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—NOTES—
A CONTRIBUTION TO THE METHOD OF LEAST SQUARES*

By M. HERZBERGER and R. H. MORRIS (Eastman Kodak Company)

In trying to calculate the image figures of an optical problem the authors were led
to consider a problem of least squares which proved unusually difficult, since the de-
terminant of the normal equations to be solved had a very small value. The following
attempt to make the problem a geometrical one should be of value in other applica-
tions, and is presented here for what it is worth.

Most problems of least squares can be reduced to the following: Suppose that we
are given a sequence of k known functions fi, • • • , fk of one or more variables. Our
problem is to determine k constants, Ci, so that an unknown function, F, whose values
are known for n > k values of the coordinates will be approximated as closely as possi-
ble by a linear combination of the functions

F — Cjfi + • • • + Ckfk• (1)
Since F is given for only n>k values, we can consider these values as the coordinates
of a vector b in an w-dimensional space. The values of the fi for the n values of the
coordinates may also be considered as the coordinates of k vectors di in the w-dimen-
sional space. It is a simple geometrical problem to find the best approximation of the
vector b by a linear combination of the vectors o». We merely project b in to the space
of the vectors a,, i.e., we minimize

(5- ZC,a,). (2)

This leads to the k normal equations for the constant C»

^ v Cidid\ = (3)
i

which must be solved.
We can simplify the problem considerably if we order the vectors in a suitable

way, which in this case will be the transformation of (3) into a form which contains
only unit vectors, i.e., the projection of our problem on the unit sphere. Let

a, = otiSi, b = fit, (4)

where St=t-= 1. Equation (3) becomes

X) = tsx. (5)
A solution of (5) which yields 7< will also yield Ct for

07* . .
Ci =  j 7 i =   (6)

a; P

From (4) and (5) we see that the diagonal terms of the matrix of (5) are all 1, whereas
the members not on the diagonal are smaller than 1.

* Received Nov, 1, 1946. Communication No. 1123 from the Kodak Research Laboratories.
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The senior author now suggests an ordering of the vectors in such a way that the
principal subdeterminants* have a maximum value (which will always be less than 1,
since k independent edges of the parallelopiped formed by the unit vectors s,- lie inside
the unit sphere). If the determinant of the problem is small, this means that the vol-
ume of the parallelopiped is small or that the vectors o< are not "too independent,"
i.e., that one or more of the vectors can be approximated by a linear combination of
the others.

If we denote by a,y the quantity, stsj, by c|0) the quantity tSi, we may write (5) in
the form

_1_ J. _L (0)«n7i + 01272 + ' • • + = Ci ,

iii <o>
+ 04272 + ■ • • + 0M7& = Ck •

(7)

The method used will be this: We choose an arbitrary number, say r, where r<k,
and find the r-rowed principal subdeterminant which has the largest value. We set
the {k — r) variables not involved equal to zero, and solve the r equations for the r
unknown variables, obtaining the values 7y,i=7i,i • • • 7r,i.7y,i = 0, j>r. Substitut-
ing these for the variables 71,1 • • • 7,4 in the k — r remaining equations, we havfe

ffl,r+l7r+l + 1 ' - + ffl,fc7* = cl 1

0i,r+l7r+l + ' - + ak.kltk = Ck, (8)

where = c® —ia«./7y.»- At this point we have two possibilities. Either the
constants cP are very near to zero, in which case we have that the solution of (8) is
given by y,- = 0,j>r, so that a reasonably accurate solution of (7) and thus of (5)
is given by

7;,i = 7t,i (i = 1,2,--- , r); yitX = 0 (i = r + 1, • • • , k). (9)

In the event that they are not sufficiently small, we take the largest (r-j-1)-rowed
principal subdeterminant of (7), equate the remaining {k — r— 1) variables not in-
volved to zero, and proceed as before, obtaining (k — r — 1) equations in {k — r— 1) un-
knowns:

it, Wx7jx = C? . = 1. 2, ■ • • , k - r - 1), (10)
X=1

where the meaning of the terms /x<x and cj2) is clear. Should the constants cf be suffi-
ciently small, the approximate solution is given by

7f = 7,- (i = 1, 2, • • • ,r + 1); 7i = 0, {i = r + 2, • • • , k). (11)

One must keep in mind that as larger subdeterminants are taken, their values get
smaller, and that, of course, as r gets nearer k the c^ become smaller, and vanish
when r = k. There will usually be a place somewhere in this process, however, where
sufficiently good accuracy will be achieved. If greater accuracy is desired, one must

* Subdeterminants whose principal diagonals form part of the principal diagonal of the determinant
of the system (5).
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attempt one of the ordinary approximation methods, in particular, an iteration pro-
cedure.

We present as an example a set of six equations with six unknowns. Since the cal-
culation of the maximum subdeterminant is very laborious, we have replaced it by
the less laborious, but theoretically less satisfying, method of ordering the vector so
that the sum of the squares of the elements outside the principal subdeterminant is
as small as possible.

