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THE TURBULENT FLOW ALONG A SEMI-INFINITE PLATE*
BY

P. Y. CHOU
National Tsing Hua University, Peiping, China

1. Introduction. The investigation of the turbulent flow along a semi-infinite
plate is of both theoretical and technical interest, as it leads to the magnitude of the
skin-friction acting upon the plate at high Reynolds numbers. Interpretations of the
velocity distribution within the tubulent boundary layer have been given by Howarth1
according to the transport theories. But the formula that fits experiment best is
von Karman's logarithmic law of velocity distribution which is a consequence of his
similarity theory of turbulence.

The purpose of the present paper is to show that von Karman's velocity distribu-
tion law is consistent with the program of treating turbulent flows developed by the
author.2 For the solution of the present problem we shall adopt the following three
conditions and simplifications.

(1) We shall use the law of dynamical similarity down-stream along the flow,
which has been verified by Dryden's experiments. The mean velocity along the direc-
tion of the undisturbed flow U which is parallel to the plane of the plate when ex-
pressed in units of the friction velocity UT has been found by Dryden to be a func-
tion of the dimensionless variable rj =yUT/v in which yis the coordinate perpendicular
to the plate and UT is a function of x, the distance along the plate from its leading
edge. We now generalize this result by assuming that the mean pressure p and all the
other velocity correlations when expressed in units of proper powers of UT are dimen-
sionless functions of t] only.

(2) Reynolds' equation for mean motion and the equations of double and triple
correlations will be used. In the equations of triple correlation we shall disregard the
quadruple correlations. The range of validity of this approximation and the possi-
bility of its experimental verification will be discussed in Sec. 5.

(3) We shall assume the constancy of the micro-scale of turbulence X and of the
squares of components of velocity fluctuation across the boundary layer. This con-
dition is used for mathematical simplicity. It is, however, consistent with the result
to be shown below that the shearing stress is constant across the boundary layer and
can therefore be regarded as a condition of similarity. On the other hand, as will be
seen presently, the variation of the mean squares of velocity fluctuation can be ac-
counted for, though their solution will be rather complicated. This part of calculation
is omitted due to lack of measurements.

The logarithmic law of temperature distribution in the boundary layer of a heated
plate can also be established by the present method of approach to the turbulence
problem and its solution will be indicated at the end of the paper.

2. Reynold's equations of mean motion. Let the positive half of the xz-plane rep-
resent the given semi-infinite plane and the leading edge of the plane coincide with
the z-axis, the y-axis being perpendicular to the plane. Using U and V to denote the

* Received Oct. 21, 1946.
1 S. Goldstein, Modern developments in fluid dynamics (1938) pp. 361-371.
2 P. Y. Chou, Quart. Appl. Math. 3, 38-54 (1945).
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x- and ^-components of the mean velocity, we find the Reynolds' equations of mean
motion to be

dU dU 1 drxy
U- +v = (2.1)

dx dy p dy
dV dV 1 dp 1 dryy

U—+V—- = - + (2.2)
dx dy p dy p dy

in which both the viscous stress and the terms in components of turbulent stress
involving partial differentiations with respect to x on the right hand sides of Eqs.
(2.1) and (2.2) are neglected. This is permissible on account of the thinness of the
turbulent boundary layer.

To satisfy the equation of continuity, we introduce a stream function S? as usual
and write

d*
U = . V =   (2.3)

dy dx

It is well-known that by integrating Eq. (2.1) across the boundary layer, we find
the turbulent shearing stress on the plate. Thus,3

to = rxv |v=„ + Pul = — f p(Ui - U)Udy, (2.4)
dx J o

where UT is the friction velocity, 8 the thickness of the layer and U\ the velocity in
the free stream outside the layer. Hence if the mean velocity U, as a function of y,
were known, Eq. (2.4) would define the friction velocity UT as a function of x.

