response frequencies which vary with /z and n (between
0 and Jco); the transition regions are characterized by the fixed frequencies 0 and Jw,
respectively, of the response, and by degrees of stability napp/n which vary with jx
and n (between 1 and a minimum).

From Fig. 5 it is clear that the flapping motion is very stable for n< 0.5 at any n.
This is in agreement with the conclusions reached in the preceding section for the spe-
cial case of n = 1.7.

15 For ra = 1.7, 0o = O one finds ju = 0.65734, and 6\ and 02 assume the values given in I, Sec. 5. The
corresponding degree of destabilization is 2o>/» =0.510.
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Figs. 3a and b. Degree of destabilization of rotor blade vs. advanced ratio at various values

of the aerodynamic damping coefficient n.



Fig. 4. The functions g and q'.

Fig. 5. Rotor blade stability diagram. Level lines indicate the relative degree of stability for
various values of the damping coefficient and the advance ratio.
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It may be well to recapitulate at this point the various assumptions on the basis
of which the stability of flapping motion was established. The assumptions are as
follows: The blades are attached to the rotor shaft by means of flapping hinges only
(the freedom of oscillation of the blades in the rotor plane, about the lag hinges, is
thus disregarded), and the distance of the hinges from the rotor axis is negligible.
The hinge axes are perpendicular to the rotor shaft and to the respective blade span
axes. The blades are untwisted, and are rigid both in bending and in twist. The
chord and the lift coefficient are constant along the blades. The uniform motion of
the helicopter is not affected by the oscillations of the blades. Of the aerodynamic

n=/caRygi

N

° 8 S S T

00 £ Si fv

2? 3
l00(|-en»PP7r_) = 7o dec rease per revolution of amplitude of transient vibrations

Fig. 6. Stability chart of rotor blade flapping motion.

forces which act on the blades only the velocity square lift forces are taken into ac-
count. Air velocities in the direction of the blade span are neglected. The field of in-
duced velocities is assumed as constant over the rotor disc, and interference effects
between the various blade elements are disregarded. All angles involved (but \f/) are
small, in particular the angle of attack is always less than the stalling angle.

Although the above assumptions are violated by a helicopter in many respects,
experience has shown that the steady state solution (10) gives a description of the
flapping motion of the blades which, for ju~0.35, is in satisfactory agreement with the
observations. Thus Eq. (5) can be considered as essentially correct.

From the practical point of view the plots of Fig. 6, giving the percentage decrease
per revolution of the amplitude of a transient, constitute the principal result of the
present paper. On the one hand the chart establishes the hitherto unsuspected and
curious behavior of the flapping transients near n =\/3 (the stability decreases as n
increases, the natural frequency of the flapping motion is |w over a wide range of n's
and n's); on the other hand it also focusses attention on the sluggishness of the blades
in recovering their steady state motion when the value of n is small. Blades with low n
must therefore be avoided.16

16 The widely held belief that "the natural frequency in flapping is equal to the speed of rotation"
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The problem of blade response to control deflections leads to considerations which
go beyond the question of the rate of extinction of a transient, and will therefore be
taken up in a separate paper.

5. The functional relation <rr+i<Ti=(r(n, n). The characteristic exponent a- is a
simple expression, (21), in the combination q (or q') of d0 and D. 60 and D in turn are
functions of the advance ratio /j. and the damping coefficient n. As n increases, 60,
Eq. (19a), decreases monotonically. The variation of O with ju is more complicated.
3D becomes infinite for 0o = O2, l2, 22, • • ■ ; for the flapping problem (0o<l) only for
0o = O. Elsewhere D fluctuates between positive maxima and negative minima.18 Cor-
respondingly q maxima (<rr maxima) alternate with q' maxima (<jt maxima). (Cf.
Fig. 4 which shows the 5(m). s'G") variation near the Origin.) Complete stability exists
only in the very narrow strips where O^g^l. In these regions the ratio Wapp/w is
constant at the value 1, while the frequency varies across the region by In the
remainder of the ju, n diagram the dominant frequency of the transient is an integral
multiple of fw, and one has either 0 <2(rr/n<l (transition region), or 2<rr/w>l (in-
stability region).