The system is represented by the following matrix.
I

6.35083641 3.38272218 1.83936868 1.02023449 0.57681127 0.33173876 2.27198287
1.83271729 1.01325021 0.57097916 0.32757965 0.19093008 1.26347780

0.56915637 0.32551164 0.18928551 0.11166820 0.71717786
0.18871015 0.11107961 0.06624255 0.41473305

0.06609478 0.03979216 0.24391707
0.02415650 0.14552476

This matrix is reduced to unit diagonal and reordered as described above (in this ex-
ample, the ordering remains the same). The elements of the resulting matrix are the
light-face elements of the following matrix.

II
1.00000000 0.99152377 0.96747004 0.93193774 0.89029657 0.84696167 0.90154952 0.90154952

1.00000000 0.99209478 0.97090085 0.94120796 0.90742269 0.93329702
0.01688061 0.03282524 0.04686243 0.05845775 0.06764006 0.03938924 2.33340146

1.00000000 0.99323746 0.97592846 0.95235029 0.95062903
0.00017130 0.00048914 0.00091901 0.00141057 0.00181242 10.58038529

1.00000000 0.99461070 0.98112063 0.95470899
0.00000007

-0.99152377

-0.96747004 -1.94455295

-0.93193774 -2.77610999 -2.85545826

-0.89029657 - 3.46301170 - 5.36491535
1.00000000 0.99585694 0.94876491

' 1.00000000 0.93631051

-0.84696167 -4.00696776 -8.23450088

The bold-face elements are found as follows: The first bold-face row contains the
determinants of the second order found from the first and second rows. Any other
bold-face elements above the stairway dividing line are formed by adding to the ele-
ment immediately above it the product of the rest of the column above it and the row
to its left, e.g., 0.99323748-0.93193775X0.96747003-0.04686244X1.94455183
= 0.00048919. The first column to the left of the stairway dividing is the negative of
first row, the second column is the negative of the first bold-face row divided by its
first number, and so on. The process is continued until one of the diagonal elements
becomes very small. The solution of the equations, omitting the last and successive
variables, is found in the usual manner from the bold-face column at the extreme
right. This column is the ratio of the last niimber of each row to the first number of
each row.

We find in our case •

71 = 8.75144919, 72 = - 18.24071797, 73 = 10.58038529.
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The three remaining unknowns are found by distributing the residuals among all six
equations by least squares. When this is done, we find for our original unknowns:

Ci = 3.4727, Cs = - 13.4739, C3 = 14.0244,
Ci =- 0.0003, C6 = 0.0002, C6 = 0.0001.

This method has been applied successfully to least-squares solutions in geometrical
optics and to the colorimetric problem of finding polynomial reflection curves which
will yield a prescribed set of tristimulus values under a given illuminant and fit other
prescribed conditions.

In the latter problem, the small unknowns must be neglected prior to symmetriza-
tion and reduction to unit diagonal.

NEW FORMULATIONS OF THE EQUATIONS FOR
COMPRESSIBLE FLOW*

By B. L. HICKS (Ballistic Research Laboratories, Aberdeen Proving Ground)
P. E. GUENTHER (Case School of Applied Science) and R. H. WASSERMAN (University of Chicago)

Introduction. A prominent aerodynamic effect of combustion in a moving gas
stream is an alteration of the flow pattern owing to heat release within the fluid.
This alteration occurs not only in the immediate neighborhood of heat sources but
also downstream where the entropy and stagnation temperature vary from one
streamline to another. As a background for combustion research, appropriate de-
scriptions of these altered flow patterns have been investigated. This paper considers
the downstream patterns, which are restricted to be the adiabatic and steady flows
of an inviscid fluid. In a second paper,1 diabatic (i.e., non-adiabatic) flows will be
discussed.

Since one-dimensional flow theory2,3 can be considerably condensed by use of the
local Mach number M, it was natural to seek a corresponding condensation with the
help of the Mach vector

M = MV/V
and the Crocco vector

W = V/Vt
in which Vt is the variable limiting velocity at each point of the fluid. The introduc-
tion of Mach and Crocco vectors into the compressible flow equations sufficiently
simplified or altered their form that a number of further investigations were sug-
gested including those of diabatic flow.

* Received Feb. 12, 1947. This paper is a revised report of theoretical work performed by the authors
at the Cleveland Laboratory of the National Advisory Committee for Aeronautics in 1943-45.

1 B. L. Hicks, Diabatic flow of a compressible fluid, submitted to Quarterly of Applied Mathematics.
2 Neil P. Bailey, The thermodynamics of air at high velocities, Journ. Aero. Sci. IX, 227—238 (1944).
3 B. L. Hicks, D. J. Montgomery, and R. H. Wasserman, The one dimensional theory of steady com-

pressible fluid flow in ducts with friction and heat addition, NACA TN, 1947.


