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A GENERALIZATION OF THE FINITE FOURIER TRANSFOR-
MATION AND APPLICATIONS*

BY

IDA ROETTINGER
Ann Arbor, Michigan

Introduction. The purpose of this paper is to generalize and unify the methods
used by Doetsch [8]f, Kniess [12], Koschmieder [13] and others to solve certain
boundary value problems by finite Fourier integral transformations. To give an
idea of the general method to be developed a formal solution of the following boundary
value problem is here given by means of a particular transformation.

Yti(x, t) = Y XI(x, t) + x, 0 < x < x, 0 < t,

Y(x, 0 +) = 0, Yt(x, 0 +) = 0,
F(0 +, t) = 0, Yx(ir —, t) + hY(ir —, t) = 0, h 9^ 0.

Let 5{ F(x)} —JqF(x) sin knxdx = (compare section 1 below), where sin knx
are the characteristic functions of y"(x)-\-k2y(x) =0, y(0) = 0, y'(Tr)-\-hy(ir) =0, that
is k„, n = l, 2, • • • , are the roots of tan kir=— (k/h), k>0, then, if F(x), F'(x) are
continuous and F"{x) is sectionally continuous in (0, 7r)

S{F"(*)} = - klfs{kn) + knF(0) + sin knir[F'{Tr) + «?(*)],

(see theorem 1 below).
This last formula applied to the above problem with respect to x yields the follow-

ing transformed problem:

d2ys(kn, t) 2 ( ,

at2

ys(K, o +) = 0, dy8(kn, 0 +)/dt = 0, where
( ) —2 —1

S { x \ = (sin knir) kn — (ir cos knir) kn .

The solution of the transformed problem is

y,(kn, t) = [(1 — cos knt)/kn]s\x\.

The inverse transformation S~l \fs(kn)} is given in terms of a Sturm-Liouville
series (see section 2 below) as follows

00

S^lf^kn)} = X) N(kn)fs(k„) sin knx in (0, tt),
1

where N(k„) denotes the normalization factor of the characteristic functions sin knx,
n = 1, 2, • • • , .

* Received Oct. 18, 1946. Presented to the American Mathematical Society April 26, 1946. See also
abstracts in Bull. Am. Math. Soc. vols. 50 and 51. The author expresses her gratitude to Professor Ruel
V. Churchill for his advice and encouragement in the preparation of this paper. The content of this paper
is part of a dissertation submitted in partial fulfillment of the requirements for the degree of doctor of
philosophy in the University of Michigan.

f The numbers in brackets refer to the bibliography.
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Thus the formal solution of the above boundary value problem is given by
00 4 3

Y(x, t) = X) N{kn) [(sin knv)kn — (x cos knw)kn ](1 — cos k„t) sin knx,
1

The type of problems to which the method is applicable is described in the sum-
mary (see Sec. 11 below).

Since there are at present no readily applicable general existence theorems for
solutions of the class of boundary value problems considered here, the existence
and uniqueness of the solution should be established in each particular case. However,
this procedure is not carried through in the problems solved in this paper, since the
main purpose here is to set up a method which leads quickly to a formal solution. The
problems solved are chosen merely to give an illustration of the method.

The method can be compared with that of the Laplace transformation (see re-
mark in Sec. 3 below). As in the case of the Laplace transformation the present
operational method does not claim to solve problems which cannot be solved by any
other method. Its advantage lies, just as in the case of the Laplace transformation,
in its direct, short and systematic approach. Problems in partial differential equa-
tions which by a suitable change of variables are brought into a form in which vari-
ables can be separated, can be solved directly. Tables of transforms, which are, except
for normalization factors, tables of generalized Fourier coefficients, save time in the
computation of solutions of practical problems. Furthermore this operational method
has, due to certain theorems the advantage of systematically finding closed form solu-
tions (see Sees. 6, 9,10, 11 below) and thus exhibiting qualitative properties of a solu-
tion which may not readily be found by the usual methods.

1. Definitions of the transformations S, C and T. Definition 1. Let K= {k} be
a set of real numbers and let Fix) be a sectionally continuous function in (0, ir). The
transformations 5 {F{x)} and C {F(x)} are defined by the equations

5{i?(a:)} = r F(x) sin kxdx = fs(k) (1)
J 0

C{/?(x)} = F(x) cos kxdx = fc(k) (2)
J o

respectively.
The transformations (1) and (2) are called the general finite Fourier sine and

cosine transformation respectively, relative to the interval (0, ir) and the set K. The
transformations (1) and (2) map the class of functions F{x) onto a certain class of
functions f(k).

A Sturm-Liouville problem. The characteristic functions of the following Sturm-
Liouville problem are used in the definition of the transformation T below.

y"(x) + k2y(x) = 0, in (0, t),

Li(y) = aiy(0) + a2y'(0) +'asy(w) + a4y'(ir) = 0,

Lz(y) = hyiO) + 62/(0) + b3y(ir) + i4/(ir) = 0,
(3)

also with specializations on part of the constant coefficients a,, bit i= 1, 2, 3, 4. It is
assumed that the L,-,j = 1, 2, are linearly independent and that
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— Qzbi = a$bi — aj)3. (4)

This last condition is to guarantee real characteristic values (see for instance [10]
vol. 1 p. 352).

The characteristic functions <pkn(x), n = 1, 2, • • ■ , of (3) are given by

<Pkn(x) = A sin knx -f- B cos k„x, (5)

where

(A/B) = — (ai + a3 cos knT — aik„ sin knir)/(kna2 + a3 sin knx + at kn cos k„ir)

= — (&i + b3 cos knir — ltkn sin knir)/(knb2 + b3 sin knx + bjin cos k„ir)

and k„ are the roots of

(ka2 + a3 sin kir + atk cos kir) (ax + a3 cos kir — atk sin kir)

(kb2 + b3 sin kw + bik cos kir) (&i + b3 cos kir — btk sin kir)

By use of (4), Eq. (6) reduces to

2k(ajbi — a2bi) = [(a3bi — aib3) + 2 — a^b^] sin kir

+ [W>i — axb4) + (aj)3 — a3bj)]k cos kir. (7)

Remarks concerning D(k). (Compare [10] vol. 1, p. 362.) If D(k) =0 has no roots,
then (3) has no solution.