The relationships ov-ficr, = cr(ju, n) can be best appraised by considering the varia-
tion of cr with /x for one particular value of n. Such a survey is carried out below, first
for n = 2A in the ju-range 0 to 0.5 with the aid of Fig. 5; then by an approximate
method for n=\/3 in the ju-range 0 to 8.0 wth the aid of Figs. 7, 8, 9. Although
Eq. (5) ceases to give an approximate description of blade flapping when the stalled
areas of the blades are large (when ju~0.5), the equation is of interest, per se, also in
this case, and an investigation of the behavior of the solutions of (6) for large values
of ju aids in the formation of a clear picture of the variation of a with \x and n.

For « = 2.4, ;u = 0, the transients /3i and ft are solutions of Eq. (13), and thus can
be written as

/Si = .exp (— + Vjw2 — 1)<A = exp (— 1.2 + 0.663)^, (32a)

/32 = exp (— — Vjm2 — 1 )>A = exp (— 1.2 — 0.663)ip. (32b)

Therefore napvln — 0.447 and Ci = 0. The same result is obtained also from the general
theory. Since for \i = 0 one has D = 1, therefore

q' — sinh x\/-J »2 — 1 = 3.95, (32c)

cr = — log (?' + vV2 + 1) = 0.663, (32d)
IT

and again

1 - 2crT/n = 0.447, <r,- = 0. (32e)

(quotation from Bennett's Princeton University Lecture Notes On the physical principles of the helicopter,
p. 1, 1944) is largely the result of an unfortunate misuse of the expression "natural frequency" for the fre-
quency at which the phase displacement between impressed force and response is 90°. For many slightly
damped systems with constant parameters this frequency nearly coincides with the frequency of the
transient,17 but sometimes, as in the present case, there is considerable divergence between the two.

17 J. P. Den Hartog, Mechanical vibrations, p. 63, McGraw-Hill, 1940.
18 Oscillation theorem, cf. M. J. O. Strutt, Lamescht, Mathieusche und verwandte Funktionen in

Physik und Technik, p. IS, Springer, 1933.
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As n increases, q' decreases until it reaches zero at /x~0.334. Correspondingly
trr also decreases to 0, the characteristic curve (the common boundary of the transition
and the complete stability regions) is breached, q' changes into q, and the complete
stability region is entered. Between /x~0.334 and /jl~0.352, q varies from 0 to 1.
Correspondingly <rr = 0, while <r< varies from 0 to In the transition region that fol-
lows <Tj = §, and <rr varies from 0 to a maximum, then back to zero. (The diagram does
not extend sufficiently to the right to show this variation.)

4. 6 &
B advance ratio, p.-

Fig. 7. Stability of the equation p+nwp+w'il+^nn cos at)(3 = 0 by the "twin-ripple method" of
approximation. Complete stability regions are blackened, transition regions (bounded by the curves
naPT/n = \ and naPP/n=0) are lightly shaded, and unstable regions are left blank. The encircled numbers
indicate the dominant frequency of the transient (in units of to) in the respective instability and transition
regions.

Fig. 7 shows qualitatively the conditions which hold for Eq. (6) at large values
of n- This diagram was obtained by replacing the variable coefficients of /3 and /3 in
Eq. (6) by their constant averages first in the \//= —ir/l to +ir/2 interval, then in
the \I/ — t/2 to 3ir/2 interval. The resulting pair of differential equations was solved
by the method of Meissner19 (better known as the Van der Pol-Strutt "rectangular
ripple" method20-21) which was adapted to damped systems by Shao Wen Yuan and
the writer.22

