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NUMERICAL METHODS FOR FINDING CHARACTERISTIC ROOTS
AND VECTORS OF MATRICES*

BY

W. M. KINCAID
University of Michigan

The present paper treats the problem of finding the characteristic roots and
vectors of a matrix (having linear elementary divisors). The emphasis throughout is
on methods of getting numerical results in practical cases rather than on theoretical
questions.

Symmetric matrices are taken up first, and methods are discussed for finding (a)
the largest characteristic root and corresponding vector, and (b) the other roots and
vectors. All these methods are variants of the iteration process. They are then ex-
tended to general matrices, with particular reference to the case of complex roots. The
paper closes with a brief discussion of the solution of algebraic equations by means of
matrices.

Among earlier work on this subject, we may mention that of Hotelling1 and
Aitken.2 Indeed, much of the material in the present paper is taken from Aitken's,
through some modifications have been introduced, particularly with regard to the
determination of roots other than the largest.

A recent paper by Fry3 takes up matrices in connection with the solution of alge-
braic equations. The present paper, particularly the last section, is thus in a measure
supplementary to Fry's. Wayland,4 on the other hand, gives methods for reducing the
problem of finding the roots of a given matrix to that of solving an algebraic equa-
tion; this matter is touched upon Sec. II.

Recent work along these lines has also been done by Morris6 and Head.6
At this point the author wishes to acknowledge his indebtedness to Prof. W.

Feller for many helpful suggestions made during the preparation of the manuscript.

I. Basic Relations and Definitions
1. Nature of the problem: definitions and notations. The problem of finding the

characteristic roots and vectors of a matrix arises naturally in the solution of a sys-
tem of linear equations of the type

«11»(1) +012X(2) + ■ • • + ain%M = X#(1)

12\XW +«22»(2) + • • • + «2n»tn> = \xW

+ffn2#(2) + * * • + dnnXM = \X(n)

(1)

* Received Dec. 27, 1946. This paper is a condensed version of a thesis submitted in partial fulfill-
ment of the requirements for the degree of Doctor of Philosophy at Brown University, October, 1946.

1 H. Hotelling, Psychometrika 1, 27-35 (1936).
2 A. C. Aitken, Proc. Roy. Soc. Edinburgh 47, 269-304 (1937).
3 T. C. Fry, Q. Appl. Math. 3, 89-105 (1945).
4 H. Wayland, Q. Appl. Math. 2, 277-306 (1944).
5 J. Morris, Aircraft Engrg. 14, 108-110 (1942).
6 J. Morris and J. W. Head, Aircraft Engrg. 14, 312-314, (1942).
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In general, the system (1) has non-trivial solutions for n values Xi, X2, • • • , X„
of the parameter X, which are called the characteristic values or roots of the system;
these are the roots of the determinantal equation

flu — X #21 • • • ffln

&12 022 — X • • ■ 02n = 0. (2)

0"n\ &n2 ' ' ' ^nn

Corresponding to any characteristic value Xi there exists a solution (x^, x[2\ ■ ■ ■ .x!"')
which may be termed a characteristic vector of the system.

The vector (x^, ■ ■ ■ , x4(b>) may be regarded as an n by 1 matrix. Such a matrix
is called a column vector. Similarly, a matrix having but one row is called a row vector
and will be written in the form y(2>, • • • , yM}. In general, if V is any given
column vector, we shall denote by V the row vector having the same elements.

If C— [c{j] is an m by n matrix and D = [da\ is an n by p matrix, their product CD
is defined to be the m by p matrix E having elements of the form

n

e%j ^ ' Cikdkj (i 1, 2, • , j 1, , p).
k-1

Note that DC is not necessarily equal to CD. In particular, a row vector R and a
column vector K (with the same number of elements) have two products, a scalar
product RK and a matrix product KR.