If and only if D(k) is of rank 0, that is, if every term in D(k) is 0, then the char-
acteristic values are called double, since in this case (3) has two linearly independent
characteristic functions with the same characteristic values, e.g. ai = b2= —a3 — bi = l
all other a,, bi zero. In this case the characteristic values are 2n, n = 1, 2, • • • , and
sin 2nx as well as cos 2nx are characteristic functions of (3).

If D(k) is of rank greater than zero the characteristic values are single. This is the
case in particular in the first, second and third boundary value problem.

Definition 2. Let K= {&„}, w = l, 2, • • • , be the sequence of characteristic values
of (3), that is, the roots of (7). Let

<PkSx) = ak sin knx + Bkn cos knx (8)

be given by (5), where

A kn = — cii -j- a-s cos k„ir — aikn sin knir,
Bkn = — (kna-i "H a3 sin knir -f- «4&„ cos knx).

And let F(x) be a sectionally continuous function in (0, ir). The transformation
T {F(x)} is defined by the equation

1^(*)} = f *F(x)<pkn(x)dx = /(*.).
J 0 (9)

The transformations S, C and T are linear. The interval (0, ir) is chosen for con-
venience and without loss of generality. The transformation (9) maps the class of
functions F(x) onto a class of sequences of numbers; except for a normalization factor,
each sequence is the set of Sturm-Liouville coefficients of the corresponding F(x) in
terms of the characteristic functions <pkJx). The restriction to sectionally continuous
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functions was made in view of applications. In general the functions F(x) need only
belong to L'2(0, x): i.e. need only be Lebesgue square integrable.

2. Inverse transformations. Since the function <Pkn(x) form a complete set of
orthogonal functions on the interval (0, x), the transformation (9) has an inverse
transformation in the form of a Sturm-Liouville expansion. For, let F(x) be sec-
tionally continuous and [F'(x) ]2 integrable in (0, x) and at a point of discontinuity
*o, let F(x) be defined as F(x0) =5[F(x0+0) +F(x0 — 0)], 0<3C0<x, and let N(kn)
denote the normalization factor of the functions (8), then the expansion in the char-
acteristic functions (8) of the function F(x) converges to the function F(x) in
(0, it); i.e.,

00

F(%) = N(kn)f(kn)<PkK(x), in (0, x), (10)
1

and the convergence is uniform and absolute in every closed subinterval of (0, x)
which does not contain a discontinuity (see [6] vol. 1, p. 371, compare also [5] pp.
268, 272). Equation (10) gives a formula for the inverse T~1{f(kn)}, the function
whose ^-transform is f(kn). The inverse is unique. Thus

00

^-1{/(k0} = H N(kn)f(kn)<pkn(x), in (0, x), (11)
1

where N(kn) is given by
22 222

1 /N(k„) = 5 [x(«i -|- as) &„x(a2 ~f" ̂ 4) — a-i®2 4" 03^4]

+ sin kn%[knir(aia% — Oia4) + (1/£„)(£na2a4 — fliflg)]
r 2 2 2 2 2-,+ (sin 2knir/4:kn) [kn(ai + a2) — (ax + a3) J

2
+ T(kna2a4 + «ia3) cos knir + (cos 2^nx/2)(aia2 — a3ai).

Similarly the inverse transformations S~J \fs(k)} and C~l {fc(k)} of the transfor-
mations 5 {F{x)} and C {F(x)} respectively are given in terms of a sine and cosine
series respectively if K is the sequence of characteristic values of certain special
cases of (3). e.g. a^0, b3^0 all other a,-, b{, zero, then K={n], n — 1, 2, • • • , and
S {Fix)} is the finite Fourier sine transformation as defined by Kniess (see [12]) and
S~1{fg(n)} is given by a Fourier sine series.

3. Transformation of derivatives. The following two lemmas can be proved by
integration by parts.

Lemma 1. If F(pc), F'(x), ■ ■ ■ F(2r-1> (x), are continuous and F(ir)(x) is sectionally
continuous in (0, x), r = l, 2, • • • , then

«=r—1
5{F<2l->(x)} = (- l)'Aa'S{F(*)} + Z) (~ l)^2s[^|^(2r^2)(0)

s=0

- FVr~2s-2)M cos fa] + Fllr-U- !>(,) sin fa] (12)

and
«=r— 1

C {*<«(*)} = (- 1 YW'C{F(x)} + E (- l),£2s[^(2r_2*-2)(x) sin kit
4=0

+ i?(2r~2*~1)(x) cos kr - jp(2r-2«-D(0)]. (13)
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Lemma 2. If F(x), F'(x), ■ ■ ■ F<-2r~2) (x), are continuous and F(2r~1}(x) is sec-
tionally continuous in (0, ir), r= 1, 2, ■■■ , then

S{F<2-i>(x) J = (- + sin kir £ (~ 1)*k2'F
8=0

s=r— 1

+ Z (- (2r-2^1)W cos kr - /?<»—»—*>(0)] (14)
5=1

and
s=r—1

= (- {/?(*)} + sin kir £ (- l)«+ljfe2'-»i?<2^2«-i>(,r)
«=1

«=r—1

+ Z (- 1)^2'[F(2-2-2)(tt) cos kw - FV'~u~V(0)]. (15)
s=0

Theorem 1. If F(x), F'(x), ■ •' ■ 7?(2r_1)(x), are continuous and Fw(x) is sectionally
continuous in (0,7r),r = l, 2, • • ■ , and if Ui =^„(0), u2 = <p'kn(0), u3=(phn(ir), ui = <p!Cn(ir),
(<Pkn{x) as given by (8)), then there exist numbers X and fj. such that

r{F<2'>(*)} = (- ly£t{f(x))

+ E (- l)'/C[XZ,i(F<s'-2-2>) + nU{F^-^)], (16)
«=0

where

X = (u-ibi -f- iiib\)/(a\b2 — a^bi)

= kn + (ai2>2 — 026i)~1[(a362 — aib^kn cos knir — (a3bi + &„a4i2) sin £nx]

and

M = (W3O3 "I" UnCL\)/(&1&2 — 02&l)

= (<1162 — «26i)_1 [(«ia4 — a2a3)kn cos knir + (aia3 + ^„a2a4) sin &„7r].