19 Strutt, ibid., p. 39.
20 Den Hartog, loc. cit., p. 389.
21 S. Timoshenko, Vibration problems in engineering, p. 164, D. Van Nostrand, 1937.
22 G. Horvay and S. W. Yuan, Stability of rotor blade flapping motion when the hinges are tilted. Gen-

eralization of the "rectangular ripple method" of solution, to be published soon. The procedures used in ob-
taining diagrams like Figs. 7, 8, 9 are also discussed in this paper.
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In Fig. 7 the regions of complete stability are blackened, the transition regions
are lightly shaded, and the regions of instability are left blank. Consider the ordinate
n =y/z. For /x = 0 one has the solution

Pi = cos Pt - sin napp/n = 1; (33)

the transition region (J) extends into the point (n, n) = (0, \/3) of the ordinate
axis. As ix increases, the stability decreases until a minimum of napp/n~0.50 is reached
around /t~0.85. Thereafter the stability again increases.

In the present approximation of Eq. (6) complete stability (<rr = 0) sets in at
—'1.24 and ceases at /*-~1.28. In the meantime <Ti has increased from § to 1. In the

region 0-,= (T) (the dominant frequency of the transient is now u) <rr varies from 0
at/x~1.28 to a maximum of ~1.0 at/^~3.2 (yielding napp/n~ — 0.16), and then back
to zero at ju~4.02. First comes the transition interval (1 >ncpp/n>0) from /x~1.28
to ju~2.27. This is followed by the instability interval (napp/n<0) from 2.27 to
ji~3.83. A second transition interval (1 >napp/n>0) from /x~3.83 to /i~4.02 com-
pletes the (I) interval. There follows now a very narrow complete stability interval,
/x~4.02 to 4.03, in which <rr*=0 while varies from 1 to l£. This is followed by
the (l^ transition interval, this by the (lj) instability interval; and so on, indefi-
nitely. Complete stability, transition, instability, transition, complete stability re-
gions alternate, ad infinitum.

The stability regions, associated with aT — 0 and varying <T;, become ever narrower,
the instability regions, associated with <r, = const, and varying a, become wider and
graver. The orders (0) , (D ,(£),*•• of the transition and instability regions are
marked in the diagram. The regions (0), (1),(2), • • • can be called even ordered regions
(the dominant frequency of the transient is 0, 2, 4, • • • X^w); the regions
0. (&).*•• can be called odd-ordered regions (the dominant frequency of the
transient is 1, 3, • • • X|o>). The boundary curves napp/n = \ and 0 are also indicated
in Fig. 7. Level curves which touch the n =\/3 horizontal line complete the picture.

It is rather interesting to note that although Eq. (6) reduces to a damped Mathieu
equation when n is very small (/i2~0), Fig. 7 shows a departure from the conventional
stability diagram given for these equations. In the first place, the present diagram
plots n vs. n, whereas conventionally one plots d0 vs. /x. More fundamental is the
change in behavior near the origin. Since the oscillating terms of the spring force
s(t)(i tend to zero as n—»0, no transition region, like the one at n=y/2>, fi = 0, 0o = !,
wedges into the origin n=n = 0, 60 = 1. A second comment is also in order. The twin-
ripple approximation used in obtaining Fig. 7 accounts in an approximate manner
for the stiffness fluctuations produced by the c°s P spring term of Eq. (6).
In the process of averaging the coefficients of Eq. (6) both the icofin sin uit-\3 damping
term and the u2n2n sin 2ut /3 spring term are eliminated. However for large m. the
H2 term of s(t) has the principal effect. This effect can also be evaluated by a "twin-
ripple" approximation, provided one first omits the two /i-proportional terms of
and then averages the n2 term in the intervals 0 to ir/2 and t/2 to n. The resulting
stability conditions are indicated in Fig. 8 for the value n =-y/3.

The diagram indicates that in the absence of the terms ^u/xn sin xf/P and
cos ^ of 7(/3) the region of complete stability extends from jli = 0 to about

ju~l. For n>l the system is mostly unstable. Comparison of Figs. 7 and 8 indicates
that the high order instability regions crowd much closer to the origin than was sur-
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Fig. 8. Instability troughs of the equation 0+«u/3+w2(l sin 2wt)[i =0, (» =\/3), by the twin-
ripple method of approximation; navr/n = 1 represents complete stability, 0 <n„vp n <1 represents transi-
tion, napj>/n <0 represents instability. The calculated points are indicated by small circles. The encircled
numbers indicate the "orders" of the regions.

