
182

ANALYSIS OF THE TURBULENT BOUNDARY LAYER FOR
ADVERSE PRESSURE GRADIENTS INVOLVING

SEPARATION*
BY

W. S. COLEMAN
Research Department, Blackburn Aircraft

Part 1.
1. Introduction. In a recent paper by von Doenhoff and Tetervin,1 and subse-

quently in another by Garner,2 a new differential equation of an empirical character
has been advanced, whereby the analysis of turbulent boundary layer development,
and the prediction of turbulent separation, are greatly facilitated. The present paper
deals with the problem theoretically, and, from considerations of the fundamental
equations of motion, establishes an analogous expression which, though analytically
different from that proposed by the above authors, contains the same parameters.
It is further shown how this equation may be solved numerically by an approximate
method of a rather complex character.

On comparing results with those obtained from the empirical relations, it appears
that there is good agreement when the pressure gradient is small, but that discrepan-
cies are more serious for larger gradients tending to separation. In this respect there is
a notable divergence between the results given by von Doenhoff's formula on the one
hand, and that of Garner on the other, the former being appreciably smaller at values
of H in the region of separation. It appears, however, that Garner's relation involves
the three basic parameters of the theoretical equation, whereas, in the case of von
Doenhoff and Tetervin, only two are apparent. There is reason to think, therefore,
that Garner's treatment may be the more reliable, a conclusion which is supported
by the theoretical calculations, in that they are in very much better agreement with
Garner's predictions than with those of von Doenhoff and Tetervin. Nevertheless,
despite the above discrepancies, step-by-step integration of the empirical equations,
in conjunction with the momentum equation, leads to estimates of the boundary layer
characteristics in good agreement with experiment, so that the errors appear to be
less important in the final result.

So far as the theoretical treatment is concerned, it would seem of value in estab-
lishing the essential parameters associated with the new equation, but for ease and
rapidity of calculation in practical cases the empirical approach may prove more
attractive.

We shall now proceed to elaborate the fundamental arguments leading to the
equation concerned.

* Received March 22, 1946.
1 A. E. von Doenhoff and N. Tetervin, Determination of general relations for the behaviour of turbulent

boundary layers, Nat. Ad. Comm. for Aeron. confidential report No. 3G13 (1943). Also reprinted by Aeron.
Res. Comm., Report 6845, F.M.S97, Ae. 2255 (1943).

2 H. C. Garner, The development of turbulent boundary layers, Aeron. Res. Comm., Report 7814,
F.M. 705 (1944).
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2. Equations of fully developed, turbulent flow. The Reynolds equations3 of tur-
bulent motion in a two dimensional field of incompressible, viscous flow take the
well known form

1 ra   a  i
= — — (pxx - puu') H (pyx - pu'v') , (2.1)

p Lax dy J

= — \—(pxy ~ pu'v') + — (pyy - P»V)1. (2.2)p Laac dy JDt

There is also the equation of continuity,

du dv- + - = °, (2.3)
dx dy

where bars denote temporal mean values and primes the fluctuating components.
Adopting Boussinesq's procedure4 of representing the Reynolds stresses pu'u',

pv'v', pu'v' by an apparent increase of viscosity, we replace the natural coefficient
of viscosity p. by (p,-\-pe), where e is the measure of the momentum interchange due to
turbulence, and must therefore be considered to vary with respect to the space co-
ordinates. The Reynolds stresses are further treated in exactly the manner prescribed
by the general theory of stress. Accordingly,

   du
pxx — pu'u' = — p + 2(p + pe) —

dx

  dv
pv'v' = — p + 2(ju + pe) —

dy
/dv du\

\dx dy)

(2.4)

pxy - pu'v' = pyx - pu'v' = (jl + pe)

and Eqs. (2.1), (2.2) become

Du 1 dp dt du de / dv dti\
 =   + (? + e)V2« + 2 + — ( — + — ). (2. 5)
Dt p dx dx dx dy \dx dy)
Dv 1 dp de dv de /dv du\
  = -+(V + e)VH+2 + — ( — + — ). (2-6)
Dt p dy dy dy dx \dx dy/

whence the bars denoting mean quantities are no longer necessary, and will therefore
be omitted in what follows.

3. Curved flow. Intrinsic form of the equations. Equations (2.5), (2.6) will now be
referred to the curvilinear co-ordinates of Fig. 1. Let AB be a segment of any stream-
line of the mean flow, and let PN be the orthogonal curve through the point P on the
streamline where the resultant velocity is q. Let ds, dn be elements of arc of AB and
PN respectively, and finally, let 6 be the angle the tangent to PN at P makes with the
axis of X.

3 O. Reynolds, On the dynamical theory of incompressible viscuous fluids and the determination of the
criterion, Phil. Trans. (A) 186, 123-164 (1895).

4 T. V. Boussinesq, Essai sur la theorie des eaux courantes, Mem. Sav. fitrang. 23, No. 1 (1877).
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Then
u = — q sin 6, v =» q cos 6; ,

a a a a a . a
— = — sin 6 b cos 6 — > — — cos 6 b sin 0 — ;
dx ds dn dy ds dn

a2 de a ae a a2= —  1 1   >
ds2 dn ds ds dn dn2

Fig. i.

and the equations of motion for steady flow take, the form

dq 1 dp
q— = 1- (k + e)

ds p ds
ra2? dq de j(de\ (de\\ de
Laj2 ds dn '\\a$/ \a«/ ' a» ds a»2J

de dq de / dq d6\
+ 2 —   1 ( q — J, (3.1)

ds ds dn \dn ds/
dp

p dn

de dd de/dq dd\■+2q ( q— ); (3.2)
dn dn ds \dn ds/

dd I dp T dq dd (d2d d26) dq dd~\
— = 1- (v + e) 2   h?\—— "I +2 
ds p dn L ds ds (.as2 dn2) dn dnj

whilst the equation of continuity leads to

dq dd— — q — = 0. (3.3)
ds dn
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4. Application to the boundary layer. Integral equation for 6. In applying the equa-
tions of motion to the boundary layer, we make the usual assumptions that

(a) the fluid is of small viscosity;
(b) the boundary layer thickness 8 is small, 0(v116) ;*
(c) the curvatures dd/ds, dd/dn are nowhere large, 0(v-1/2).

Then, with the usual Prandtl approximation5 of neglecting all terms other than those
of first order magnitude, Eqs. (3.1), (3.2) reduce to

. •
dq 1 dp d2q dt dqq — = £+(„ + e)_l + 1, (4.1)
ds p ds dn2 dn dn

d6 1 dp
q*—= (4.2)ds p dn

the equation of continuity remaining as in (3.3).
Further, Eq. (£.2) can generally be neglected, since the total change of pressure

along a normal must be 0{52). The derivatives of p with respect to s may accordingly
be replaced by the total differentials. It will also be legitimate, on the basis of (b)
and (c) above, to regard 5 as measured along the surface, and n along normals to the
surface.

Substitute, now, (3.3) in (4.1) and integrate with respect to n. Then

/'» dd 'dp dqq2 — dn + n b C = (m + pe) — > (4.3)
o dn ds dn

C being the integration constant.
For brevity, write r for the total shear stress (n-\-pe)(dq/dn). Then C is equal to

the surface value r0, and (4.3) may be expressed as

r p c71 dd
f= — = 1 + coS77 + — I q^ — d-n, (4.4)

To to J 0 dt)

with us = 8dp/rods, i) = n/b. Hence,-from (4.4)

dd
dt)

or putting X2^T0/pql, where qi is the velocity at the outer limit of the boundary layer,

d6 X1 ...
(4.5)

t° (df \
pqAdv 7'

dv q y \dv£-4
* It is usual in the dimensional analysis of the equations of motion to regard 5 as O 01'2), which is

the case if the viscous terms are taken to be of the same order as the inertia terms. However, it is known
in the case of the turbulent boundary layer that 5 is proportional to e1". Cf. S. Goldstein, Modern develop-
ments in fluid dynamics, vol. 2, University Press, Oxford, 1938, p. 362.

6 L. Prandtl, Uber Fliissigkeitsbeweggungen bei sehr kleiner Reibung, Verhand. des dritten internat.
Math.-Kongress, Heidelberg, pp. 484-491 (1904).
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so that

0 = X2 f  (— — ws)dii + const. (4.6)
Jo ^ q y \dv /

5. Equation of the boundary layer parameter H. If the constant of integration
in (4.6) is chosen so that 9 is zero at the surface (77 = 0), it follows that —6 will be
equal to the angle between the tangent of the streamline at the point P (Fig. 1) and
the tangent to the surface where the orthogonal through P strikes the surface; or in
less precise terms, —6 measures the divergence of the mean flow with respect to the
surface.