Remark. Property (16) exhibits the usefulness of the transformation T in obtain-
ing quickly a formal solution of the following type of boundary value problem:

™ d2rF(x)
2_ Air = G(x), in (0, ir), where
r=0 dx2r

G(x), the constants A2r and the quantities Lj{F{2r~2'~2)), j — 1, 2, s—1, 2, • • • r — 1,
are assigned. The constants a5;, i= 1, 2, 3, 4, are allowed to be different for each s.
The transformation is also useful in boundary value problems in partial differential
equations, where one or more variables behave like x in the above problem. Property
(16) is analogous to the property of the Laplace transformation which expresses the
transform of the wth derivative of a function in terms of the transform of the func-
tion and the value of the 0th, • • • (n — l)th derivative of the function at 0 (see for
instance [5] p. 8).
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Proof of theorem 1. By combining (12) and (13) T{F®r)(x)} can be expressed as
follows:

r{F<2"(*)} = (- 1 YklrT{F{x)) + Z (- i)^IsM<2-2-2>(0)
8=0

- «1F(2r_2s~]>(0) - r) + M3i?(2r-2s-1>(x)].

If
F(2r-2«-2)(0) = Wl, 7?(2r-2,-l)(0) = ^

= W3) i7(2r-2»-l)(7r) = ^

it remains to be shown that
4 4

M2W1 — Witt>2 + U3W4 — UiWz = X Z diWi + M biWi,
1 1

which means it has to be shown that the following four equations are consistent:

Ui — Afli -{- fib\

— U\ — \&2 -[- /ibi

— «4 = X«3 -f-

Us — -j- /J.b4.

It can be left to the reader to obtain for instance X from the first two equations and /j.
from the last two equations 'and to show that with these values of X and ju the above
equations are consistent.

4. Illustration of the operational method. Particular cases of transformations.
As an illustration of the use of the operator T a formal solution of the following
boundary value problem is to be established.

^xx + = Q(x), 0 < x < ir, 0 < y,

V(x, y) is to remain bounded as y approaches infinity and Sf^x, 0 +) = 0, further-
more, 0^(0 +, y) + &^x(0 +, y) = E, where £ is a constant, and c^(ir —, y) -\-d<ifx{-k —, y)
= 0, where a,.b, c, d are given non-zero constants such that ad — bc^0.

This problem calls for the operator (9), where <pkn(x) are the characteristic func-
tions of y"(x)+k2y(x) =0, a;y(0)+&;y'(0) =0, cy(w)+dy'(ir) =0. From (7) follows that
the characteristic values kn are the roots of tan kir = k(bc—ad)/(ac + k2bd), k>0.
From (9) it follows that

T{F(x)} = I F{x)(a sin knx — bkn cos knx)dx = /(&„),
J 0

n = 1, 2, • • • , and (11) yields
00

r-1 {/(*»)} = T, N(kn)f(kn)(a sin knx — bkn cos k„x), in (0, ir), (17)
1

where N(kn) is given by

l/N(kn) = i(ira2 + 7rklb2 - ab) + [(klb2 — a2)/Akn\ sin 2k„ir + (ab/2) cos 2knir.
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Equation (16) with r = 1 yields

T{F"(x)) = - klf(kn) + kn[aF(0) + iF'(O)]
— [k„b/(c sin knT + knd cos knir) ] [cF( t) + dF'(ir) ]. (18)

Formula (18) applied to the above problem with respect to x leads to the follow-
ing transformed problem:

2
*Pyy(,kni y) knlp(kni y) knE q(kn) — 0,

*p(,kn, y) remains bounded as y—><x> and \p(k„, 0+)=0, where ^ and q stand for the
T-transforms of SEr and Q respectively.

The solution of the transformed problem, that is the coefficient in the Sturm-
Liouville expansion of the solution is

y) = [l — exp (— kny)][knE — q(kn)]/kl

and according to (17) the formal solution of the given problem is
00 ^

y) = X N{kn) { [l — exp (— kny)][knE — q(kn)]/kn) {a sin knx — bkn cos knx).
1

In the following sections a special case of the transformations S and C will be
needed (for additional special cases see section 12). The kernels sin kx and cos kx
respectively of the transformations are the characteristic functions of y" (x)k2y(x) = 0
y(0) =0, y'(ir) =0; and y'(0) =0, y(ir) =0 respectively. .
In these two cases K={n — §}, w = 1, 2, • • • . The transformations are

5{77(«)} = f F(x) sin (n — |)xdx = fa(n — J), n = 1, 2, • • • (19)
J o

C{F(x)) = f F(x) cos (n — J)xdx = fc(n — §), n = 1, 2, • • • . (20)
J o

The inverse transformations are given by

2 00
S~1[fs{n - |)} = — ~ §) sin (n ~ i)x in (0, *■) (21)

7T l

2 00
C~1{fc(n - i)} = — - s) cos (n - %)x in (0, ?r). (22)

tt 1

And for the transform of an even derivative (12) and (13) yield

5{F^>(x)} = - (n - i)2rf,(n - §)

+ '£ (- l)s(» - l)2s[(- l)»+1F<2-2-1Kx) + (n - i)jFC>-2—D(o)] (23)
8=0

C{F<2r)(x)} = — (n — |)2r/c(w - i)

8=r— 1

+ E (- l)*+1(w - |)2'[F(2-2-»(0) + {n - i)(- l)"F<2r-2-2>W]. (24)
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Remark. In the above listed cases D(k) is of rank greater than zero. If the rank of
D(k) is zero it merely has to be kept in mind that the sine as well as the cosine coeffi-
cients in the Sturm-Liouville expansion of the solution have to be found. An illus-
ration of the operational method in this case is given in section 10.

5. Some properties of the transformations 5 and C when K={n — £},
n= 1, 2, • • • . Theorems 2 to 5 below are analogous to theorems which holds for the
finite Fourier sine and cosine transformations (compare [5] sections 95 and 96 also
[19] chap. II sect. 2.1). and can be proved in a similar way.

Definition 3. Let the function F(x) be defined in (0, p). By the odd antiperiodic
extension F\(x) of Fix) with antiperiod 2p is meant Fi(x) = Fix), in (0, p); Fi(—x)
= -/?1(x), Fi(x+2p) = —Fx(x) in (— », cc).

Definition 4. Let the function F{x) be defined in (0, p). By the even antiperiodic
extension F2(x) of Fix) with antiperiod 2p is meant F2(x) = F(x), in (0, p); F2(—x)
= F2(x), F2(x+2p) = — Ft(x), in (— oo, oo).