Fig. 9. Instability troughs of Eq. (6) for »=»\/3 by a "4-ripple approximation." The calculated
points are indicated by small circles. The encircled numbers indicate the "orders" of the regions.

mised on the basis of Fig. 7. Moreover the instability caused by the ji2 spring term is
much graver than that caused by the first power n term.

It is to be expected that in an exact solution of Eq. (6) the first power ju terms
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determine the stability conditions for n < 1, whereas the ju2 term is principally respon-
sible for the stability conditions at fx> 1. This is born out by Fig. 9. Fig. 9 was obtained
by use of a "4-ripple" approximation. (The interval 0 to 2ir is divided into 4 equal
parts and the coefficients p{t) of $ and s(t) of /3 are replaced by their averages in each
interval.) This approximation takes into account the effect of all the oscillating co-
efficients of Eq. (6). The figure shows that for n > 1 the odd ordered instability regions
(which are produced solely by the ju-proportional terms) are of minor importance as
compared with the even ordered instability regions.

6. Resonance.23 The preceding sections were concerned mainly with the transient
solutions of Eq. (5). The present section deals with the steady state response.

In general, the assumption (10) leads to an equation system (11) which can be
solved for the Fourier coefficients a0, «i, • • • , Ojv, for, • • ■ . When however the de-
terminant A of the system vanishes, then the Ansatz (10) fails. In this case

/3o = ao + cos cot -I- bi sin c*)t -f- cos 2cct ~f- * ■ *

+ t\ca + ci cos ait + d\ sin ut + Ct cos 2iut + • ■ • J (34)

is the correct form for the solution of the equation. Note that the response becomes
infinite even though the system is damped.

What are the conditions for A = 0? Evidently, A = 0 implies that the homogeneous
equation (6) has a solution which is of the form (10). This in turn implies

c = \n + mi (m = 0, 1, 2, • • • ). (35)

Thus, resonance occurs on the nappJn = 0 boundary lines of the even ordered transition
and instability regions. From Fig. 5 it is seen that for helicopters resonance excitation
is just as remote as instability.24

There are two more interesting questions which arise in connection with resonance.
(1) How would conditions change if the exciting force on the right side of Eq. (5) were
of the form

( sin')
E(t) = < >vt, where 2a>, • • • ? (36)

(.cos;

(2) How would conditions change if the system were undamped, i.e., if the p(t)p term
were absent from Eq. (5), but the s(f)/3 expression still contained oscillating terms of
frequency w?

If v = \w or an odd multiple of it, then placement of

/So = ffli cos 5cct + b\ sin %ut + a3 cos fa>t + b3 sin fut + • • • (10')

23 This section is based on the paper by G. Kotowski, Losungen der inhomogenen Mathieuschen Differ-
entialgleichung mit periodischer Storfunktion beliebiger Frequenz, Z. angew. Math. Mech. 25, 213, 1943.
Kotowski credits introduction of the method to A. Erdelyi, Arch. Elektrotechn. 29, 473, 1935.

24 Since the response amplitudes are large near a resonance frequency the following question is of
interest in many problems: how deep do the regions of large amplifications extend into the transition re-
gions or perhaps stability regions? Kotowski answers the question for the equation y+(X+cos x)y
=a0+<zi COSX+O2 cos 2x, by plotting the resonance curve. (X is the variable parameter.) In the present
problem the great distance of the helicopter operating range, m^0.35, from the nearest narp/n=0 curve
eliminates the necessity for such an investigation.
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into J(j3) *=£(/) leads to an equation system (11'). with a determinant A' which in
general does not vanish;26 A' vanishes only when the homogeneous Eq. (6) has a solu-
tion of the form (10'), i.e., when

<r = \n + (2 4- tn)i (m = 0, + 1, + 2, • • • ) (35')

Thus, for v — odd multiple of 0, resonance, occurs on the napp/n = 0 boundary lines of
the odd ordered transition and instability regions. In this case expression (10') plus t
times a similar expression is the correct "Ansatz" for the forced response.