Let 0i be the value of 6 at r] = 1, si the distance along the outer edge of the bound-
ary layer, and let the value \pi of the stream function be defined as

h = I qdn.
J 0

(5.1)

Then, since

dip 1 d\p 1 ds dip 1 dn

ds 1 ds ds 1 dn ds 1

we have, to the order of accuracy of the boundary layer equations ($1=5),

#1

ds

or

1 / db\

1A1 = J ?i ̂ 1 + "^Vs + const. (5.2)

Now introduce the displacement length 5i which,, in terms of 5, may be written non-
dimensionally as

W.'O-^K <5'3)
With respect to (5.1) we have, therefore,

^1 = gi(5 — 81), (5.4)

so that from (5.2) and (5.4)

J qi (di + —^ ds = ?i(5 - 5i) + const., (5.5)

and, on differentiating (5.5) with respect to s and rearranging,

db\ 5i dq\ 8 dqi— 1 — =   0i. (5.6)
ds q 1 ds q\ ds
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There is also the momentum equation which takes the well known form

dd d dq\ To- + + 2)= —= X*, (5.7)
as q i as pqf

where the momentum length # is defined as

Jo q x\ qj

and H = 5i/$. Hence

and therefore

dH d / 5A 1 /d8\ St d&\
ds ds\ § ) & \ ds & ds)

dH d8i dx}
0 = H— • (5.8)

ds ds ds

Now substitute for ddi/ds from (5.6) and for dd/ds from (5.7). It is then found that
Eqs. (5.6), (5.7) may be written alternatively as

dH r
*  = - X*[u, + H{ 1 + + 1)}] - du (5.9)

as

— = Z2[l+ «^(H +2)], (5.10)
ds

in which co« = ddp/rods and ^dp/rods.
6. Discussion of Eqs. (5.9), (5.10) in relation to the empirical formulae of von

Doenhoff, Tetervin and Garner. It is shown in Part 2, Sec. 12, that Eq. (5.9) can be
reduced to the form

dH
& —— = Fi(o)#, Ro, H), (6.1)

ds

R0 being the Reynolds number qi$/v. This is of interest in that von Doenhoff and
Tetervin1 recently introduced an empirical equation in terms of co# and H, that is to
say,

dH
t? = Ft(.u»,H), (6.2)

ds

though analytically their expression differs appreciably from the theoretical relation.
Following a similar procedure, Garner2 has derived another empirical equation which,
functionally, is of precisely the same form as the theoretical result (6.1), but which
otherwise bears a close resemblance to the formula of von Doenhoff and Tetervin.
Garner's solution, therefore, is of particular interest in relation to Eq. (5.9), and it
may be useful to summarize briefly these empirical developments. We will begin by
considering the original work of von Doenhoff and Tetervin.

They observe first that the velocity profile determines H, and point out that the
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converse statement cannot be proved theoretically. They accordingly proceed to sub-
ject the hypothesis to experimental test, and, from a considerable volume of experi-
mental data, show that there is very convincing evidence to support the assumption
that H uniquely defines the velocity profile. On the strength of this conclusion that
the distribution is a uni-parametric function, they then consider how the external
forces acting on the boundary layer are related to H. The argument is advanced that
the rate of change of H, rather than H itself, is the determining factor, and it is further
pointed out that this assumption has the desirable effect of connecting conditions
downstream from a point with those upstream of the point. The problem which von
Doenhoff and Tetervin investigate, therefore, is the degree of correlation between
dH/ds, the pressure gradient dp/ds and the surface friction r0. In the first instance
they attempt to establish a relation between the gradients of H and p when expressed
non-dimensionally as* ddH/ds and —^d{p/^p^)/ds, thus leaving the frictional term
as an independent entity. From their analysis, however, the authors conclude that
there is no general relationship of this kind, a systematic variation with Reynolds
number being noted. They then consider the ratio of the dimensionless pressure gradi-
ent, given above, to the friction intensity which they write in the non-dimensional
form To/pg?. This ratio, it will be seen, is equal to —2ddp/rods. It is therefore propor-
tional to In determining the above quantity, von Doenhoff and Tetervin tenta-
tively assume the flat plate skin friction law, as given by Squire and Young,6 irrespec-
tive of the pressure gradient. Allowing for the fact that dH/ds and dp/ds were ob-
tained by graphical differentiation of the experimental results, they conclude that, at
a constant value of H, there is an approximately linear relationship between &dH/ds
and Mp/r0ds, and consequently arrive at the general result indicated by Eq. (6.2).
Finally, by analyzing their data at a number of prescribed values of H, they are able
to formulate an arbitrary, analytical expression for (6.2) which, in terms of the pres-
ent notation, is given in section 13, Eq. (13.1). _

Garner follows essentially the line of development instigated by von Doenhoff
and Tetervin. He expresses the momentum equation in the form first used by Ho-
warth,7 and, as a result, prefers a power law for the skin friction.8 He also takes into
account the effect of pressure gradients on the skin friction, whereas von Doenhoff
and Tetervin are content in general with the plane flow approximation. Using © and
r as basic variables, where** ©=$2?in, and T = Sdqi/qids, Garner then obtains an
equation for SdH/ds which is analytically similar to that of ref. 1. In the existing
notation it may be expressed, however, in the alternative form given in section 13,
Eq. (13.2), from which it will be seen, since X is a function of Rd, 'that it is entirely
consistent with Eq. (6.1).

* The presence of the negative sign will be clear when it is recalled that von Doenhoff and Tetervin
adopt the alternative form ddq/qds, where, in their notation, q is the dynamic pressure at the outer limit
of the boundary layer.

** The index is subsequently taken as n = 6 in conformity with the choice of Falkner's equation for
the skin friction.

6 H. B. Squire and A. D. Young, The calculation of the profile drag of aerofoils, Tech. Rep. of the
Aeron. Res. Comm., R & M. No. 1838 (1938).

7 L. Howarth, The theoretical determination of the lift coefficient for a thin elliptic cylinder, Proc. Roy.
Soc. (A) 149, 574-575 (1935).

8 V. M. Falkner, A new law for calculating drag, Aire. Eng., IS, 65-69 (1943).
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The empirical equation ior&dH/ds, the momentum equation and a relation for the
skin friction are then sufficient to enable the development of the turbulent boundary
layer to be analyzed. The solution depends on a step-by-step integration which Garner
elaborates in great detail by the finite difference calculus. It assumes that the static
pressure distribution is given, and that the initial values of d and H are known, e.g.
at transition. This problem is discussed thoroughly in both refs. 1 and 2, and need not
concern us further. The integration then yields «? and H at the beginning of each in-
terval. Hence, we seek a form of Eq. (5.9) purely in terms of t?, H and p. This is the
subject of Part 2.

Part 2.
7. Approximations regarding the turbulent and laminar layers. Boundary condi-

tions. It is inevitable that a theoretical approach to the problem of the turbulent
boundary layer must be appreciably more complex than the simple, empirical treat-
ment of von Doenhoff and Tetervin. The difficulty of solving the fundamental equa-
tions of motion, even when the flow is laminar, is here increased by the fact that we
have to consider an "apparent viscosity" which varies from point to point in the fluid.
In order to deal with this feature of the flow, some kind of turbulent mechanism must
be specified and incorporated into the basic equations. The very considerable diffi-
culties of a rigorous treatment of this aspect of the problem are well known, and even
an approximate and much simplified theory, as adopted in the present paper, leads
to a rather complicated solution which does not yield an analytical function for
ddH/ds. Indeed, it has not been possible to present the arguments advanced in the
following pages in the form of a unified theory. Rather the investigation has been
divided into a series of associated problems which are considered individually, and it
is then shown how the results may be combined in a numerical solution to provide
the data for the step-by-step integration referred to in section 6. As a consequence,
it will probably assist the reader to give a statement as to the procedure now to be
followed, and the nature of the approximations involved.