Theorem 2. If F(x) is sectionally continuous in (0, 7r) and if Fi(x) is the odd anti-
periodic extension of F(x) with antiperiod 2ir and if a is any constant, then

sin (n — %)aS{^(x)} = \C{F\{x + a) — Fx(x — a)}.

Theorem 3. Under the same assumption as in theorem 2

cos (n — \)aS {^(x)} = + a) + F\(x — a)}.

Theorem 4. If F(x) is sectionally continuous in (0,7r) and if F2(x) is the even anti-
periodic extension of F{x) with antiperiod 27r and if a is any constant, then

sin (» — |)aC {^(a;)} = {F2(x — a) — F2(x + a)}.

Theorem 5. Under the same assumption as in theorem 4

cos (n — i)aC } = %C \Fi(x — a) + F2(x + a)}.

Similar theorems in the case when K is the sequence of characteristic values of
(3) and for more general K can be proved by the use of almost periodic functions (see
[15]).

6. Vibration of a horizontal string with one end fixed and one end sliding.
Compare [5] sections 98, 99.) Let the end x = 0 of a string be fixed and the end x=ir
be looped about a vertical support along the line x=ir. If a constant upward force acts
on the loop, the displacements Y(x, t) as the string is released from the position F = 0
satisfy the conditions:

Ytt(x, t) = a2Yxx(x, t) + g, 0 < x < t, 0 < t,

Y(x, 0 +) = 0 Yt(x, 0 +) = 0,
7(0 + , /) = 0 F,(t-,<) = - b,

where g is the acceleration of gravity and b is the magnitude of the vertical force
divided by the tension.

The ^-transformation (19) applied with respect to x gives, according to (23), the
following transformed problem:
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(]p"y(fl   — A
 ——■- )- (« — \Yc?y{n — \, t) + (— 1 )n+1a?b — gS{l} =0

at2

y{n — 5. 0 +) = 0, yt{n — \, 0 +) = 0.

The solution of this transformed problem is

y{n -§,/)= [1 - cos (n - %)at\{[g/a2{n - §)3] + [&(- 1)"/(» ~ s)2]}-

From the table in section 12 below it follows that

[ft(— !)"/.(» ~ I)2] + [&/a2(« — i)3]} = ~ bx + [ga;(27r - x)/2a2] = /?(*).

Using theorem 3 the solution of the given problem can be written in the form,
Y{x, t) = F{x) —\\Fx{x-\-at)-\-F\{x—at)], where Fi denotes the odd antiperiodic
extension with antiperiod 2ir of F{x).

Similarly the problem with the end x = 0 sliding and the end x — ir fixed can be
solved by use of the C-transformation (20).

7. The convolution in the case K—\n—\ j. The purpose of this section is to give
formulas for the product of two transforms in terms of one transform. Kniess (see
[12], compare also [19] 2.1) and Doetsch (see [8]) give such results for the finite
Fourier sine and cosine transformations, i.e. when K— [n], n = \, 2, ■ ■ ■ ■ . Here the
analogous results are given for the 5- and C-transformations when K = [n — §}
(compare also Koschmieder [13]). Analogous results when K is the set of char-
acteristic values of certain Sturm-Liouville problems can be obtained by the use of
almost period functions (see [15]). The proofs of theorems 6-9 are analogous to those
of Kniess.

Definition 5. If F(x) in ( — 27r, 2tt) and G(x) in (— ir, ir), are sectionally continu-
ous, then the function

= J F(x - y\F(x)*G(x) = I F{x — y)G(y)dy

is called the convolution of Fand G on the interval {—ir, ir) (compare [12] p. 270 and
[5] p. 274.)

Lemma 3. If F{x) and G{x) are sectionally continuous and F{x-\-2ir) = —F{x) and
G(x + 27t) = —G{x), then

F{x)*G{x) = G{x)*F{x).

Theorem 6. If F{x) and G{x) are sectionally continuous and even functions and if
F{x + 2ir) = — F(x), then

C{F(X)}C{G(X)} = |C{F(a:)*G(x)}.

Theorem 7. If F{x) and G(x) are sectionally continuous and odd functions and if
F{x-\-2ir) = —F{x), then

S{F(s)}s{G(x)} = - iC{F(z)*G(x)}.

Theorem 8. If F{x) is an even and G{x) is an odd sectionally continuous func-
tion and if F{x + 2ir) = —F{x), then

C{F(*)}s{G(x)} = i5{F(x)*G(a:)}.
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Theorem 9. If F(x) is an odd and G(pc) is an even sectionally continuous function
and if F(x-\- 2ir) = — F(x), then

S{F(s)}c{G(*)} = §S{i7(s).G(z)}.

Remark. If in the above four theorems G(x) satisfies the condition G(x-\-2ir)
= — G(x), then according to lemma 3 the convolution is commutative. That being the
case theorems 8 and 9 say the same thing.

Example. Given qc(n — §) = (n —§)~2[l — in — J)2]-1, find Q(x). qc{n — |) =5{x} X
£{sin x} (see tables section 12). According to theorem 7 if F{x)=x in (0, 7r) and

F(x + 2tt) = - F(x) .
in (— oo, oo)

G(x) = sin x

q(x) = —2^ J* ~ x ̂  s'n ydy + J" (x ~ y) s^n

— -k — x + sin x.

8. Basic problem. In section 9 an application of the solution of the following
problem will be made.

dY ™ d^Y
 hZ(-l)r = 0, 0 < x < t, 0 < t,

dt r=l dx2r

3(2m-2S-2)F(0 +i l) a(2m-2^1)F(T f)

dx2m~2t~2 ' dx2m-2s-l

s = 0, 1, 2, • • • , m — 1, Y(x, 0 +) = 1.

The S-transformation (19) with respect to x gives according to (23) the following
transformed problem:

dy(n — t) ™
■   — + y(n — I, t) X) (« - h)2r = 0

at r= 1

y(n - 0 +) = 5{1} = l/(» - J).