When v is a fractional multiple of then

/So = cos w[ao + ai cos c0/ + b 1 sin cot + a2 cos 2oil + • ■ • ]

+ sin vt\ca + C\ cos wt + d 1 sin tot + C2 cos 2wt + • ■ • ] (10")

is the correct assumption for the particular integral. The associated equation system
(11") has a determinant A" which vanishes only when the homogeneous equation (6)
has a solution of the form (10"), i.e., when

a — \n + ^—- + tnj i (m = 0, + 1, + 2, • ■ • ). (35")

But from Eq. (21) it is obvious that a is never of this form, unless n = 0. Thus, when
2v is a fractional multiple of the parametric frequency w, resonance can occur only when
the system is undamped. In such a case the response occurs along the lines <J% =mJrv/o:
of the complete stability regions, and (10") plus t times an expression of type (10") is
the correct form for the solution.

It is to be noted that a single frequency v excites an infinity of response frequencies
v, v±oi, v + 2co, • ■ • , and thus in a system with variable spring and damping coeffi-
cients one obtains an infinity of resonance peaks in contrast with a system character-
ized by a 2nd order differential equation with constant coefficients which shows only
one resonance peak.

The absence of damping also modifies the results for the cases when v is an even
or odd multiple of |oj. The napp/n = 0 curves now coincide with the characteristic
curves of the stability diagram, and

00

[(a* + bkt + cki?) cos kuit + (,dk + ekt + fkt2) sin kut] (37a)
0

and
00

y. [(ffli- + bkt + Ckt2) cos (2k + 1)«* + (dk -f- ekt + fkt2) sin (2k + l)a>/, (37b)
0

respectively, are the proper forms for the resonant response.
The proofs of the expansions (34), etc. are based on the ^ell-known formula26 .

7«_1(^)|8o(^) = p2WO J Vi(x)t~1(x)E(x)dx — »i(^) J' v2(x)t~1(x)E(x)dx (38a)

25 There is no need to write out the equation system.
26 Frank-Mises, Differential und Integralgleichungen der Physik, Vol. I, p. 300, Fr. Vieweg u. Sohn,

1935.
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where e(\p) is given by Eq. (17a); i>i(^), %('P) are the two linearly independent solutions
of Eq. (18);

J = ®i»2 — »2»i = const.; (38b)

and E(\p) is the exciting function.
When v2 is of the form

e-»*/2^ gkeiki (39a)

and the exciting function is of the form

(cos)
m') = i . \ji (j = o, 1, 2, ■ • • ) (39b)I sin J

then the integrand

Vi(x) e~1(x)E(x)

is a series which contains a constant term. This term integrates into yp, and, multiplied
by — e(\p)vi(\p)/J, yields the non-periodic

[cu cos bp + dk sin kip]

terms of the expansion (34). The remainder of (38a) yields the periodic terms of (34).
This proves (34). The proof of the other expansions is similar.27

When the exciting function is of the form

E(i) = i cos i (40)

then, by (38), the response is of the form
00

Mi) = [(afc + ckt) cos k\p + {bk + dki) sin k<p\ (41)
0

Substitution of (41) into the non-homogeneous equation 7(/3) =£(/), and a compari-
son of the coefficients of cos k\p, sin kip, \p cos k\p, \p sin k\p on right and left, yields
an infinite system of equations (11'") for the coefficients ak, bk, Ck, dk which can be
solved in the manner of Eqs. (11). Use of the expansion (41) will be made in the study
mentioned at the end of Sec. 4.

27 The details (for Mathieu's equation) are given in Kotowski's paper. Kotowski also points out that
there are certain exceptional cases. For instance, when a homogeneous Hill equation has a solution of the
form XiCjt cos k\p but none of the form sin k^, then the latter expression is admissible as forced re-
sponse to an excitation E(4>) =sin i/-.