In the first place it will be assumed that the flow may be sub-divided into a tur-
bulent layer, where the effects of fluid viscosity are negligible, and a thin surface
layer (laminar sub-layer) where viscosity is predominant, the transition from the one
flow to the other being regarded as occurring instantaneously, i.e. in zero length 77.
Neglect of v when the motion is fully turbulent implies that e^>v (see Eq. 4.3), an as-
sumption which is valid for sufficiently large Reynolds numbers, and one commonly
made in considering this region.9 It will also be convenient at first to take cos as in-
dependent variable, and we will subsequently derive a method of transforming from

to a;,, which is the variable required in performing the numerical integration of
Eqs. (5.9), (5.10).

On the above basis, we shall then proceed to our first objective, namely the estab-
lishment of the velocity distribution in the turbulent and sub-laminar layers, the two
cases being considered independently, but in such a manner that the essential bound-
ary conditions are satisfied, and further, that the velocity is continuous at the transi-
tion from the laminar to turbulent states. Secondly, the important quantity 6i of
Eq. (5.9) will be investigated. This, it will be shown, depends primarily on the condi-

9 See, e.g., S. Goldstein (editor), Modern developments in fluid dynamics, vol. 2, University Press,
Oxford, 1938, pp. 331-332.
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tions in the laminar sub-layer, which cannot be entirely neglected for this reason.
To a less, but appreciable degree, it also affects the magnitude of the parameter H.
Finally, we develop a method whereby Eq. (5.9) may be evaluated numerically in
terms of t?, H and p (or q\, which is related to p by Bernoulli's theorem).

Turning, now, to the approximate nature of the analysis, we have first the simple
theory of diffusion upon which the flow in the turbulent layer is based. It is assumed
that the intensity components of the turbulent fluctuations do not differ appreciably
(or at any rate are proportional to one another), and that the scale may be sufficiently
represented by a mean length which is a function of the space co-ordinates. Although
the subsequent development of this simplified conception of the turbulent mechanism
near a surface in no way depends on a physical model, it is mathematically equivalent,
nevertheless, to Prandtl's momentum transfer theory,10 and is further closely con-
nected with von Karman's similarity theory11 which appears as a special case in the
present treatment.

Without entering into the details of the argument, it is finally shown that the tur-
bulent velocity distribution may be expressed in terms of two functions / and g, and
the surface friction X, namely,

L(±y X
dv\qj A/-1'2

where

X/-1'2 = — r gf~indr} + const.,
J o

X being a function of the correlation between the longitudinal and lateral velocity
fluctuations, and the scale of the turbulence.

Strictly, when the natural viscosity of the fluid can not be ignored, / and g are de-
pendent on cos, V and the Reynolds number, but, when the flow is fully trubulent, we
neglect, in accordance with our initial assumptions, the viscous terms, and treat both
/ and g purely as functions of co« and 77. The stress function/ may then be equated to/«,
where Jr denotes the component due to the Reynolds shear stress. Hence, assuming
for the moment that X is known, the problem of calculating the velocity distribu-
tion in the turbulent layer reduces to the determination of/s and g. To this erfd, we
first make use of an argument advanced in section 8 (a), namely that approximate
solutions for fg and g are sufficient provided A/if1'2 is itself correctly established.
Accordingly, we express both/a and g as a power series in 77 with coefficients which are
to be purely functions of coj. In the case of fa the coefficients are chosen to satisfy all
the known boundary conditions, with the exception of terms dependent on viscosity
which are regarded as referring to the laminar sub-layer only. This leads to a solution
in quarticform. In addition to the series for g, two particular solutions for X are con-
sidered, viz. (a) when g = function of us only = — A, (b) when A = function of cos only
=Xi. It is then suggested that (a) holds near the surface, while (b) is applicable to-

10 L. Prandtl, Bericht iiber Unlersuchungen zur ausgebildeten Turbulenz, Zeitschr. angew. Math. Mech.
5, 136-139 (1925).

11 T. v. Kdrmcin, Mechanische Ahnlichkeit und Turbulenz, Nachr. Ges. Wiss. Gottingen, Math-Phys.
Klasse, 58-76 (1930).
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wards the outer edge of the boundary layer. By identifying Xi with X when 77 = 1,
and assuming that d\/dt) is then zero, a solution for X, in terms of A and Xi may
then be obtained, if g is expressed as a quadratic, to satisfy condition (a) when 17 = 0,
and condition (b) when rj = l. The resulting distribution of X for intermediate values
of 77 is then regarded provisionally as a valid approximation. Further, when coa = 0, it
appears that the corresponding value of A (designated A0) is then identical to von
Karman's constant K of the similarity theory.11 Its value is therefore known. In
addition, we obtain immediately an integral relation for A/A0 purely in terms of Jr.
Hence, apart from X, Xi is the only remaining unknown. As a first approximation,
but nevertheless one which appears to be well substantiated by experiment, we as-
sume that Xi is independent of wj. Like A0, it must then be regarded as a fundamental
constant to be determined experimentally, the value in the present instance being
calculated to give the best agreement between the theoretical and experimental veloc-
ity profiles for flow in parallel wall channels. Finally, neglecting second order terms,
we obtain a very simple relation for the variation of X with coj, namely X/Xo=A/Ao,
where X0 refers to the condition «8 = 0, and is therefore calculable from either von
Karman's logarithmic skin friction equation,11'12 or from a power law such as Falkner
has published.8 We thus establish a general solution for the velocity distribution in
the turbulent part of the boundary layer.

As regards the treatment of the laminar sub-layer, little need be said. It is essen-
tially in the nature of a linear (double link) interpolation which satisfies the main
wall condition, and preserves continuity with the turbulent flow solution at the point
of transition. It makes no reference, therefore, to the equations of motion. On the
other hand, the approach is justified on the grounds that, when the Reynolds number
is moderate or large, the laminar layer is quite thin, and further, that the velocity
distribution is then mainly linear throughout the region concerned.

The solution for 61, however, requires a little more attention. As already pointed
out, it is primarily dependent on conditions in the laminar layer; it is also largely
determined by the stress function. Hence, the relation for fg considered in the study
of the turbulent velocity profile is certainly no longer tenable near the surface. We
accordingly develop the stress function, which must now be written as /, as a new
power series, applicable for small values of t] only, and including the effects of viscos-
ity.

The procedure for determining the coefficients of the series is similar to that
adopted in dealing with the turbulent layer, except that in this case the boundary
conditions are restricted to the surface. The series is also limited to a quartic in view
of the fact that rj is to be regarded as quite small; at the same time it is desirable on
account of the increasingly involved character of the coefficients relating to higher
powers of 77. The distribution of / in the outer part of the boundary layer is then
represented by a second, independent series which satisfies the conditions at 17 = 1,
and is continuous with the distribution of/near the wall. The fact that this "inner and
outer" solution is not altogether consistent with the previous solution for /, when
viscosity was entirely neglected, is regarded as unimportant, for in the first place both
approaches are only approximate, and secondly, so far as 0i is concerned, it is the dis-
tribution of / in the laminar sub-layer which is critical, whilst the relatively large

12 T. v. K&rm&n, Turbulence and skin friction, J. Aer. Sci. 1, 1-20 (1934).
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error which probably arises in the turbulent region has only slight significance. In the
former case there is reason to believe that, when viscosity is included, the treatment
leads to results of good accuracy.

Finally, having established 0i, numerical estimates of ddH/ds may be made from
Eq. (5.9) in terms of wa. An additional equation relating cos and w# is also given. Hence
Eq. (5.9) may be integrated step-by-step according to ref. (1) or (2).