The solution of this transformed problem is

y{n -§,/) = (»- J)-1 exp j^- £ ~ i)2rJ-

According to (21) the solution of the basic problem is thus

00 r~ m ~~I

Y{x, t) = (2/t) ~ i)_1 exP \ ~ H Kn — i)2r sin (n — %)x.
n-1 L r=l J

9. A generalized heat conduction problem. A formal solution of the following
generalized heat conduction problem is obtained by use of the operator C when
K= [n — (see 20)).
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dU A a«2r>c/
L{U) = + Ao(t)U(x, o + E l)r  — = Q(X, t),

dt r-l dxir

0 < x <1T, t > 0, Air(t) > 0,

3(2m-2«-l)t7(0 +) t)
  —   = $2m-2s-lW,

s = 0, 1. 2. • • • , m — 1,
a (2—*•-«) I/(t <)

— _ Z)2m_2s_2«,

I7(», 0 +) = *(*).
This problem can be resolved into 2 m+ 2 problems each of which has 2w +1 homo-

geneous conditions and one non-homogeneous condition. The sum of the solutions
of these problems is the solution of the given problem. There are four essentially dif-
ferent types of problems, a formal solution of which is given in the following.

Problem I. L(U) =Q(x, t), 0<x<ir, 0<t, 0<^42r(/),
a(2»-2.-l)J7(0 _|_ A 5(2m-28-2)C/(7r _ /)
   L = o,  = 0,

2s—1 Q %2 m—2 s—2

s = 0, 1, 2, • • • , m - 1, U(x, 0 +) = o.

The C-transformation (20) applied with respect to x leads according to (30) to
the following transformed problem:

duc{n — §, t)

dt U) +1
L r= 1

Air(t)(n — J)2rJ uc(n — \,t) — qc(n — §,/)= 0,

uc{n — 0 +) =0.

This equation is of the type y'(x) -\-P{x)y{x) — Q(x) =0 with initial condition
y(0)=0. The solution thereof can be written in the form

/» X /* Xexp [— p(x, w)]Q(w)dw, where p(x, w) — I P(v)dv.
0 J v>

Hence the solution of the transformed problem can be written in the form

uc(n — §,/) = J* exp [- A0(t, »)] exp £ — ̂  Air(t, v){n — 5)2rJ<7c(« — h v)dv,

where

A2,(t, v) = I A2r(y)dy.
J V

exp v)(n — i)2rJ = (n — |)5'{F(a:, A2r(t, »))},

where Y is the solution of the basic problem of section 8. And according to (15) with
k=n — \ and r = 1.

Now
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(» - £)S { Y(x, Air(t, »)) } = C{Yx(x, Jar (t, v)) },

so that

uc{n — \,i) = f exp [—A0(t, v)]C{Yx(x,A2r(t, v))}c{Q(x, v)}dv.
J 0

Using theorem 6 the solution of problem I can be written in the following form:

U(x, t) = I exp [— A0(t, v)][iYx(x, A2r(t, v))*Q0(x, v)]dv,
J 0

where

Qo(x, v) = Q(x, v) 0 ^ x ^ 7r

. Qa{— x, v) = Qo(x, v), — t g x g 7T.

Problepi II. L(U)= 0, 0<x<7r, 0</, ^42r(/)>0,
^ (2 m— 2s—1) U(0 +j f)
   —  = B 2 m_2s— 1 (0 for s = i,

QyZm-ia-1

= 0, for s i,
dVm-is-VUU i)
— — = 0, t/(s, 0 +) = 0,

dx2m-2s-2

s = 0, 1, 2, • • • , tn — 1.

According to (24) the C-transformation applied with respect to x leads to the fol-
lowing transformed problem.

duc(n — I, t)
dt

+ [AM + X A2r(t)(n — J)2rj uc{n — t)

+ E^2r(t)(- l)r(- 1 )<+I(« - hY'Bir-**-1(0 = 0,

«c(w — 0 +) = o.

With the notation of problem I the solution of this transformed problem reads:

uc(n ~ h t) = J* exp [- ^4o(/, v)] exp j^- J^A2r(t, v)(n - §)2rJ (n - i)2i(- 1)'

m

• X) (— l)rBir-2i-i(v)Azr{v)dv.
r-0

By use of the solution Y(x, t) of the basic problem and (15) with r = i+1 and k=n — \

(n - i)2< exp £ — £ A2r(t, »)(« - J)2r^j = (» — §)2i+1S{F(z, Z2r('> »))}

= (- 1){+2Cp(2'+')F(%,^2r(/, ^))1

( dx2i+1 1
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Hence the solution of problem II reads

a<2i+i->Y{x,AiT(t, »))r 1 r _ , d^+VY^A^v)) / »
U(X, t) = I exp [— A0(t, »)]   ( 22 (— l)r-42rO)£2r-2i-l(®) ) dv.

J 0 x2,+1 \ r=0

Problem III. L(C/) =0, 0<x<7r, 0 <t, A2r(t) >0,

3(2»-2.-l)^(0 +j f)

Q ̂ .2 ra—2s—1

a(2m-2S-2)[/(7r _t

= 0, 5 = 0, 1, 2, • • • , m — 1,

= , s — i,
<9 #2 2s—2

= 0, s i,

U(x, 0 +) = 0,

According to (24) the transformed problem reads:

duc(n — t)

dt
+ [,0« + S^2rW(w — i)2rj«c(w — I,

+ E (- l)r^2rW(- 1)<+1(- !)"(» - l)2i+I£>2r-2,--2W = 0
• r=0

«c(w — 5> 0 + ) = 0.

The solution thereof in the notation of problem I is

uc(n — i, 0 = J" exp [- A0(t, »)] exp j^— J^A2r(t, v)(n — £)2rJ (— l)"+i(n - i)2i+1

m

• E (— l)rA2r(.v)D2r-2i-i(v)dv.
r=0

By use of the solution Y(x, t) of the basic problem and (23) with r = i-1-1

(:n — |)2i+1 exp j^— j^A2r(t, v)(n — J)2rj = (n — i)2i+2^{ Y(x, A2r(t, »))}

(c= (- D^-

Using theorem 3

(dW+VY(x, Atrit, »))) (d^+VYiy, A2r(t, v)))

, jd^+VYix.A^t, v))

\ dx*i+2 }

(- 1 )"S
p<2^Y{x,A2r{t,v))\ _ _ {d^+VY{y,A2T(Jt,v))\

I dx2i+2 j t 3-2i+2 ) '

y = 7r — x

so that the solution of problem III reads
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C r - , a(2i+2)F(v,Z2r(/,»)) r ^ 1
U(x,t)— I exp [— A0(t, v) ] —    (~ 1)rA2r(w)-D2r-2i-z(») \dv,

J 0 dyu+2 L r=o J

y = tt — x.

