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The three remaining unknowns are found by distributing the residuals among all six
equations by least squares. When this is done, we find for our original unknowns:

Ci = 3.4727, Cs = - 13.4739, C3 = 14.0244,
Ci =- 0.0003, C6 = 0.0002, C6 = 0.0001.

This method has been applied successfully to least-squares solutions in geometrical
optics and to the colorimetric problem of finding polynomial reflection curves which
will yield a prescribed set of tristimulus values under a given illuminant and fit other
prescribed conditions.

In the latter problem, the small unknowns must be neglected prior to symmetriza-
tion and reduction to unit diagonal.

NEW FORMULATIONS OF THE EQUATIONS FOR
COMPRESSIBLE FLOW*

By B. L. HICKS (Ballistic Research Laboratories, Aberdeen Proving Ground)
P. E. GUENTHER (Case School of Applied Science) and R. H. WASSERMAN (University of Chicago)

Introduction. A prominent aerodynamic effect of combustion in a moving gas
stream is an alteration of the flow pattern owing to heat release within the fluid.
This alteration occurs not only in the immediate neighborhood of heat sources but
also downstream where the entropy and stagnation temperature vary from one
streamline to another. As a background for combustion research, appropriate de-
scriptions of these altered flow patterns have been investigated. This paper considers
the downstream patterns, which are restricted to be the adiabatic and steady flows
of an inviscid fluid. In a second paper,1 diabatic (i.e., non-adiabatic) flows will be
discussed.

Since one-dimensional flow theory2,3 can be considerably condensed by use of the
local Mach number M, it was natural to seek a corresponding condensation with the
help of the Mach vector

M = MV/V
and the Crocco vector

W = V/Vt
in which Vt is the variable limiting velocity at each point of the fluid. The introduc-
tion of Mach and Crocco vectors into the compressible flow equations sufficiently
simplified or altered their form that a number of further investigations were sug-
gested including those of diabatic flow.

* Received Feb. 12, 1947. This paper is a revised report of theoretical work performed by the authors
at the Cleveland Laboratory of the National Advisory Committee for Aeronautics in 1943-45.

1 B. L. Hicks, Diabatic flow of a compressible fluid, submitted to Quarterly of Applied Mathematics.
2 Neil P. Bailey, The thermodynamics of air at high velocities, Journ. Aero. Sci. IX, 227—238 (1944).
3 B. L. Hicks, D. J. Montgomery, and R. H. Wasserman, The one dimensional theory of steady com-

pressible fluid flow in ducts with friction and heat addition, NACA TN, 1947.
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1. Development of the new equations. The basis for our development is the fol-
lowing set of equations:

cvPVVT + p\>-V = 0, (1.1)

pV-VV + V/> = 0, (1.2)
V-,pV = 0, (1-3)

p = RpT. (1.4)
It is appropriate to include (1.1), an expression of energy conservation, because the
entropy 5 and stagnation temperature Tt are not constant throughout the field of
flow. The Bernoulli relation,

cpTt = cpT + iV2, (1.5)

then defines the stagnation temperature. In terms of M and W, equation (1.5) be-
comes

(Tt/T) = 1 + (7 - l)M2/2 = (1 - IF2)"1. (1.6)

The Mach vector equations are derived from (1.1), (1.2), (1.3), (1.4) by the sub-
stitution V =\ZyRf M and elimination of p and T. The new equation of motion re-
sulting is

7-1 1MVM MVM + — V log p = 0, (1.7)
7+1 7

and the new equation of continuity

/ -y—1 \-(rH)/«r-i)
V-fl-t — M2\ M = 0. (1.8)

The equations of motion and continuity in terms of the Crocco vector are derived
similarly, the initial transformations being V = F(W and T = if (1 — W2)/2cp. It is in
addition necessary to use the fact that Tt and therefore also Vt are constant on stream-
lines for adiabatic, inviscid flow (cf., for example, Vaszonyi's proof4). The Crocco
vector equations are then

