
236 NOTES [Vol. V, No. 2

00

| a \ =S | 1 - +*£ Af"/(2n - 1)!.
n-2

Hence, by the first of the inequalities (23),

I « I < | 1 - | + 2 —
On the other hand, the second of the inequalities (23) can be written in the form
H 2, which means that

I 1 — | = 5M ~ I-
This completes the proof, since the last two formula lines imply the inequality | a| <1,
which is (9).

Conclusion. If /x, M are defined by (10), (11), then either (12) or (23) [and so, in
particular, either (13) or (24)] is sufficient for stability.

As an illustration, let

/(/) = (a + b cos 2ir/)_1, where 0 < b < a;

so that (1) becomes the equation known from the problem of frequency modulation.
In this case, (10) and (11) reduce to

^ = (a2 — b2)~112 and M = (a — b)~l,

and so the above inequalities supply explicit conditions for pairs (a, b) which are sure
to be of stable type. Needless to say, the resulting inequalities for a and b are just
sufficient for stability. Incidentally, since f(t) is now positive, Liapounoff's criterion,
/x < 4, also is applicable.

LOWER BUCKLING LOAD IN THE NON-LINEAR BUCKLING
THEORY FOR THIN SHELLS*

By HSUE-SHEN TSIEN (Massachusetts Institute of Technology)

For thin shells the relation between the load P and the deflection € beyond the
classical buckling load is very often non-linear. For instance, when a uniform thin
circular cylinder is loaded in the axial direction, the load P when plotted against the
end-shortening e has the characteristic shown in Fig. 1. If the strain energy 5 and the
total potential <p = S — Pt are calculated, their behavior can be represented by the
curves shown in Figs. 2 and 3. It can be demonstrated that the branches OC and AB
corresponds to stable equilibrium configurations and the branch BC to unstable equi-
librium configurations. The point B is then the point of transition from stable to un-
stable equilibrium configurations.

It was proposed by the author in a previous paper1 that the point A was the criti-
cal point for buckling of the structure under external disturbances, using the S, e curve
for "testing machine" loading and the ip, P curve for "deadweight" loading. The load
P for the unbuckled configuration of the shell corresponding to the point A was called

* Received April 2, 1947.
1 H. S. Tsien, A theory for the buckling of thin shells, J. Aero. Sciences 9, 373-384 (1942).
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the lower buckling load of the shell. The energy represented by the vertical distance
from the point A to the curve BC is then the minimum external excitation required
to cause the buckling at point A.

However, if the external excitation is large, there is no reason why buckling can-
not occur at the point B' directly under the point B. The minimum external excitation
required is then given by the energy represented by the distance B'B. This amount of
energy is actually absorbed by the structure during buckling. Since the curve BA
represents the final state of the structure after buckling, for buckling to happen be-
tween B' and A, energy is absorbed, and for buckling to happen between A and C,
energy is released. But in any event, the lower limit of buckling load is definitely

CLASSICAL BUCKLING

given by the point B', not the point A. Therefore
the lower buckling load should be the load P cor-
responding to the point B'.

By referring to Figs. 11 and 13 of the afore-
mentioned paper, and assuming a square wave
pattern, we find the lower buckling stress a of thin <f>
uniform cylindrical shells under axial load to be
given by

cr = 0A2Et/R

for testing machine loading and

a = 0A9Et/R

for deadweight loading. The corresponding val-
ues under the previously proposed criteria are P
a = 0A6Et/R and <r = 0.298Et/R for the two cases. Fig. 3.