8. (a) Turbulent diffusion in the boundary layer. The first step towards the trans-
formation of Eq. (5.9) is to develop a theory of turbulent diffusion, valid for the
boundary layer. This is greatly complicated by the fact that the flow is anisotropic.
Nevertheless, an approximate treatment, which has yielded valuable results in the
case of turbulent flow over plane surfaces and in pipes, rests on the assumption that
the intensity components \/w^> do not differ appreciably, and further that the
correlation may still be represented by a single scalar function. Extending this hy-
pothesis to the case of flow in the presence of pressure gradients generally, we write

« = iVifi, (8.1)
where I is the length defining the average scale of the turbulence at any point. To the
order of accuracy of the boundary layer equation ptdq/dn is equal to the original
Reynolds stress — pu'v'■ Denote this component by r«. Then

7r dq      
— = «— = — u'v' = RuvVw* (8-2)
p dn

where the correlation coefficient RUv is here defined as

u'v' u'v'
Ruv ~ zr >

,'2

since, by hypothesis, u'2==v'2.
From (8.2) we then have

and combining (8.3) with (8.1),

  £ dq
v'2 = (8.3)

Ruv dfl

P dq
Ruv dfl

so that the Reynolds stress may be written non-dimensionally as

TR

(8.4)

WAYmm = X2 — ^ I — (—^ , (8-5)pqi' Ruv \ 5 / I dri \ qi/ | drj \ qxJ dr\ \ q\) I br\ \ q\)

the function \ = RZ^{1/^) being, in general, a function of 77, and the Reynolds num-
ber, since the turbulent mechanism is influenced by viscosity near the surface. It fol-
lows that

_ tr X2 d / q

'"'n'T' di) \ 91)!-(-)•/ I di) \ qJ (8.6)
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We now seek to express X in terms of the stress function fR. First differentiate (8.6)
with respect to 77. Then

d\ Vd-q /dq 1 dfR 1
— + — / — — X = 0. (8.7)dt) Ldj)2 / dt] 2/r dt) J

Without loss of generality we may also write

dq / d2q
(8-8>

g being also a function of r?, wj and the Reynolds number. Hence, combining (8.7),
(8.8)

d\ 1 dfR — X = - g, (8.9)
dV 2fB dv

which on integration yields

X = — jT J* gfit^dr] + const. J , (8.10)

or writing h= — /3g/jT1/2fify+const.,

X = fTl, (8.11)
Ignoring for the present the integration constant in (8.10), consider, now, the solution
when g is a function only of wj and Reynolds number, so that with respect to 77

g - constant = — A. (8.12)

Then

X = AJr f fR dt], (8.13)
J 0

for which there is a maximum at 77 = rji such that

(s'l4)

Again, the solution which makes

X = constant = Xi (8.15)

for all values of rj is given by

1 dfR
g = — -^-X1. (8.16)

2]r at]

Now assign to Xt the value of X when 17 = 1. If, further, we make the reasonable as-
sumption d\/di)—*0 as 77—>1, then a solution for X is obtained, which satisfies the above
conditions, by equating (8.11) to Xi when 77=171, with X=Xi in the range 771 <77 <1.
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Whether or not this solution for X leads to boundary layer characteristics in accord-
ance with fact can only be decided by test, but for the present we will regard it provi-
sionally as satisfactory. Hence the necessary and sufficient conditions are

t; = 0, A = 0, g = — A
1 /dfR\ • (8.17)x_x" 8_%:wXxi

In general write

r-A^l+lA/J, (8.18)

where A„ are arbitrary constants. Then (8.17) will be satisfied by the series

g = - A(1 + Am + A2tj2), (8.19)

so that from (8.10)

X =■= Afit J* fit' dy + Ai j" t)fR ' dij + A2 J ij*fRV , (8.20)

and

- - A |"(1 + A., + A„>) + if.'" ^ ( fdn L dr] \ J o

+ A ij' 7)fg dy + At J" y^fii (8.21)

Let

Go - fZ f " fn'dy, G'i = fTv[ f" vfiJ Q J 0

1/2 r1,1
Cn - iL v2f>

J 0

dih

. -V\Jr dr},

and

u.. i+if,:'(^) rv«.
\ dy / v\ J o

vfR,2dv,

h - * + i r1/2 (dfR\ f"tl2 = T/l + 2jRm I -T— I I V JR dy.
\ oy /„, J o

+ ifR*, I
dy /„•/ 0

Then (8.14) makes

Ho = 0, (8.22)

and, to satisfy (8.17), we have from (8.20), (8.21)
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Xi\
Go + GjAi + G2A2 = — (

A > • (8.23)
H1A1 -f- = 0 '

Therefore,

H. (l" G°)

H

Hence, by the definition of h, when 0 <77 <771,

Ai = > (8.24)
(GiB, - GtHi)

Hy
A2 = -   Al (8.25)

/1 — A f (1 + Ait) + A2y2)fx dt] + const.; (8.26)
J 0

and when 771 < 77 < 1,
—1/2

I\ — Xi/r -|- const. (8.27)

It follows from Eqs. (8.6), (8.11) that

d
dri \ qJ h (8.28)

whence, integrating along normals from the outer edge of the boundary layer towards
the surface, and allowing for the condition q—>qi as n—»5,

— =l + hX, (8.29)
?i

where I2 =jilrldri. Hence, the velocity profile is determined primarily, not by the
individual values of/a and X, but only by the product X//T1'2, for which there will be
a unique distribution across any section of the boundary layer, depending on the flow
conditions. We may therefore seek approximate solutions, of an arbitrary character,
for fn and X, provided that, when combined in the above manner, they yield a solution
of (8.29) in accordance with the physical facts.

In the next section we shall make use of this argument to obtain a general solution
of the velocity distribution in the turbulent layer.

8. (b) Velocity distribution in the turbulent layer. It has been shown experimen-
tally1314'16 that, for moderate or large Reynolds numbers, fully developed turbulent
flow in the absence of a pressure gradient, or when the gradient is small (as in pipe

13 H. Darcy, Recherches experimenlales relatives au mouvement de I'eau dans les tuyaux, Mem. Sav.
fitrang. 15, 141-403 (1858).

14 T. Stanton, The mechanical viscosity of fluids, Proc. Roy. Soc. (A) 85, 366-376, (1911).
16 W. Fritsch, Der Einfluss der Wandrauhigkeitsverteilung in Rinnen, Zeitschr. angew. Math. Mech. 8,

199-216 (1928).
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flow), does not depend on viscosity. This fact is expressed quantitatively by the well
known velocity defect law which, in the present notation, becomes*

- It = — (l ) - *(l), (8-30)
X \ ql/

or, extending (8.30) to include the case when the pressure gradient is not negligibly
small (cojf^O),

- It = — (1 —^ = <K«s, i). (8.31)
X \ qj

Hence,

ei, 1 fV u s— i»). (8.32)
orj 11 A

But, from the preceding section, we have obtained X, and therefore h, in terms of/s
and the variables A and X! which are purely functions of ws. Hence, it follows that in
the turbulent region, for which Eqs. (8.31), (8.32) are valid, fR must be a function of

and ?j only. Moreover, we may then write /==/b, and therefore / is also simply a
function of cos and ?j.

We will now obtain an expression for Ii, which satisfies the turbulent velocity
distribution generally, by the argument advanced in the last section. This, it will be
recalled, depends only on the approximate determination of both fx and X, provided
that X/,r1/2 is correctly established. First, therefore, express fR in an arbitrary form.
The problem then reduces to the determination of A and Xi so as to satisfy the above
conditions for I\. Accordingly, proceeding to the approximate development of /«,
we note first that Eq. (4.4) has the alternative form

/ - 1 + ±£ (£)~ (£} d,. (8.33)

Successive differentiation of (8.33) also gives

df
— = Us 4"
di) X2 \ q\/ ds \ qiX2 \qi/ ds\qj

Vj 5 ra /_g\ 9_ /q\ +(q\^d_ /^Yl (
Ldr; \ qj ds \ qj \ qj ds di) \ qjJdrj2 X2

dri3 X2 L 9»)2 \ qi) ds \ qj dt] \ qj ds dr) \ qj \qjds d?72 \ gi/J'

etc.