The system (1) may now be written in the form

AX = XX, (3)

where

A =

an 0-12 " " " 0,ln

21 O22 • • • &2n

. Q"n1 &nl ' * * ^nn_

X =

r ~i
r.m

K<">

(4)

By a natural extension of meaning, the number X; and vectors Xi = 041', • • • > x{n))
satisfying (3) are called the characteristic roots and -charactetistic column vectors of the
matrix A. (Note that A is necessarily square.) Also any row vector Y such that

YA = XF (5)

for some value of X is a characteristic row vector of A. Clearly the values of X for which
(5) is satisfied must be the same as before, for (2) must hold in both cases.

In the following we shall suppose either that A has n distinct roots, or that to each
root of multiplicity r there correspond r linearly independent characteristic vectors of
each type (i.e., A has linear elementary divisors), as is almost always the case in
practice.* The sets of characteristic roots and corresponding vectors will be denoted by

* For a discussion of the case of non-linear elementary divisors, see the paper mentioned in Foot-
note 2.
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Xi, X2, • • ■ , X„; Xu Xi, ■ ■ ■ , Xn; Yi, F2) • • • , F„. If any root Xi is simple, the
vectors Xi and Fj are uniquely determined except for a constant factor; if two
roots are equal, any linear combination of two corresponding characteristic vectors
is a characteristic vector. In the following we shall understand by X<, Xit Xi,
(i= 1, 2, • • • , n) the ith root and corresponding column and row vectors of some
given matrix A of order n.

Since (X,Y,)Xi= Y,AXi = F,(XjX,), we have (Xt— X,)Y,Xi = 0, and it follows that
the characteristic column vector Xi is orthogonal to the characteristic row vector
Yj if Xi^Xj. We may clearly choose the vectors corresponding to any multiple
roots in such a way that F,X, = 0 whenever i^j, and we shall suppose this done in
future.

In what follow, unless stated otherwise, we shall assume that all the roots are
distinct and shall take Xi to be the root of largest absolute value.

2. Some important relations. Since the Xi's are linearly independent, any column
vector V of order n may be expressed in the form

V = a 1X1 -f- 02-^2 + • • • + anXn, (6)

where the a,-'s are constants. Multiplying (2) by A, we get

AV = aiAXi + • • • + anAX„ = aiXiXi + • • • + an\nXn, (7)

and by induction

AkV = -f- (I2X2X2 anXnXn (8)

for any positive integer k. More generally, if P(X) is any polynomial in the variable
X, we have

P(A)V = aiP{\i)Xi + a2P(X2)X2 + • • • + anP{\n)Xn. (9)

By setting V = Xiy we see that the matrix P{A) has the characteristic vectors
X\, Xi, ■ ■ ■ , Xn, and the characteristic roots P(X 1), P(X2), • • • , P(X„). (The same
relations, of course, hold for row vectors.)

A further useful relation may be derived from equation (2), viz.,

ffln + #22 + • • • + ann = Xi + X2 + • • • + X„, (10)

i.e., the sum of the roots is equal to the sum of the elements of the principal diagonal.
3. Symmetric matrices. A square matrix is symmetric if it is unchanged by turning

its rows into columns and vice versa. The characteristic row vectors of a symmetric
matrix have the same elements as the corresponding column vectors (F,- = X/
for i= 1, 2, • • • , n); hence the characteristic vectors may be regarded as a single
mutually orthogonal set.

It follows that all the roots of a symmetric matrix are real, for two conjugate
complex roots would correspond to two characteristic vectors having conjugate
complex elements, and such vectors could not be orthogonal.

II. The Method of Iteration
We now take up the problem of finding the characteristic roots and vectors of a

given matrix A. For the sake of simplicity, we shall confine ourselves at first to the
case where A is symmetric,
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4. Expansion of the determinant. The most obvious procedure for solution would
be to expand the determinant in Eq. (2) into a polynomial and then solve the result-
ing algebraic equation for X. This method is sometimes the most expeditious, espe-
cially if use is made of the techniques of expansion described by Wayland.4 Never-
theless it is necessary to consider other methods, for the following reasons.

(a) Solving (2) gives only the roots; if the characteristic vectors are desired, they
must be found by a separate process.