7 — 1W-VW + - (1 - W2)V log p = 0, (1.9)
27

V-(l - IF^/^W = 0. (1.10)

2. General comments. The local behavior of a compressible fluid is characterized
by its Mach number. Therefore the vectors M and W, from whose magnitudes M can
be determined, supply more useful descriptions of a flow than the vector V from whose
magnitude M cannot be computed without knowledge of Vt. The equations possess
equal generality in all three languages but are simpler in M and W language for these
representations have permitted elimination of all but one vector variable from the
equation of continuity and elimination of all but this vector and p from the equation
of motion. Such reduction in the number of independent variables has heretofore been
accomplished only for iso-energetic flow.

4 A. Vazsonyi, On rotational gas flows, Quarterly Appl. Math. 3, 29-37 (1945).
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Rotational flows are most aptly described by the W language; the added term
MV • M in the M equation of motion brings with it no advantage. (The W language is
still the best when diabatic rotational flows are considered.) However when either M
or W is irrotational, the physical characteristics of the resulting flows make it ap-
propriate to retain each language.

3. Geometry of stream tubes and transition through the speed of sound. In the
one-dimensional approximation, isentropic compressible flows have minimum flow
area at sonic velocity. The same property has been suggested by Prandtl5 for irrota-
tional three-dimensional flows. We shall prove that this property is valid for all con-
tinuous, steady adiabatic flows when an appropriate description of stream-tube area
is introduced.

L

Fig. 1.

Let B be any continuous and solenoidal vector parallel to M. Consider any two
plane sections AAi, AA2 of the stream-tube 2 which are normal to the streamline L
contained in 2. Since /a^B • dAi = fAA2B-dAi= JAABndA a position (m) can be found
for each section such that [Bn(m)AA ]i = [Bn{m)AA ]2 or

d 1 dAA
— log Bn{m) + — —— = 0, (3.1)
as AA ds

in which d/ds denotes differentiation along L. As A.<4—K), Bn{m)—*B, the magnitude of
B on L. Also if s = B/B is the unit vector in the direction of flow

1 dAA
Vs = lim • (3.2)

a^->o AA ds

The fractional rate of change of stream-tube area with respect to streamline arc is
therefore measured by V • s for flow in both two and three dimensions. Similar relations
derived geometrically have been used by von Karman6 for two-dimensional flows.

The continuity equation in M language can be rewritten in terms of V ■ s as

/ y - 1 V1 dM
M-Ml-f — M2) (1 - M2) — + V s = 0. (3.3)

\ 2 / ds

For V s>0, |l — M\ cannot decrease but for V • s <0, | 1 — iW| must decrease in the di-

6 L. Prandtl, General considerations on the flow of compressible fluids, NACA TM No. 805, 1936.
6 Th. von Karman, Compressibility effects in aerodynamics, Jour. Aero. Sci. 8, 337-356 (1941).
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rection of flow i.e. sonic velocity is approached. As A4J"—»1 however, dM/ds diverges
like — (,y + l)(V'S)/4(l — M) and dp/ds diverges similarly. Consequently if M is to
pass through the value unity continuously, V-s must be zero there. Consideration
of the signs shows that the indicated extremum corresponds to a minimum of stream-
tube area at M=\.

4. Thermodynamic considerations. The equation

V X (V X V) = cpVTt - TVS (4.1)

which is similar to Vazsonyi's,4 contains the thermodynamic implications of the V
equations. (Less general equations than (4.1) have also been derived by Crocco,7
Tollmien8 and Emmons.9) The corresponding equation in terms of W and the stagna-
tion pressure pt is easily obtained from (1.9)

7—1
WX(VXW)= (1 — W2)V log pt (4.2)
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showing that there is one fundamental thermodynamic quantity in adiabatic flow,
namely pt, and not two separate ones and Tt. Thus for a given pt = pl distribution,
the same W (or M but not V) field obtains no matter what the variation of 5 and Tt
so long as they combine in the form [Tt exp( — S/cp) to give pi. There seems to
be no corresponding theorem for equation (4.1).