Consider, next, the known boundary conditions. They are:

* This equation is commonly written in the form {Uc— U)/Ur—f(y/h).
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Q d ( q\ d ( q\ qid
u = 0, — = 0, — (—1 = 0, — ( — ) = — X2 = RSX*;

ql ds \ q\f dri \ qx/ v

q dqi 1 dp d ( q \
, = 1, — = 1, q!— = — I — 1 = 0.

qi as p as oij \ q\/

Hence, for/ and the known derivatives, we have

a/ dH
V = 0, / = 1, f = «h = 0,

07) ay'

d3f i rdX X dqil
— = 4Zi?s6  +   ,
dri3 L ^ ds J

and when

df
i,-lt / = 0, = 0.

or]

These conditions must be satisfied in addition to that discussed earlier, namely, for
fully developed turbulence, the flow is independent of the Reynolds number when
moderate or large. It also follows that may then be taken equal to f. Express,
therefore, Jr as a power series in r/, with coefficients which are purely functions of coj.
If, in addition,/b is to satisfy the boundary conditions, we must ignore those in which
the Reynolds number occurs explicitly, the argument implying that such terms are
only important in the laminar sub-layer. This leaves five boundary conditions to be
satisfied. Accordingly, we write*

Jr = Ao + Aii] + A2v2 + A3ri3 + A^t]*. (8.34)

Hence,

Ao = 1, Ai — cog, A 2 = 0, (8.35)

and

which on solution yield

Ao-\-Ai-\-A2-bA3-\-At = 0")
A1 + 2A 2 -)- 3^4 3 -j- 4A 4

14 =

I4 = 0j

A3 — — 4 — 3a>{

A 4 = 3 -f- 2wj }•
(8.36)

We must now consider the boundary functions A and Xi. First, with respect to Xi,
let us provisionally assume that it has a unique value for the fully developed turbu-
lent boundary layer (i.e. it is constant for all positive values of cos). It then follows
from (8.13) that

* The above series, to fit the same boundary conditions, was firsts suggested by Fediaevsky. See
K. Fediaevsky, Turbulent boundary layer of an aerofoil, J. Aer. Sci. 4, 491-498 (1937).
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[/Z />>].A
(8.37)

Ao .1/2 r " —1/2 ,fZ f V
J 0

dt)

the suffix 0 to A and the bracket of the numerator on the right hand side of the equa-
tion denoting the condition wj = 0. Hence, it remains to determine A0 and Xi. From
Eqs. (8.8), (8.19) we see that, when 77 = 0,

dq / d2q
X--A-/-1, (8.38)or) / ory

 I0.9 I'.o

Fig. 2.
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which is recognized as a form of von Karman's equation for the length I in the similarity
theory.11 Accordingly, when coj = 0, A must be equal to the Karman constant K whose
value, from the logarithmic skin friction law for plane flow (see section 8 (c), Eq. 8.47)
is 0.392. Thus, when

coj = 0, A = A0 = K = 0.392.

Finally, if Xi is to be independent of cos, we may determine its value for any arbitrary
condition of turbulent flow, e.g. for the case of plane flow. Like A0, it must also be
regarded as a constant, only ascertainable numerically by experiment. We will there-
fore assign toXi that value which gives the best theoretical agreement with the data16'17
of Fig. 2. This leads to Xi = 0.14, when it will be seen that the distribution of J2 (cos = 0)
calculated from the numerical integration of Eqs. (8.26), (8.27), in conjunction with
Eqs. (8.34), (8.35), (8.36), agrees very well with the experimental curves for all values
of ?7 outside the laminar sub-layer.

The validity of the assumption Xi = constant, and hence of Eq. (8.37), is discussed
in section 8 (c). Further evidence appears from the general comparison of the theoreti-
cal and experimental velocity profiles in section 10.

8. (c) Consideration of the general skin friction law (ois ̂ 0). The present develop-
ment of the theory of turbulent flow near a surface depends essentially on the three
boundary terms A, Xi and X, of which A and Xi have already been considered. As
regards X, which determines the surface value of the shear stress, or skin friction
intensity, previous investigators have mainly been content to ignore the effect of
pressure gradients on X, and to take one of the well attested laws strictly applicable
for plane flow only. We shall now show, however, that a simple, approximate relation
may be derived to account for the variation of X with coa, i.e. for the influence of pres-
sure gradients on skin friction. This leads to the consideration of the flow conditions
very near the surface, namely for very small values of rj. Eq. (8.34) then reduces to

fn= l + cotfj, (8.39)

and, equally, Eq. (8.19) approximates to

g = — A. (8.40)

Substituting, now, (8.39), (8.40) in (8.26) and integrating, we find

2A .  
h = (Vl + «m-l), (8.41)

Wj

the constant of integration satisfying the condition /i = t; = 0. Or, since cojj; is small
in relation to unity, (8.41) may be expanded to give simply

I\ = A??. (8.42)

Hence, by definition,

16 F. Donsch, Divergente und konvergente turbulente Strdmung mit kleinen Offnungswinkeln, For-
schungsber. Ver. Deutsch. Ing., p. 282 (1926).

17 J. Nikuradse, Untersuchungen iiber die Str'&mungen des Wassers in konvergenten und diver gen ten
Kanalen, Forschungsber. Ver. Deutsch. Ing., p. 289 (1929).



200 W. S. COLEMAN [Vol. V, No. 2

r l l r 1
h = I — di) = — I —

J 11 A J rj

i
= — log„ ij + const.,

A
= Ao + logio r;, (8.43)

where &0 = constant for any given value of cos, and = 2.3026/A. Owing to the fact
that viscosity has been neglected, Eq. (8.43) leads to the well known result that
q = — cc when t] = 0, or, alternatively, that q = 0 at some small distance r]0 from the
surface, t?0 being clearly of the order of thickness of the laminar sub-layer. As shown in
the appendix, the original boundary layer equation (4.3) indicates that ??0 is propor-
portional to 1 JRsX, and we therefore write

0
?7o = —— > (8.44)

where fi, the factor of proportionality, is clearly a function of «j. It is also immediately
apparent from (8.29) that, for the approximate condition 77 = 770, 2 = 0,

(h)m = - ^ * (8.45)
A

Hence, combining Eqs. (8.43), (8.44), (8.45),

1
— = — (h0 + hi log fi) + hi log RSX, (8.46)
X

which has the form of von Karman's skin friction law for plane flow.11,12 Thus, when
coj = 0, Eq. (8.46) must be consistent with von Karman's semi-empirical relation

— = 3.60 + 4.15 log10 Rsc1/2, (8.47)
C/I/2

where C/1/2 —y/2X and, by identifying (8.46) with (8.47), it follows, when h0 and hi are
determined from Eqs. (8.34), (8.35), (8.36) for wj = 0, that £2 has the value 0.131 which
compares with values given by Prandtl18 varying between 0.089 and 0.111. Eq. (8.46)
then reduces to

1
 = 5.97 + 5.88 log RsXo, (8.48)
Xo

and it follows immediately from the relation i£=Ao = 2.3026/(&i)o that A0 = 0.392.
For the case when coa^O, it is necessary to know 12 as a function of coj in order to

obtain X from Eq. (8.46). The difficulty of establishing this relation theoretically may
be avoided, however, in the following approximate treatment, which appears to be
reasonably valid up to values of cos at which separation is imminent.

On splitting the product of Reynolds number and skin friction coefficient in (8.46),
we have the alternative arrangement

18 L. Prandtl in W. F. Durand, Aerodynamic theory, vol. 3, J. Springer Berlin, p. 140 (1935).
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1
— = hi log Rs + hi log X — (h0 + hi log fi), (8.49)
X

or by writing

hi log X — (h0 + hi log 0) = <rhi,

where cr is also a function of ws,

= hilog Rs + <r). (8.50)
A

/

O
o°

1.0 °

0.9
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0.4

o Page & Falkner. Ref. 19.
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30 40 50 60 80

A

90 100

Fig. 3. Comparison of X/Xo and A/A0.

Consider, now, the variation of X with cos when Rs remains constant. Then

X hi (log Rs + cr')

X' ~ hi(\og Rs + a) '
(8.51)

where hi, X, it correspond with ws, and hi', X', a' with cog'.
It further appears from experiment that <s varies only slightly, and is small in

relation to log Rs, provided Rs is moderate or large. Hence, for the ratio (8.51) no
serious error is introduced in neglecting cr, and we then have the simple relation

X hi A ,-— = = —, (8.52)
X' hi A'

which, when wa' = 0, becomes

x A , = —, (8.53)
Xo A0
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A/A0 being given by (8.37) and X0 by (8.48).
Evidence19'20 as to the validity of (8.53) is shown in Fig. 3.
From the very limited data at present available, it would appear that (8.53) is a

reasonably good approximation in the range 0<coj<50, but clearly a good deal more
experimental information is required before the precise significance of Eq. (8.53) can
be ascertained.