Problem IV. L(U) = 0, 0<x<7r, 0<i, yl2l.(0>0.
d(2-»-2«-i)Z7(0 + , 0 d^m~u~2W(ir 0

3x2m~'28~1 dx2m~2"~2

s = 0, 1, 2, • • • , w — 1, i/(a;, 0 +) = -F(aO-

According to (24) the transformed problem reads

duc(n — J)
+

m -1

^o(<) + XI ^2r(/)(n — i)2r «c(« — h, t) = 0,
r=l J

Mc(w — h, 0 +) = fc(n — |).

The solution thereof in the notation of problem I can be written as

uc(n — I, t) = fc(n — 5) exp [— A0(t, 0)] exp j^— ^A2r(t, 0)(» — i)2r^J

r — , ( 1 ^2r(<, 0))")= exp [- A0(t, 0)]C{F(x)}c| — 1 ,

since

exp £ - X A 2r(t, 0) (n — J)2rJ = (« — §)S { Y(x, A 2r(/, 0))}

= c |ay(*,J2r(/,o))j

according to (15) with r = 1 and k = n — \.
By theorem 6 the solution of problem IV can be written as

r _ , T 1 dY(x, A2r(t, 0)) I
U(x, t) = exp [ — A0(t, 0)] —•   *F0(x) ,

L 2 dx J

where F0(x) = F(x) in (0, it) and Fo(—x) = Fo(x) in ( — tt, tt).
It can be seen now that the solution of each problem is expressed in closed form in

terms of the solution of the basic problem of section 8. Thus the solution of the given
problem being the sum of the 2m+ 2 problems is expressed in closed form in terms of
the solution of the basic problem.

10. A problem in heat conduction. As a particular case (m = 1) of section 9 the
solution of the following problem can be obtained.

To find the temperature distribution U(x, t) in a slab of length tt with a heat
source inside, The end x = ir is kept at a temperature D(t) and radiation through the
end x = 0 at a rate B(t) takes place. Furthermore there is radiation through the lateral
surface and the thermal diffusivity K(t) depends on time. The initial temperature of
the slab is F(x) .(Compare also [l].)
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The mathematical formulation of this problem is the problem of section 9 with
m = 1, A2(t) =K(t), Ao(t) —A{t), B\{t) = B(t), Da{t) =D{t), i.e.

dU d2U
■ K(t)  A(t)U(x, t) = Q(x, t), 0 < x < X, 0 < t,
dt doc1

dU(0 +, t)
  = B{t) U(r -,t)= D(t),

dx
U(x, 0 +) = F(x).

Put

K(t, v) = f K(x)dx, A(t, v) = f A(x)dx.
J V J V

The solution of the basic problem of section 8 with m = 1 is
00

Y(x, t) = (2/x)X) (n — i)"1 exp [— (» — \)H} sin (» — 5)*.
1

The solution of the heat conduction problem can be written in closed form using
Jacobi's tVfunction.
For

dY(x t) °°
 -— = (2/v)2 exP [— (n — %)H\ cos (n — $)x

dx 1

= (I/7r)t}2(x/2, exp [— /]), (see [12] p. 464.)

Thus the solution reads

U(x,t) = f exp [— A{t, v) J [(\/2ir)&i(xl2, exp {— K(t, v)}) *Qo(x, v)]dv
J 0

— (1 /ir) f exp [— A(t, v)]tf2(x/2, exp {— K{t, v)})K(v)B(v)dv
J 0

- (1/tt) f exp [- A(l, »)] —- (y/2, exp { — K(t, v)})K(v)D(v)dv
J 0 dy

y = ir — x

+ exp [- A(t, 0)][(1/2x)!?2(«/2, exp {— K(t, 0)}) */?o(«)].

Remarks. Since the ^-functions are tabulated the above form of the solution can
be used to determine by mechanical integration the numerical values of U(x, t) for
given values x and t.

For questions on uniqueness and existence of solutions in heat conduction prob-
lems the reader is referred to [9].

11. An illustration of the method in the case of double characteristic values.
Summary of the operational method. A formal solution of the following boundary
value problem is to be found.
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L{U) = Ut(x, t) - K(J)Uxx{x, t) + A(t)U(x, t) = Q(x, t),
0 < a: < X, 0 < t, A(t) > 0, K(t) > 0,

U(U) = V,{0 + , t) + Ux(x -, t) = B(t),
L2(U) = U(0+,t)+ -, l) = D(t),

U(x, 0 +) = F(x).

As kernel of the transformation (9) to be applied to this problem the character-
istic functions of y"(x)-\-k2y(x) =0, y'(0) -hy'(ir) = 0, ;y(0)+;y(x) =0, are used. In
this case the determinant D(k) is of rank zero. The double characteristic values are
2n — 1, n = 1, 2, • • - , and sin (2n — l)x as well as cos (2« — \)x are characteristic
functions. This means the sine as well as the cosine coefficients of the solution of the
above problem have to be found. The formulae to be used are:

S{F"(z)} = - (2n- 1)2/s(2m - 1) + (2n - 1) [^(0) + F«], (25)
C{F"(x)} = — (2n- l)2/c(2w - 1) - [^'(0) + F'{x)], (26)
CjTO } = (2n- l)/.(2« - 1) - [F(x) + F(0)]. (27)

The last three equations follow from (12), (13) and (15) respectively with r = 1 and
k = 2n — l, n = 1, 2, • ■ • . Relation (11) yields

00

5-1{/s(2« - 1)} = (2/t) E/.(2» - 1) sin (2n — l)ae in (0, x). (28)
1

Furthermore the solution of the following auxiliary problem will be useful.

Yt(x, t) - Yxx(x, t) = 0, in (0, x), 7,(0 +, t) + 7,(x - ,0=0,

7(0 + , <) + 7(x —, t)—0, Y(x, 0+) = l. From (25) it follows that \dy,(2n — 1, t)/dt]
+ (2w —l)2ys(2w —1, t)=0, ys(2n — l, 0 + ) =S{ 1} =2/(2« — 1). Hence ys(2n — 1, t)
= 2 exp [ — t{2n —1)2](2» —1)_1, which gives the sine coefficient of the solution of the
auxiliary problem. The cosine coefficient is zero since C {1} =0 when k = 2n — \\ so
that the solution of the auxiliary problem is according to (28)

00

7(«, t) = (2/x) £ 2(2n - I)"1 exp [- (2n - l)2/] sin (2m - 1)*, (29)
1

7X(x, t) = (2/x)i?2(#, exp [— 4/]), see [18] p. 464. (30)

The following formulae by Kniess (see [12]) will also be used. If K= {n} then a)
if F(x) is even and periodic with period 2ir and G(x) is odd, then

C{F(*)}S{G(*)} = i5{F(*).G(*)}; (31)

b) if F(x) and G(x) are even and Fix) is periodic with period 2x, then

C{F(x)}C{G(x)) = iC{F(a:)*G(a:)}. (32)

The solution of the given problem can be written as the sum of the solutions of
the following four problems, where 0<x<ir, 0<t, A(t) >0, K(t) >0.
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I. L(U) = Q(x, t), L\{y) = L2(U), U(x, 0 +) = 0.
II. L(U) = U{U), U(x, 0 +) = 0, Li(U) = B{t).