Here we introduce Dryden's experimental result that the ratio of the mean
velocity U and UT is a function of the dimensionless variable ri, where rj is defined by

V = yUr/v. (2.5)

In other words, the stream function ^ is given by

SF = vF(t)) (2.6)

so that according to equation (2.3)

U = UrF'iv). (2.7)

This relation can be construed as the condition of dynamical similarity in the differ-
ent cross-sections of the boundary layer. From Eqs. (2.3) and (2.6), we obtain

dUT
V = - yF'  (2.8)

dx

Let us assume that dynamical similarity also holds true for the shearing stress,
i.e. that

-—txv=uImV). (2.9)

3 S. Goldstein, loc. cit., p. 132.
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Substituting from Eqs. (2.7), (2.8) and (2.9) into the equation of mean motion (2.1),
we obtain

dUT Ul
F'2  = fl. (2.10)

dx v

We may estimate the order of magnitude of dUT/dx by means of von Karman's
coefficient of local skin friction in the following way:1

dz 11~ = — , , > (2-11)
dx x 1 + 2/z

where z = KUi/Ur, K = 0A.
The derivative dz/dx thus tends to 1/x for large values of z, Hence equation (2.10)

becomes
F'2 v

H = —— = F'2/KRx. (2.12)
K U\x

The Reynolds number Rx in Dryden's measurements4 is of the order of 106 and F'
is around 20. This shows that/4' is of the order 10-3 and can be neglected. In short,/4
or the shearing stress is essentially constant across the turbulent boundary layer.

3. Equations of double and triple correlations, the mean velocity distribution.
We suppose that the law of dynamical similarity not only holds true for the mean
velocity distribution, but also for the double and triple velocity correlations as well.
Hence we write

 -p = ulfoiv),p
1 2 1 2 1 2

Txx UTfi(7])j ' Tyy Tzz = UT
P P P

1 2
T XV = UTfi(v)',

P

(3.1)

W | = Urhoiv), WIW y = UMv),
WxWl = Urh 2(v), W\ = UMv),
Wxwi = UMV), WyWi = uMv).

(3.2)

Since our interest at present lies mainly in the mean velocity distribution, we
shall only put down the equations which are pertinent for its determination. When
written in full the component equation (i = 1, k = 2) for the double correlation2 is

1 T dV dUl 1
Txx~ b Tvy~

p L ox ay J p

9t Xy 1 dr xy

dy J p dx p dy
dU 2vk_

+ "  WllVy -} wxwl = — 02112 WxWy. (3.3)
dx dy dy X2

4 H. L. Dryden, N. A. C. A. Report No. 562 (1936).
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In the above equation we have only retained the largest term dm^U/dy among the
sum <CaUm,n.

Next, introduce the substitutions (2.7), (2.8), (3.1) and (3.2) into Eq. (3.3).
Obviously, the terms involving dV/dx and w2xwy in (3.3) are small. With the use of
the relation (2.11), we find that

1 drxy 1 drxy 2 UT U   V -= F'U (3.4)
p dx p dy KxU i

The appearance of xJJ\ in the denominator means that this term contains the re-
ciprocal of the Reynolds number Rx as a factor when compared with the remaining
terms, says, —TyydU/pdy, in the equation. Hence as a good approximation of (3.3)
we have

- aF" + hi = - loU (3.5)
where lo and a are defined by

lo = 2kv2/\2Ur, a = - (/, + anu/UT). (3.6)

The fact that only the terms in dU/dy and dwxw\/dy on the left-hand side of
equation (3.3) remain can be interpreted that V is negligible and all the functions
U, Tn and WiWjWk depend upon 77 alone and are very approximately independent of x,
the coordinate from the leading edge of the plate. An equivalent statement is that
the turblent boundary layer is very thin. This simplifies the problem; its mathe-
matics becomes analogous to that for the problem of mean velocity distribution in
a channel.6

The component equation (i— 1, k = l, 1=2) of the equations of triple correlation
which is needed for the determination of the mean velocity distribution can be ob-
tained by the method used in deriving equation (3.5) as:

dJJ. d — dU 1 / drXy dryy
—— wxwl H W%W% = — 621112   C112 + — ( 2TXy h TXX 
dy dy dy p2 \ dy dy