9. Laminar sub-layer. The solution of Eqs. (5.9), (5.10) depends on a knowledge
of the momentum thickness, and the parameters H and each of which is a function
of the velocity profile. If, however, the laminar sub-layer is neglected in evaluating
these quantities, appreciable errors will arise, and it is necessary, therefore, to consider
the flow in this region as well as in the fully developed turbulent part of the boundary
layer. Before doing so, it will be convenient to express the displacement and momentum
lengths in the non-dimensional forms

- = f fl-—)dr,~ aX; (9.1)
i Jo \ qj

= f1±(l-±)dv-aX-
Jo qi\ qJ! ; '; 1(9.2)

0 J 0 q\ \ q\)

where, from Eq. (8.29), a= — Con-
sequently,

& a2 (H — 1\

T ~ 7 ( ip ) ' (9'3)

(9.4)

Turning our attention, now, to the lami-
nar sub-layer, we note first that, for mod-
erate or large Reynolds numbers, it is
quite thin. Since, qlso, the velocity dis-
tribution in this region is mainly linear,
a good approximation to the correspond-
ing distribution of 11 may be represented
by the discontinuous curve ABC (Fig. 4).
The characteristics of his curve will be

Fig. 4. Distribution of h in laminar sub-layer. determined by satisfying the essential

19 A. Fage and V. M. Falkner, An experimental determination of the intensity of friction on the surface
of an aerofoil, Proc. Roy. Soc. (A) 129, 378-410 (1930); also Tech. Rep. of the Aeron. Res. Comm., R & M.
No. 1315, 1, 117-140 (1930).

ao G. B. Schubauer, Airflow in the boundary layer of an elliptic cylinder, Twenty-fifth Ann. Rep. Nat.
Ad. Comm. for Aeron. Rep. No. 652, 207-226 (1939).
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wall conditions, and by preserving continuity with the solution (v neglected) where
the laminar flow merges with the turbulent flow. For

0. < 77 < 77',

let

12 = jo + jiV, (9.5)

and for

v' < v < W + v")>
h = jo + O'l — j^)7!1 + jw> (9.6)

where jo, ji,ji are coefficients satisfying the necessary boundary conditions, and tj' , T]"
are defined in Fig. 4. Then, if -qi is the nominal thickness of the laminar sub-layer,

= if
according to the appendix.

Also, from Eqs. (8.45), (9.5), we have, when the approximate condition 77 = 770 is
replaced by the correct condition 77 = 0,

jo = - —> (9.8)
A

and, from the differentiation of (9.5)

J

But, according to Eq. (8.28)

-(-) ■
\ drj /,=0 \ 7i/,_o

O.-jKOl.'
which, from the boundary condition

gives

(,-9)

Finally, if the distribution of I2 in the laminar layer is to be continuous with that in
the turbulent region, we have from (9.6)

'■" (f) (rl- (9'10)
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where (Ii) (h) vt are the values of h and J2 at 17 = 77/ given by the solution of sections
8 (a), 8 (b) when v is neglected.

It follows from (9.7), (9.9) that

\/m
Vi = v' + v" = ——♦ (9-11)Aji

and hence, from the relation

jo + jW = {h)vt - jW,
that

Hence, by definition,

(h)v, ~ Jo - JiVm/jiX
V = — —   (9-12)Oi - Jt)

/> 1' /• VI n 1(jo + jiv)dr] — I {jo + 0*1 ~~ jdv' + jiv}dri - I hdrj,
0 J n' J in

= ~ joyi - hijiv'2 + 2jm'v" + jW2) - f Itdy, (9.13)
J11

and

/3 = f (jo + jivYdrt + f {jo + 0'i - ji)i)' + jiv} %dr\ + f l\dr\,
0 J 1' J rji

2
= joVi + ji(jo + jiv"W2 + ji(jo + j iv')v"2

+ Ijajw'ri" + KiiV3 + J2'?"3) + ^ I (9.14)

10. Velocity profiles. Comparison of theory and experiment. Von Doenhoff and
Tetervin1 have analyzed a large amount of data from velocity measurements in the
turbulent boundary layer, and it is of interest, therefore, to compare their empirical
curves with the theoretical conclusions of the present paper. For this purpose it has
been most convenient to take the actual velocity distribution in the form q/qi =f(n/&)
as a basis of comparison, the experimental data being obtained from cross-plots of
Fig. 9, of the paper quoted in Footnote 1, where q/qi is plotted with respect to H
for a series of values of «/$ = constant.

Fig. 5 gives typical results at «s = 30 and for logi?a=3.5 and logics = 6.0. In
making the theoretical calculations, J2 for the turbulent layer (v neglected) is first
determined from the numerical integration of the reciprocals of Eqs. (8.26), (8.27)
in conjunction with Eqs. (8.34), (8.35), (8.36) and (8.37); X then follows from (8.37),
(8.48), (8.53), and hence the velocity distribution in the turbulent part of the bound-
ary layer from (8.29). The integrals a, /3 are next evaluated in the turbulent region
by numerical integration of J2 and if respectively, and thence for the laminar layer
by direct calculation from Eqs. (9.11), (9.12), (9.13), (9.14). Finally, H follows from
Eq. (9.4), #/S from (9.3) and hence «/# from



1947] TURBULENT BOUNDARY LAYER FOR ADVERSE PRESSURE GRADIENTS 205

7 " */(t) '
The results of Fig. 5, which are representative of a number of such calculations, indi-
cate satisfactory agreement between theory and experiment up to values of H in the
region of separation.

11. Approximate treatment of Eq. (4.6) in the solution of Eq. (5.9). We are now
in a position to consider the solution of Eq. (5.9). This equation contains the impor-
tant term 6i, which, as will be seen from Eq. (4.6), depends on the ratio of (df/drj—us)

Fig. 5. Theoretical and experimental velocity profiles.

t0 (<z/<zi)2- Near the surface, within the laminar sub-layer, dd/drj becomes large, and
it appears that the value of 6i is critically dependent on the distribution of dd/dt] in
this region. Consequently, viscosity is by no means a negligible factor, and it must be
taken into account, not only with regard to the local velocity distribution, already
considered in section (9), but also in so far as it affects the stress function/. In this
respect, the solution is in marked contrast to that of the turbulent, velocity distribu-
tion, for which/may be equated to Jr. Hence, Eq. (8.34) is no longer tenable, and we
must consider a more accurate form, at least for small values of rj, when the solution
will depend predominantly on the viscous terms previously ignored. In dealing first
with the term 61, we shall accordingly divide the analysis into two parts; (a) that in
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which the effects of viscosity are all important, (b) that region outside the laminar
sub-layer where, again, viscosity may be neglected. As before, let us represent the
stress function near the surface by a power series, namely,

f= B0 + BlV + Brf + • • ■ , (11.1)

and solve for the B coefficients from the boundary conditions at r; = 0. Then, as before
(see Sec. 8 (b))

Bo = A<> = 1, B\ = A\ = o>5, Bi = A 2 = 0, (11.2)

6 \ 3i7V ,=o 3 L ds qi ds J
2 2 rX doi"l= — +   , (11.3)
3 LdR# ds qi ds J

where R# = qi&/v.
To a first approximation we now take the relation between X and R# as that for a

flat plate, and determine dX/dR# from Falkner's power law form.8 This in terms of R#
may be written

so that

Also,

 1/12X = 0.08082?,, , (11.4)

dx —13/12
 = - 0.006732?* . (11.5)
dRg

dRo <7i Vdd # dq{~\
ds v Us qi ds J

Hence, substituting (11.5), (11.6) in (11.3)

3 _ -13/12 a W d ^9il ^ dq\ i
-B3=- 0.00673X2?,, Rs\ f-   +   X2RS,2 Lds q\ ds J qi ds

or, from Eq. (5.10) and the Bernoulli relation

1 dq-i 1 dp
q i ds pq\ ds

3 —13/12 3 r ( $ dp) ~1
— Ba = - 0.00673X2?,, Rs X2< 1 + MH + 2) 
2 LI p<??X2 ds) \

8 dp 2
X*Rh

(11.6)

pq'X2 ds

so that
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3B3 = - 2X3i?5[0.00673i?ji?tf13/12 {1 + a+ 1)} + a)SX],

= - 2X3Rl |^0.00673 (^j ' i?71/12{ 1 + <oa(H + 1)} + . (11.7)

We also obtain a relation for Bi as follows. Equation (4.3) may be written

1 rUqVdd 1 d /q\
1 + 0,577 H   I l±)—dV = ( —)

X2 Jo \qj dr, X2RS dr,\qj

<"-8)
x2

,q 1/ I dr, \<7i

which on differentiation with respect to r\ gives

\ qj dr, Rs dr,2 \ qj dr, dr, \ qj \ dr, \ qj

+ 2X217 (~) 7~* (r) ~usX2' (11 ■9)I ar, \ qi/ dr,2 \qx/

and when 77 = 0, q=\ = 0; therefore, from (11.9),

or

d2

We also have from Sec. 8 (b)

34/ 5
dr,* ~ X2 L dr,z \ qi/ ds \ qj dr,2 \ qj ds dr, \ qx)