III. L(U) = U(U), U(x, 0 +) = 0, L2(U) = D{t).
IV. L(U) = U(U) = L2(U) = 0, U(x, 0 +) = F(x).

The sine and the cosine transforms using (25) and (26) respectively of the solution
of each of these problems have to be found. The sine transform of the solution of II
and the cosine transform of the solution of III are zero.

With the notation of section 10 it follows from (25) that the sine transform of the
solution of I is

us(2n — 1, i) = T exp [— A(t, i>)] exp [— (2n — 1 )2K(t, v)]qs(2n — 1, v)dv.
J o

Relations (29) and (27) yield

exp [- (2m - 1 )H] = [(2m - l)/2]S{F(x, <)} = 5C{Yx(x, f)}.

Using (31) and (30) the sine part of the solution of I can be written as

(1/2tt) exp [— A(t, u)]j$2(£, exp (— 4K(t, ^)})*Co(^ v)\dv,
J o

where Q is extended so as to be odd with respect to x.
From (26), (29) and (27) it follows that

1 f <■    
uc{2n — J, t) = — I exp [— A{t, v)]C{Y X(x K(t, v))}c{Q(x v) j dv.

2 J o

According to (32) and (30) the cosine part of the solution of I can be written as

(l/2ir) f exp [— A(t, d)][*M£, exp {— 4 K(t, v)}) *Qe(x, v) }dv,
J o

where Q is extended so as to be even with respect to x.
It may be left to the reader to show that in a similar way the sine and cosine

parts of the problems II-IV can be expressed in closed form in terms of by using
relations (25) to (32). Thus the solution of the given problem can be expressed in
closed form in terms of Jacobi's $2 function as follows:

U(x,t) = (I/271-) ^ exp [— A (/,»)] [#2(#> exp {—4 K(t, v)})*Qo(x, v)]dv
J 0

+ (1/27r) f exp [— A (I, c)][t?2(s, exp { - 4K(t, »)})*Q,(a;, v)]dv
^ 0

— (1 /tt) r exp [— A(t, v)]dz(x, exp { — 4K{t, v)})B(v)K(v)dv
J 0

— (1/x) exp [— A(t, f)exp { — 4K(t, v)})D(v)K(v)dv
J 0

+ (l/2ir) exp [— A(t, 0)][t?2(*, exp { — 4K(t, O)})*^^)]

+ (1/2-tt) exp [—A(t, 0) ] [$2(x, exp {— 4K(t, 0)}) *Fe(x) ].
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Summary of the operational method. The method is applicable to the following
type of boundary value problem:

m d2rF(x)
(- l)r^2r = G(x) in (0, a-),

r_0 dx2r

where G(x), the quantities

d\F(2r~2s—2)(0) + a2/?<2r-2»-l)(0) _|_ 2r-2„-2)(y) + J?(2r- 2.-2)(„.)

and
6l^(2r-2s-2)(0) _|_ J2i7(2r-2«-l)(0) _|_ ^ + JJ? (2^2,-2) („.)

and the constants ^42t- are assigned, 5 = 0, 1, 2, • ■ ■ , r —1. The constants o,-, &i,
i = l, 2, 3, 4 are allowed to be different for each s. The transformation is also useful
in boundary value problems in partial differential equations, where one or more
variables behave like x in the above problem. In order to obtain a formal solution
quickly, and possibly a closed form solution, the following procedure is recommended:

1° Set up (3) corresponding to the given problem.
2° Find the roots of D(k) =0 (see (7)).
3° Find the rank of the determinant D(k).
4° If the rank is greater than zero set up T{ F} using (9). If the rank is zero set

up TijF} and 7\ {F}, where T\ and Tz have the two independent characteristic func-
tions of (3) as respective kernels.

5° Find T{F*r} using (16).
6° Apply T {F'ir} to the boundary value problem (which may be resolved into

several problems each of which has only one non-homogeneous condition) and find
f(k„), the transform of the solution.

7° Try to obtain the inverse T~l \ f(kn)} in closed form by application of the theo-
rems of sections 3, 5, 7 or by use of tables of transforms or a combination of both.

8° If 7° does not lead to the solution, use (11) to find T~l{f(kn)} and obtain the
solution in series form.

Remark. Formulae for a few special cases of T can be found in the tables section
12.

12. Tables. Tables A-D contain a few examples of transforms. It would be de-
sirable to have extensive tables of transforms, since they would help in obtaining
closed form solutions of boundary value problems (see the example of section 6).

Table E below contains a list of transformations which are special cases of the
transformation T (see (9)) of section 1. In each case the formula for the transform of
an even derivative (see (16)) as well as the inverse transformation (see (11)) are given.
The completion of this list of special transformations is left to the reader.
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A. Tables of S-transforms.
 /.(*)-S{f(s)}  F(x)

(1 — COS £x)&_1 1

k~2 sin kir—kr1 ir cos kir x

[(—l)'(2r)!(l—cos M/^J+cos kir 2 (-l)'^(2r)!x2^/(2*+2)!£2'-2*-1] x?'
*=0

+sin kir 2 (-l)H""+I[(2r)!7r2»+1/(2j+l)!F'-2«]
8=0

r—1

sin kir £ (-1)^8"1"1 W"(2r-1) \/(2s) x^1

r—1

+C0S kir Y. (-l)'+r[jr2r+1(2»—l)!/(2i+l)!yfe2'-2*-1]
1-0

(k2—a2) ](o cos air sin kir—k sin ox cos kir), a9^k sin ax
{ki—a'>)~1{k—k cos kir cos air—a sin kir sin air), a^k cos ax