It is obvious that the quadruple correlation term dwxu>l/dy must be of the same
order of magnitude as TxxdTvy/p2dy and we shall now neglect these quantities against
the term dU/dy(2wxw\+621112)• This is equivalent to the statement that we limit our
solution to the region where the following inequality holds true

dU  
—- (2 wxwl + 621112)
dy

> (3.8)

Apparently this condition can be satisfied in the middle of the layer where dU/dy
is large, while on its outer edge it may break down as we shall see in Sec. 5. The
quantity Cm in (3.7) will be considered as independent of ri because it varies but
slowly with the coordinates, as has been proved previously.2 The derivative drxy/dy
is small according to the relation (2.12) and can therefore be neglected. Introducing
expressions (2.7) and (3.2) into Eq. (3.7) and writing

C112 = 2cUt/v,

6 P. Y. Chou, Quart, of Appl. Math., 3, 198-209 (1945).
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we find, after using the inequality (3.8),

ht = - c/F" - biUu/2ul (3.9)

Like Cn2 we take bum/ Ul to be also a constant.
Elimnation of the variable h2 between equations (3.5) and (3.9) yields the final

equation for the determination of means velocity distribution,

d 1
aF" + c —    = l0f4. (3.10)

d-q F"

Since the variation of/4 with 57 across the boundary layer is small, we assume that a
which depends upon wl defined by equation (3.6) is also a constant. There is no a
priori experimental justification for the assumption, but it simplifies the calculation
a great deal. As a matter of fact the determination of the behaviour of wl, "wl and wl
within the layer is not wholly impossible by means of the rest of the equations of
double and triple correlations which have not been written out explicitly,* though the
work involved will be rather complicated. For the same reason of simplifying calcu-
lation we take U to be constant, namely, X to be independent of t] and leave out the
equation of vorticity decay.2

Integrating the equation (3.10) twice, we find

r, = —F' + A(eWt° - 1), (3.11)
lofi

where A is a constant of integration. The other arbitrary constant has been deter-
mined by the condition on the surface of the plate: r?=0, F' = 0. Another constant
of the remaining three in equation (3.11) can be disposed of, as a consequence of the
linear dependence of the mean velocity U upon 17 near the plate, by requiring that it
become 77 = F', when 77 is small. On the other hand for large values of 17 the mean
velocity U varies with 77 logarithmically, confirming von Karman's result. For this
latter reason we take the factor of F' in the exponential function to be 0.4, when we
compare formula (3.11) with Dryden's measurements.4 The last constant A is de-
termined by passing the theoretical curve through the mean experimental value
of F' = 18.2 at logio 17 = 2.2. The result can be summarized in the equation

U
r, = 0.959 b 0.mA(eOAUIU- - 1). (3.12)

U T

The velocity distribution given above resembles that within the channel6 in its
functional dependence upon 77, though the values of the corresponding constants ap-
pearing in the two cases are different as is to be expected. Comparison between
theory and experiment is given in Fig. 1. Their agreement is well-known to be
satisfactory.

* They will be the same as Eqs. (2.3), (2.5), (2.6), (3.1), (3.3) and (3.4) in the paper quoted in Foot-
note 5.
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Fig. 1
Velocity distribution in a turbulent boundary layer.
Theory: 
Dryden's experimental results:

• i?x = 335,000, □ = 507,000,
X U* = 788,000, A R =983,000,
x being measured from the transition point.

4. The coefficient of local skin-friction. The explicit relation between the coeffi-
cient of local skin-friction c/, which is defined by

Cf = T0/%pUl = Ur/^Ul, (4.1)

and the Reynolds number Rx=U\x/v can now be determined by substituting the
mean velocity distribution (3.12) into Eq. (2.4) and integrating. The thickness of the
boundary layer y = 8 is found by setting U=U\'m Eq. (3.12). Retaining the large
quantities in the final result after integration, we find

dRx
- = 1.6e*(z2 - 2z + 2), (4.2)

dz

where z has been defined in Eq. (2.11) as OAUi/UT. Integrating (4.2) again gives

Rx = l.6ez{z2 — 4z + 6) — 6. (4.3)

The constant of integration is determined by x = 0, when z = 0, under the assumption
that the flow is turbulent from the leading edge.
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For large z we keep only the s2 term on the right member of equation (4.3) and
the result can be put in the form

Cf = 1.19 + 4.08 logio (Rxcj). (4-4)

The two constants appearing above according to Kempf's experiments are 1.7 and
4.15 respectively.1 The form of Rx given in (4.3) also justifies our use of the relation
(2.11) which leads to the very approximate constancy of the shearing stress across the
boundary layer as has been demonstrated by relation (2.12).