(±) 1^.(±\ + (±\ A (±X\,
\qi/ ds dr)2\qi/ \ qj ds d7?3\gi/J

3—1 —
drj

and when 77 = 0

f-0 = ̂ [fi (-) f K-)+f (-) f ̂  (-)] • <"•">?4/,_o X L3i72\q1/ds dr,\ q\/ dr, \ qi/ ds dr)2 \ <71/J\ dr]

From (11.1) there is also the relation

= ' (11.12)
24 V aWr-0

Then, from (11.10), (11.11), the first term of (11.12) yields
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iJ_ ±. (±) 1± (i\, l XJiwI r '« + £ ,
8 X2 drj2 \ q\) ds dr\ \ qi/ 4 L ds q\ ds J

3
= —BsUs, (11.13)8

according to Eq. (11.3).
Again, for the second term of (11.12), we note first that (11.10) may be written

alternatively as

[£(")]L dr] \ qi/ J,»o pql

R$ dp— >
ds

1 ^ d2 d2p

ds2

and therefore

8 X2 dr, \qj ds dV2\qJ 8 pql

or, since = 8dp/rods — (5/X2pcf1)(dp/ds), we have, substituting for 5 in terms of coj

1 5 3 /q\ d ' d2 /q\ _ 1 , , 2 d*P //dp\*
8 X2 dr,\qj ds dr,2\qJ 8 P<Jl ds2 / \ds)'8

Further,

dp dq i
ds ~ pqi ds

r/dqA2 d2qn
Lw+9i^J'

d2p p( dq{\2 i d2qi

ds2

and if the Bernoulli velocity distribution is assumed to be linear, which in general is
a reasonable approximation,

fp /(djy= _ ±
ds2 ' \ds) pq\

Hence,

But from (11.7)

1 8 d ( q \ d d2 ( q\ 1 322
 ( — )   ( — ) = X RscoaX.
8 X2 dii\qj ds dr,2\qj 8

2 353
X3Rs =

r /,?V13/12 _1/12( ,"1
2 I 0.00673 l—j Rs {1 + + 1) + <ojX}

For brevity write now
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r /0\-i«/n -i
a m 2 0.00673 (yj {1 + co#(H + 1) + cusXj ,

b = 3B3 = — aX3Rs- (11.14)

Then the second term of (11.12) reduces to

1 5 d / q\ d d2

X2 dt] \ qj ds dr]2 \ q\)

/ q\ d «52 ( q\ 1 b 2

\gi/ ds dy \ ffi/ 8 a

and adding (11.13), (11.15),

1 / C05_X\
54 = — &ws(l + ). (11.16)

8 \ a /

Higher coefficients become progressively more complex, but in view of the fact that
the values of t] concerned are very small, we may, to a sufficient approximation, re-
strict the series (11.1) to a quartic, in which case we have

df
 0)8 = 3 + 4i?4?/3,
3r;

= bv2 [l + J co8( 1 + • (11.17)

This equation, substituted in (4.6), then
enables the distribution of d near the
surface to be calculated.

For the corresponding distribution
in the turbulent part of the boundary
layer, we should, to be consistent, cor-
relate Eq. (11.1) with Eq. (8.34), but,
as already pointed out, the value of 6i
depends primarily on the conditions
near the surface, and the precise form
of (df/dri) — wj at larger values of t] ap-
pears to be less important, provided the
essential conditions relating to / in the
turbulent region are satisfied. We will
therefore write a second approximation
for/ outside the laminar layer as

/=£„'+ B({ 1 - „)
+ 32'(l->7)2, (11.18)

and satisfy the conditions at rj = 1 and
17 = 17*, where rj* (see Fig. 6) represents Fig. 6.
the effective thickness of the laminar
sub-layer. Then, from (11.1), (11-2), (11.14), (11.16), (11.17), wje have, when r} = r/*
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/ = 1 + oisv* + y bV*3 [l + jco8 (l + 77*] ,

= <oa + 6tj*2 + y cos (l + t,*J ,dl
di)

and when 77 = 1 ,/ = df/dt) = 0.
Hence, equating/and df/drj, as given by (11.18), to the above boundary conditions

at 77 =77* and 77 = 1, we obtain

B& = B[ = 0,

1
jw_-t

us

(1 - V*)
(11.19)

and

1 + "1 + 7v'[1 + T"'(1 + !v)"*]

+ y^*2!1 + y W4 + ~~~) ~ w,](1 ~ ^ = 0> (11,20)

which are the two equations from which to solve for B2' and 77*.
The distribution of the quantity (df/dr])— cos in the turbulent layer is then given

by the linear relationship

Ut-2B{(l-n). (11.21)

This is illustrated in Fig. 6, where the line AB represents the solution in the turbulent
region (Eq. 11.21), and the curve OA the corresponding solution in the laminar layer,
as given by Eq. (11.17). The chain curve OCB has been included for comparison, and
is the solution developed in section 8 (b). The curves are approximately to scale, and
refer to the same flow conditions. The effect of viscosity near the surface evidently
has a large influence on the initial distribution of the shear stress, and hence upon B\.
For small values of 77 there is no reason to doubt the accuracy of the curve OA, but
further from the surface the treatment of section 8 (b) is probably a closer approxima-
tion than that afforded by the series (11.18). The true solution would therefore appear
to be represented by a transition curve linking OA as 77—>0 with OCB as 77—>1.

One final point needs consideration. When 77 = 0, so also (df/dr]) — cos =1 = 0, and
therefore the initial value of dd/dt] becomes indeterminate. This may be circumvented
by the following argument. From (11.16)

=0 (f - «.) = V,-0 \OT] /

Likewise,
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Hence, from Eq. (4.5),

-c (-) =
ij-»o \qi/

/dd\
So \dj ~

RSXV-

= - aX.
R\X26

12. Solution of Eq. (5.9) tordcLH/ds. Since, by definition,

we have, according to Eq. (9.3),

a2 (H - 1\

7 ("S")' (121)
Combining, now, Eqs. (4.6), (8.29), (8.53), (12.1) with Eq. (5.9),

dH 2/Ayr ( a2 / H2 — 1\")

, («-„) ■
+ f  — -dr,

( A \2

(1 + M"J .
(12.2)

where Ii, a, j3 are found as described in section (10), and (df/dr/) —wa is given by Eq.
(11.17) in the range 0<ti<tj*, and by Eq. (11.21) in the range n* <77 < 1.

Considering the functional nature of the terms, excluding H for the moment, on
the right hand side of Eq. (12.2), it is evident that they are either functions of cos
and Rs, or of coj or Rs separately. Hence we may write

dH
t? = $i(co5, Rs, H). (12.3)

ds

Actually, from Eq. (9.4), H is also a function of us and Rs, so that (12.3) reduces to

dH
& —— = <t>2(^5, Rs). (12.4)

ds

For the numerical integration of Eqs. (5.9), (5.10) along the lines of refs. (1) and (2),
however, it is desirable to retain the form (12.3).

We now show how (12.2) may be evaluated in terms of the data discussed in sec-
tion (6), namely, when the static pressure and the initial values of d and H at each
step are known.

From Eqs. (9.3), (9.4) we have
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m dH
8 = = , (12.5)

al A
aXo —

Ao

or,

H
"A = (wj)o > (12.6)

aX o

where

d dp 1 dq\
(a)")0 ~ pq\Xl Ts ~ ~X\ qx ~d7 '

Eq. (12.5), or (12.6), can be solved as follows. Given #, Xo is determined from the
law relating Xo and R#, i.e. Falkner's power law,8 or the logarithmic law of Squire
and Young.6 Now assume a value of wj; hence we obtain A/Ao (which is purely a func-
tion of us) by calculation according to section 8 (b), or, alternatively, from Fig. 3.
X then follows. This enables a value of 5 to be found consistent with the assumed
value of coj, and the corresponding value of i?j is calculated. Finally, knowing both coj
and Rs, we obtain a from section (9), and, since H is given, a second approximation
for 5 (or wj) follows from Eqs. (12.5), (12.6). Hence, by trial and error, or by pre-
established families of curves, we may solve for the relation between 5 and By vir-
tue of Eqs. (12.5), (12.6), therefore, (12.2) is expressible in terms of #, H and the pres-
sure distribution, so that formally we have

dH
d —— = 03[(^)o, R#, H]. (12.7)

ds

In conclusion it is worth noting that (o>,,)o is a multiple of Garner's variable T, as
it is of von Doenhoff's corresponding term. Thus, Garner takes

i/6 1 dqi
T = &R# —, (12.8)

<71 ds

and assumes Falkner's power law for the skin friction, viz.

xl = 0.006534J?/'6, (12.9)

so that combining (12.8), (12.9)

$ 1 dqi
T = 0.006534 — —

Xo q\ ds
>

= - 0.006534(o)tf)o.