B. Tables of C-transforms.
 Uk)=C{F(x)}

k~r sin kir
kr1 ir sin kir—(1 —cos kir)k 2

sin kir £ (—l)r+,[irs'(2r) 1/(2s) !^«+1]
8=0

+COS £x£ (—l)r+"*+1[x2*+,(2r) !/(2s+l)
8-0

[(—l)r(2»-—l)!/£2r]+cos ̂ 2 (-!)■+«+'[{2r-\)\i^/(2s-2)\k^'}

+sin kirZ (—l)r+s+1[(2r—1) !x2a+1/(2s—1) !&2' 2*—1 ]
8=0

(k2—o2)-1(—a-\-k sin kir sin ox+o cos kir cos air), a^k
(£2—o2)-1(^ cos air sin kir—a sin air cos kir),a^k

C. Table of S-transforms when K= {n—j}, n— 1, 2, • •
/.(«-|) =S{F(*)}

FOO
1
a;

sin a#
cos as:

F(x)
(»-1)"1
(_l)n+,(n_l)-2

(«—»[(*—»•—^r1
(—l)n+Io[o2+(«—J)2]-1

D. Tables of C-transforms when K={n—f}, re = l, 2, •

/«(»-*)=c{n*)}

1
*

x(2ir—x)/2
1—cos X

cos a (71 %) /cos ox
sh a*/cosh ax

m
(—l)»+^r(«—i)-1—

(»-»-*

[(»-f)2-o2]"1
(_l)»+1(M_i)[(B_i)2_02]-i

[a2+(ro—i)2J-i
(-i)n+I(»-i)k+(»-i)sJ-1

1
X

ir—X

ir—x—sin a:
sin a{ir—x)/cos ox

cos o*/cos ox
sh a(ir—x)/cosh ox

cosh a.r/cosh ox
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E. Table of some special transformations.

= f F(x) sin nxdx = /,(»), n = 1, 2, • • • (33)
J o

00

= (2/71-) X)/S(w) sin nx in (0, x)

S{F(x)

s-Hf.W

S{F«r\x)

C\F{x)

c-HMn)

C{F^(x)

S{F(x)

S-'iMn-h)

S{FW(x)

C{F(x)

C~HMn-h)

C{F«'\x)

= (- «2)r/.(») + E (- l)*»2s+1 [/?(2r-2*~2)(0) - (- l)nf(2r-2^2)(7r)]
«=0

= I F(x) cos nxdx = /c(w), n = 0, 1, 2, • • • (34)
J o

00

= (l/x)/c(0) + (2/x) X) /c(tt) cos m* in (0, x)
1

«=r— 1
= (- W2)r/C(«) + Z (- 1)'«2'[(- l)«/?(2r-2«-l) (7r) _F(2r^2.-l)(0)]

5=0

= J" F(x) sin (w — %)xdx = /,(» — 5), » = 1, 2, • • • _ (35)

00

= (2/x) f,(n — i) sin (n — %)x in (0, x)
1

= (-(«- iW.(» " i)

+ 'e\- 1 )'(n - |)2'[(- l)n+if(2'-2.-D(T) + (n - A)F<2-2'~2>(0)]
5=0

= F(a;) cos (n — \)xdx = fc(n — ̂ ), » = 1, 2, • • • (36)
■J o

00

= (2/x) fcin — |) cos (n — i)x in (0, x)
1

= (-(«- *W.(n - i)
«=r- 1

+ Z (~ 1)*+1(» - hY'[F'-ir~2,_1)(0) + (» - i)(- l)nF(2r"2'_2)(ir)J
«-=o

5{/7(a:)} = r i7(«) sin knxdx = /<,(£„)> « = 1, 2, • • •> (37)
•J o

where kn are the roots of tank ir= — (k/h), k>0, 0

00

•S-1 {/.(£»)} = 22 N(kn)f,(kn) sin in (0, x) and
1

l/iV(Jfe») = (x/2) - (Un)-1 sin 2x£n
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S{F<*"(*)} = (- klyj.iK)
s=r—1

+ Z (~ ^)8[sin knx[F^'-i)(r) + _|_ knF«"2»-2)(0)]

(38)5{f(x)} = r F{x) sin ^n(ir — x)dx = /»(&„), n = 1, 2, • • •
■J 0

00

5_1{ ,(£»)} = X N(kn)j,(kn) sin ^„(tt - x), in (0, tt),
1

kn and N(kn) as in (37)

3{*<»"(*)} = (- klyf,(kn)
8=r-1

+ Z (-l),+1^.S[sin knT[FV'-2'~»(0)-hFUT-u-v(0)]-knFV'~2'-v(T)}
5=0

C{F(x)} = r F(x) cos knxdx = fc(kn), n = 1, 2, • • •, (39)
J o

where kn are the roots of tank tt = (h/k), k>0, h?± 0
00

C^{fc(k„)} = N(kn)fc(kn) cos knx in (0, x) and
1

1 /N(k») = (71-/2) + (4*.)-1 sin 2knT

c{f»')(*)} = (- klyfc(kn)

+ lf(- ^)s[cos knirlF^'-^i tt) + ««—-«(*)] -F(2'-2s-D(0)]
s=0

C{.F(#)} = r F(x) cos kn(ir — x)dx = fc(kn), n = 1, 2, • • • (40)
■J o

00

C_1{/c(W} = X) N(k„)fc(k„) cos £„(tt - x), in (0, ir)
1

kn and N(kn) as in (39)

£{F«'>(x)} = (- KYUK)
8=r— 1

+ Z (-l)s+1£»S[cos &„7r [F(2r-2s~1,(0) — (2r-28-2)(0) ] —F(2r~"2'-1>(x) ]
s=0

2"{F(x)} = T F(x)(a sin — k„b cos knx)dx = f(kn), n = 1, 2, • • • (41)
•J o

where &„ are the roots of tank tr = k(bc-ad)/(ac-{-k2bd),

k > 0, ad — be 0
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00

7"1 {/(*»)} = T, N(kn)f(kn)(a sin knx — knb cos knx) in (0, 7r) and

1 /N(k„) = J(xa2 + irknb2 — ab) + [(knb2 — a2)/4£,J sin 2irkn + (ab/2) cos 2ir£n

= (- K)'f(kn) +z\- kly{kn[aF^'-»(0) + ii?(2r-2'-,(0)]
5=0

— knb{c sin k„ir + knd cos &„7r)_I [ci?(2r~2s_2)(7r) + dF(-2r~2s~1)(ir) ]}.
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