5. Some further experimental verifications and validity of the solution. The
present analysis shows that, according to (2.12), the shearing stress is constant across
the turbulent boundary layer, if the Reynolds number of the flow is sufficiently high.
This result can be subject to direct experimental proof, since rxy at different points
of the fluid is now measurable by the hot-wire technique. On the other hand to
establish the validity of the inequality (3.8) experimentally is probably not simple.
There is a greater chance of its fulfillment, if w\ and w\ are also constant across the
layer. This constancy of and can be interpreted as the consequence of the
condition of "similarity" mentioned before. On the other hand, even if this require-
ment of similarity were satisfied, it has its limitations and we can determine the
validity of the present solution by considering the values of the constants appearing
in equations (3.11) and (3.12).

Since fi is independent of 77, according to its definition (2.9) and relation (2.4) it
must be —1. From Eqs. (3.11) and (3.12) we find

a/l0 = - 0.959, lo/c = - 0.4. (5.1)

The quantity l0 is determinable by using Eq. (3.6) with the micro-scale of turbulence
A, which comes from correlation measurements and k, a constant, which is present
in all the three equations for wl, w\, and u)'i and is also observable. Thus both a and c
are known after /0 is fixed.

The factor 1 /F" in equation (3.9) for h2 varies according to (3.12) between unity,
when U/ Ur — Fr — 0 on the plate and about 120 when F' = 20. Hence the part of hi
variable with rj can take the extreme values of — c and —120c. According to its
definition in (3.2), the value of hi can not be very large. This means that there must
be an upper limit of F', namely, the outer limit of the boundary layer within which
the relation (3.9) is valid. Again if triple velocity correlations were measurable by
the hot wire technique, to test this relation directly within its region of validity should
be an interesting problem.

The foregoing analysis shows the important role played by the triple velocity cor-
relation within the turbulent boundary layer. This can be interpreted as indicating
that turbulence is generated in this layer and transported away from it. The triple
velocity correlation is a measure of this transport; hence the set of equations govern-
ing its behaviour is needed for the interpretation of the mean velocity distribution.
Indeed, if this interpretation were correct, it is easy to understand that only the
equations of mean motion and of double correlation with the omission of the triple
correlation terms in the latter are insufficient to explain the velocity distribution
within the boundary layer, for this simplified set of the equations of double correla-
tion only tells us the balance between the production of turbulent energy by de-
formation of the mean flow and the decay of turbulence. Although this picture



1947] TURBULENT FLOW ALONG A SEMI-INFINITE PLATE 353

seems to give a good account of the velocity distributions in the center of the channel
and in free turbulence like jets and wakes, it is definitely insufficient for the phe-
nomena dealt with in the present paper.

The present paper is obviously incomplete in the sense that theoretical computa-
tions of the mean squares of turbulent fluctuations are not given. It does show, how-
ever, that a certain type of function for the mean velocity distribution is necessary.
Though refinements of calculation and measurements may change this result to some
extent, the main feature of the function will probably remain the same. This point
has been borne out by the corresponding calculation of the velocity distribution in
the channel under the assumption of different turbulent levels.6

The temperature distribution within the boundary layer of a heated plate can
be calculated by means of the equations of mean temperature and of the double and
triple velocity and temperature correlations. We obtain an equation for the mean
temperature distribution analogous to (3.11), and it agrees with the measurements
of Elias.6 Obviously a limitation on the validity of the solution similar to (3.8) is
also present.

6 F. fili&s, Zeits. angew. Math. Mech., 10, 1-14 (1930).