(b) Finding the complex roots of an algebraic equation may be as difficult as
finding those of a matrix directly.

(c) In case approximate values of the roots are known, the work of expanding the
determinant will not be affected, though that of solving the algebraic equation may
be. On the other hand, we shall see in Sec. IV that such information can be used to
great advantage when the problem is solved by iteration.

(d) The methods to be discussed are better adapted to machine calculations.
We therefore take up direct methods based on the prccess of iteration.
5. Iteration. This method consists in multiplying a suitable vector V repeatedly

by A. Representing V in the form (6), and considering equation (8), we see that if
Oi5^0 (i.e., if V is not orthogonal to X) the first term on the right will predominate
more and more as k increases. In fact

A"V = X^a1X1 + 0(X2/X1)i), (11)

where X2 is the root of second highest absolute value. Similarly

A™V = xj\+\a1X1 + 0(X2/Xi)t+1).

Thus the ratio of corresponding elements of AkV and Ak+lV approaches Xi as k—>«>.
And if AkV is divided by one of its elements, the resulting vector tends to a multiple of
Xi (which, of course, is determined only up to a constant factor anyway). These
points will be clarified by the following concrete case.

Example 3.

A =

' 6 1-1 3"

1 4 01-2
-1 0 11115

iad
L 3 -2 5 2.

(The extra column on the right is the sum of the others; its purpose will be explained
in the following.)

Choosing

V = (4, -1,2,4),

(more will be said later about the method of choice), we obtain

AV = (33, -8, 18, 32),
A2V = (268, -63, 145, 269),
AW = (2207, -522, 1222, 2193),
A4V = (18077, -4267, 9980, 18161).
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Successive ratios of the leading elements are

8.25,8.12,8.235,8.191.

(The true value of the root is 8.22557331.) The vectors obtained by dividing the fore-
going by their leading elements are (with the true vector for comparison)

(1.000, -.242, .545, .970),
(1.000, -.235, .541, 1.004),
(1.000, -.237, .554, .994),
(1.000, -.235, .552, 1.005);

Xi = (1.00000000, -.24073464, .55955487, 1.00862094).

6. Use of powers of the matrix. It will be noticed that the convergence is not very
rapid, and the multiplication might have to be repeated many times if Ai or the
components of Xi were wanted to many figures. The process may be shortened by
first squaring A repeatedly:

A2 =

'47 4 8 17"

14 21 -11 -9
8 -11 27 12

.17 -9 12 42

76
5

36
62

A *■=

A8 =

'2578 31 752 1573_

31 659 -604 -631
752 -604 1058 1063

_ 1573 -631 1063 2278.

4934
-545

2269
4283

(The powers of a symmetric matrix are of course symmetric also.)
The sum columns are useful as checks at this point, for the sum column of A2

should be the same as the result of operating with A on its own sum column, and
similarly for the higher powers. That this is so can be seen by noting that the sum col-
umn of A is equal to AH, where H={\, 1, 1, 1). Then A2H = A {AH), A*H = A\A2H),
etc.

We can now multiply V directly by some higher power of A and thus save many
stepts in the iteration. For example

A4(A4V) = ASV = (82542442, -19739077, 46035155, 83107096)

A{ASV) = A9V = (678801708, -162628058, 379028193, 683495447)

A(AW) = A2(A8V) = A10V = (5581640338, -1338701418, 311703720, 5623793099)

These are proportional to

(1.000, -.2391, -.5577, 1.0068), (1.000, -.2396, .5584, 1.0069),

(1.0000, -.2398, .5586, 1.0076),
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and the ratios of the leading elements are

8.224, 8.224.

Note, however, that forming each power of A requires about as much computation
as n vectors Ak V, so this procedure should not be carried too far.

For example, to compute A16 V by operating directly with A on V sixteen times re-
quires 16m multiplications; forming A2 first and then operating eight times on V
requires Jw(w + l)+8w multiplications. Similarly, using A4 requires n(n-\-\) +4w;
using As, fw(w+l)+2w; and using A16, 2n(n-\-l) +«. For w = 4, it will be seen that
working with A4 is the most economical.