Similarly, von Doenhoff's term, which we will denote by T', is

i? 1 dqx
r' = 2 — — -j- = - 2(co*)0.

A. o q i ds
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Consequently, as discussed in section (6), both the theoretical Eq. (12.2) and the
empirical equations for xMH/ds of refs. (1) and (2) contain the same basic parameters.

13. Comparison of Eq. (12.2) with the corresponding relations of von Doenhoff
and Garner. For comparison we have taken, as examples, the case (a) when coj = 0,
(b) when co{ = 30, the range of log Rs considered being in both cases 3.5 <log Rs<6.0.
For (b) this range of Reynolds number allows a wide variation of flow conditions to
be studied, from virtually the plane flow state up to separation, which is imminent
when H exceeds 1.8.

Table 1.

0)5 = 0

Log
qid/v

X H #/8 Log
qid/v

MH/dsX 103

Ref. 1 Ref. 2 Theory

3.5
4.0
4.5
5.0
5.5
6.0

2.845
2.724
2.682
2.667
2.662
2.660

20.21
17.29
16.10
15.57
15.31
15.23

0.0526
0.0464
0.0413
0.0371
0.0338
0.0309

1.596
1.421
1.330
1.277
1.242
1.215

0.0937
0.0896
0.0835
0.0776
0.0727
0.0677

2.471
2.952
3.422
3.890
4.362
4.831

-0.996
-0.190
-0.041
+0.007

0.027
0.038

-2.731
-0.102
+0.179

0.202
0.182
0.155

-0.047
+0.306

0.298
0.271
0.190
0.157

Table 2.

«5 = 30

Log
qiS/v

I

H t?/5 Log
qid/v

MH/dsX 10"

Ref. 1 Ref. 2 Theory

3.5
4.0
4.5
5.0
5.5
6.0

7.770
8.086
8.187
8.223
8.233
8.237

103.49
114.81
119.66
121.68
122.36
122.67

0.0379
0.0334
0.0297
0.0267
0.0243
0.0222

2.020
1.902
1.770
1.654
1.566
1.495

0.1460
0.1421
0.1376
0.1328
0.1279
0.1224

2.665
3.153
3.639
4.123
4.607
5.088

35.6
20.7
12.65
7.58
5.06
3.60

72.7
35.1
15.4
7.58
4.34
2.62

62.0
40.9
24.6
14.9
9.23
5.68

Tables 1 and 2 and Fig. 7 summarize the results, those of refs. (1) and (2) having
been calculated from the formulae there given, which, for the present purpose, may
be most conveniently expressed in the notation of the present paper as follows:

Von Doenhoff and Tetervin1

dH
# = e4.68(ir-2-976)[2(^)0 - 2.035(H - 1.286)], (13.1)

ds

with X0 given by Squire's and Young's formula

Xo = [5.890 logjo (4.075/?„)J-2;
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Garner2

dH
& = - 2.068(H - 1.4)], (13.2)

ds

where X0 is based on Falkner's formula

2 —1/6X0 = 0.006534i?^ .

0.08

0.07
8-S79

VOM DOENH0FF & TETERV1H

0.06   Garner
  Theory

0.05

j

19-dH
ds

0.04

'2.440 /No*1-295

0.03
//

O.OZ H36

O.OI

Kg-1.910

L£_
1.050

1.4

i.ii9(SARN£R)
1-207 (VOH DOENHOFf)H

1.5 1.6 1.7 1.8 1.9 ZO ZA
"J,-OH"0

-o.ot

Fig. 7. Comparison of theoretical and empirical solutions for ddH/ds.

In estimating (co^)0, when toj=30, the skin friction law adopted in each case has been
adhered to. Thus, for theoretical values of (wtf)0 Eq. (8.48) applies, whilst for the empir-
ical formulae of von Doenhoff and Garner the particular skin friction equations given
above have been used. This leads to slight variations of (o^)o under otherwise similar
conditions, as will be seen from Fig. 7, where the appropriate value of (wtf)0 is indi-
cated against each point to facilitate comparison.
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For plane flow (wj = 0), both the theoretical and empirical results are in good agree-
ment at large Reynolds numbers, but there is some discrepancy at lower values when
H becomes abnormally large due to the very thick laminar sub-layer. Under these
circumstances the theory is probably unreliable, so that some deviation is to be ex-
pected. The condition that dH/ds =i= 0, or, as is generally assumed, H = constant when
the pressure gradient is zero or small, is, however, well substantiated by theory.

Under conditions of a pronounced pressure gradient, tending to separation, agree-
ment is less satisfactory, not only between the theoretical and semi-empirical solu-
tions, but also between von Doenhoff's and Garner's results.

Some comment on these discrepancies was made in the introduction. It was there
pointed out that the theory is consistent with Garner's relation in that both indicate
MH/ds to be a function of u#, R# and H, whereas the von Doenhoff-Tetervin equation
does not contain R# as an independent parameter. Consequently, in this respect,
theoretical calculations might be expected to agree (as is the case) more nearly with
Eq. (13.2) than with Ea. (13.1), the latter probably being less generally representa-
tive on account of the above restriction.

A further point of interest in regard to the empirical formulae is the value of H
when dH/ds=cos=u# = 0. From (13.1), (13.2) it will be noted that, according to von
Doenhoff and Tetervin, H then has the value 1.286, whereas Garner, after investigat-
ing the variation of H at transition in some detail, concludes that the value 1.4 is a
better approximation. As already observed, MH/ds is very small within the normal
range of II when wj is zero, so that any slight discrepancy to which the above quantity
may be subject will introduce a large change in the value of H at which dH/ds is
precisely zero. In the empirical approach dH/ds was obtained graphically, and there-
fore the difference between the values of H under the afore-mentioned conditions, as
given in refs. (1) and (2), is probably due to errors in the graphical method. By inter-
polation of the theoretical results in Table 1, the corresponding value of II is found to
be about 1.56. Allowing for the approximate nature of the theory, which may accord-
ingly imply errors in the above H value of the same order as for the empirical
formulae, it follows, nevertheless, that Garner's figure of 1.4 is perhaps a better esti-
mate than that of von Doenhoff and Tetervin.

In conclusion, the general form of the equation for MH/ds appears to be estab-
lished, and a method of analyzing the growth of the turbulent boundary layer has
been developed. In practice, however, it is laborious to use, though by extensive
graphical treatment it is considered that the work could be reduced to reasonable
proportions. Alternatively, if some degree of empiricism is acceptable, a reasonably
reliable, simple and rapid means of reaching a solution is possible on the lines of refs.
(1) and (2).

Appendix
According to Eq. (11.8)

pq\ Rs dt]\qi/ dri\qi/ \dr]\gi/

The first term on the right hand side of (A) represents the true viscous shear stress,
whilst the second term represents the Reynolds stress. Where the laminar sub-layer
merges with the fully turbulent layer, the former stress becomes vanishingly small in
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relation to the latter. Let t]i denote the value of t) at which the viscous stress is vir-
tually negligible, and let the ratio of Reynolds stress to viscous stress at this point
be m. Then

X2

Also near the surface

I = ~ (B)\ <?i/I di? \ ?i/ Rs dri\qi/

X = Atj, (C)

and approximately we may write

ifiu
dy \ ?i>

RSX2. (D)

Hence, by combining (B), (C), (D) and re-arranging, we have

\/m
* " (E)

so that if 7)o of section 8 (c) is regarded as proportional to -qi,

1
^7o '—' 77z'—'  ' (F)

RsX

By writing \/~ni/A = constant, Eq. (E) becomes identical with von Karman's equa-
tion12 for the non-dimensional thickness of the laminar sub-layer. For the constant
von Karman finds the approximate value 30. Then if we take the condition of plane
flow, when

A = A0 = 0.392,

we see that

Vm = 30 X 0.392 = 11.76.

or

m ' 138.3.

Thus the viscous stress is locally 1/138.3 of the Reynolds stress, i.e. it amounts to
slightly less than 1% of it.