Differentiation of (4.1) yields a differential form of Bjerknes' theorem8

vx[vx(vxv)]=-vrxv5. (4.3)
Differentiation of (4.2) results in Crocco's equation7 containing W only:

fW X (V x wn
VX   =0. (4.4)L i-r J

Equations (1.10), (4.3) and (4.4) were originally derived for isoenergetic flow, a
restriction now seen to be unnecessary.

5. Irrotational flows. We now consider in turn the consequences of irrotationality
of M, W and V fields. If M = V^>m, an integrability condition

VVji/ = /('Pai) (5.1)
must be satisfied if the M equation of motion (1.7) is to be integrable. (A similar
equation for the stream function occurs in theory of rotational incompressible flow.)10.
Since the potential function must also satisfy the continuity equation (1.8) it is to be
expected that the manifold of permissible functions <pm will be somewhat restricted.
This is illustrated by the fact that p exp (yM2/2) is a function of <pm alone, or that
M, ipM and pt are related by the expression

7 L. Crocco, Eine neue Stromfunktion fur die Erforschung der Bewegung der Gase mil Rotation, ZaMM
17, 1-7 (1937).

8 W. Tollmien, Ein Wirbelsatz fur station'dre isoenergetische Gasstrdmungen, Luftfahrtforschung 19,
145-147 (1942), British R.T.P. Trans. No. 1744, Ministry Aircraft Prod.

9 H. W. Emmons, The numerical solution of compressible fluid flow problems, NACATN No. 932,1944.
10 M. Lagally, Ideate Fliissigkeiten, Handbuch der Physik, Julius Springer (Berlin), vol. 7, ch. I,

Art. 19, p. 29, and Art. 32, p. 49.
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1
S(M) =  log pi, (5.2)

7

in wl ich

r(M) = _ 1_J J m3 ̂1 + dM,

$(^m) =
7 — 1

7 +
-J' f(<PM)d<(>M• (5.3)

(In uniplanar flow, explicit formulae for potential and stream functions can be derived
for both irrotational M and some irrotational W flows. We have not ascertained
whether these formulae represent more than the well-known elementary radial and
vortex flows.)

If W = Vcpw, then Vpt = 0, a case discussed by Vazsonyi4 in the less appropriate V
language. Flows with constant stagnation pressure but variable entropy and stagna-
tion temperature from one streamline to another may be of immediate practical in-
terest. For example the effect of variable chamber gas temperature upon thrust co-
efficient of a rocket with "perfect" nozzle can be computed. This calculation is possi-
ble because irrotational V flow is the special case of irrotational W flow which occurs
when not only pt but also 5 and therefore Tt are constant throughout the flow
(v5 = vr, = 0 is implied by V = Vipr). Accordingly the same partial differential equa-
tion (derived from the continuity equation (1.10)) is satisfied by both <pw and its
isentropic form <pv,

— (^Yl^ - -±- ± ** = 0. (5.4)
<_i L 7 — 1 \ dXiJ J dXi2 7 — 1 dxi dXj dxidx.

LINEARIZATION OF SOLUTIONS IN SUPERSONIC FLOW*
By JOHN W. TUKEY (Bell Telephone Laboratories and Princeton University)

1. Introduction. The equations governing flow at supersonic speeds are believed
to be well known, but the difficulties of calculating exact solutions are so great that
approximate solutions are the aim of the present and foreseeable future. Two main
approaches to such approximate solutions are commonly considered:
(a) the calculation of numerical approximations by high-speed calculators,
(b) simplification of the equations and explicit solution of the simplified equations.
Of course the first route requires the high-speed calculating machines which are now
in sight, but not yet available.

It is the purpose of this note to propose and exemplify a third approach which
may partly replace (b) and frequently supplement (a), namely
(c) simplification of the dependence of the answers on one or more parameters.

2. Is linearization of solutions mathematically justified? The first objection which
many would raise against "linearizing the solutions" as a substitute for "linearizing

* Received Feb. 15, 1947.