7. Finding the smaller roots. So far we have obtained only Xi. What about the
other roots?

Clearly these can be found if we can determine the products XxX2, X1X2X3, etc.
We shall now see how to modify the iteration process in order to do this.

Suppose we have two sequences having &th terms of the form

3k = bi\i -(- &2X2 + • • • -f- bn\n
/ / k _ / k 1 k

Pi — 61X1 + £>2X2 + • • • + bn\n
(A = 0, 1,2, (12)

Then we define

ftk fik+1
@2,k = ,

Pk Pfc+1

= XiX2(&2^i bibi)(Xi — X2) -(- XiXs^s^i — b\ba)(\i — X3) -f- • • • , (13)

whence

fc.k+i/fc.k = XiX2 + 0(X3/X2)fc (k = 0, 1, 2 • • • ). (14)

To be concrete, if we have a sequence of vectors of the type V, AV, A2V, ■ ■ •
AhV, • • • we could write ^k = (AkV)a\ ^ = (AkV)(-2\ where {AkV)i-i) is the ith
element of AkV(i = 1, •••,»), so that

(A kV)(1) (^i+1F)<1'

(AkV)™ (A 4+1F)(2)

(of course, any other pair of elements would work equally well). Consider the follow-
ing case.

Example 2.

0 0 2 1

A =
0 1-31
2-3-3 4

_-l 1 4 -2 _

It is found that Xi= —8.075320860. Operating with A upon the vector V below
yields
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V = (5, -9 -2, 8),
AV = (-12, 5, 75, -38),
AW = (188, -258, -417, 393),
AW = (-225, 1383, 3970, -2896),
AW = (10836, -13423, -30093, 24280),
AW = (-84466, 101136, 249340, -193191).

Then
-2 75

8 -38
- 524, 75 -416

-38 393 13667, etc.

Values of successive determinants and their ratios are
-524 13667 -355474 9242272 -240278437

-26.08 -26.01 -25.9985 -25.9978

Thus XiX2= —26.00 and X2 = 3.219.
On the other hand, we may take j9* =j3*+i, in which case

2 ,k —
fik Pk+ X

@k+l Pk+ 2
(15)

That is, we can set up a sequence converging to X1X2 given any single sequence of
the form (12)

If we wish to find X3 ,we select three sequences of the form (12), set up the cor-
responding three-rowed determinant ft,*,, and get as before

ft3,k+l/@3,k = XlX2X3 4* 0(\(16)

Note however, that the characteristic vectors X2, X3, • • • , Xn cannot be found
by this means.

III. Devices for Improving Convergence
If we employ the method of iteration in the crude form, described above, we find

that the convergence often leaves much to be desired in terms of time consumed. In
this section we consider various ways of improving the efficiency of the method.

8. Scalar products. Consider the scalar product (see Sec. I, 1) (V'Ak)-{A1 V),
(k, 1 = 0, 1, 2, 3, • • • ).
This may be written (in view of (6) and the orthogonality of X/s)

V'A«VW = V'A k+W = oxX^'ZiZi + a2\^+lX^X, + • • • + an\nk+lx'nxn. (17)

In particular

and

so that

2k—1 t 2k— 1 / 2k— 1 /
V A*-1-AkV = aiXi XjXx + a2X2 X^X, + ■ ■ ■ + an\n XiXn

2k / 2k / 2k
V'Ak■ AW = ajXi XiXi -f- 02X2 X2X2 +•••-(- a„\n XnXn,
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V'Ak-AkV
——-— = Xi + 0(X2/X1)2^, (4 = 1, 2, 3, • • • ). (18)V A "~l ■ A " V

It follows from (18) that by taking suitable scalar products the number of steps
required to find Xi to a given degree of accuracy is approximately halved.

To illustrate this method, let us apply it to the vector sequence of Example 1.
Working with the last two vectors, we get

V'A18V = 1098048041,

V'A19V = 9032871992,

V'A20V = 74293955655,

V'A™V/V'AliV = 8.2255708,

V'A2W/V'AUV = 8.2255717.

(The last figures of the scalar products have been omitted.) The improvement in the
approximation is evident.

The method can also be applied to finding the products of the roots, by making
proper use of (15).

9. Choice of initial vector. So far nothing has been said about the choice of the
initial vector V. Clearly, the best Vis one that is already "near" to Xi, i.e., one having
ai (equation (6)) large in comparison with the other as. A few suggestions may be
helpful. The sum columns of A and even more of A2, A3, etc., may be good indications,
though sometimes they are misleading, as when H happens to be nearly orthogonal
to Xi\ in this case we may be led astray to one of the other vectors. The other
columns of A, especially those having the largest elements, are also good first guesses.
In any case, the first Vs should have small integers for elements and should be tested
by trial multiplications by A.

10. Reduction of leading element to unity. Once V has been selected and the
iteration is under way, it is clear (since only the ratios of the vector elements are sig-
nificant) that the approximation to Xi is not affected if each vector Ak V is divided
through by one of its elements—say the first if this is not zero. Then it will be clear
from the extent of agreement of successive vectors how far the approximation has
progressed, and time can be saved by retaining in the elements only as many digits
as appear to be correct. (The choice of V is actually slightly altered at each step, but
this is of no importance.) The following example shows the procedure.

Example 3.

■-2 -2 0 3 -r
-2 0-3 5 0

A = 0 -3 -5 11 1
3 5 1-3-1

.-1 0 1-1-1.

Casual inspection suggests the vector

V = (1, 1, 1, -1,0)

as a first approximation of Xi, The vector A V resembles V sufficiently to indicate
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that we are on the right track. Operating repeatedly with A and dividing through
by the leading element each time yields the sequence below:

AV = (-7 -10, -9, 12, 1)(69),

(1.00, 1.46, 1.28, -1.70, —,22)( —9.80),
(1.000, 1.463, 1.296, -1.724, -,224)(-9.874),
(1.000, 1.469, 1.298, -1.722, — .227)( —9.877),
(1.000, 1.468, 1.301, -1.725, -.227)(-9.884);

Xi = (1.000000, 1.469801, 1.302061, -1.724997, -.228106).

The figure in parentheses after each vector is the number by which the elements
of the next vector have to be divided to reduce its leading element to unity. These
numbers converge, of course, to Xi. Note that while computing errors may slow up
the convergence, they will not invalidate the final result.

To obtain a more accurate value of Xi, we should operate with A on the last
vector in the sequence and take scalar products as before. The number of correct
significant figures thus obtained should be about double that of the last number in
parentheses.

11. Aitken's 52 process. Since the rapidity of convergence in all the above
processes depends essentially on the ratio |X2/Xi|, where X2 is the root of second larg-
est absolute value, the convergence is slow if th's ratio is near 1. In such cases the
convergence may be speeded up by using the <52 process, due to Aitken, which we
now explain.

Our approximating sequences are all of the type

<t>k = Xi + Ci?i + C292 + • • • (k = 0, 1, 2, • • • ; 1 > | <711 ̂ j q2 | ^ ■ • • ) (19)

where the q's are of the form X2/Xi, X3/X1, (X2/X1)2, etc.
Writing

^2,4 (k = 0, 1, 2, • • • ), (20)4>k <t>k+1

<t>k+l 4>k+2

we readily see that
k k 1 k k

*p2,k = Xl[ci(l — qi )2<7l + £2(1 ~~ <72)2</2 +•••] + ^1^2^192(^1 — #2)2 +

On the other hand
k k

^<t>k+1 — <t>k+2 — 20ifc+l + <plc = Cl(l — <7l)2<7l + 62(1 — <?2)2<72 + • • • •

Defining

>t>2,k = *l'2,k/&2<t>k+l (k — 0, 1, 2, • • • ), (21)

we see that

<t>2,k = Xi + 0(92). (22)

Thus, if \q2\ <|gi|, the </>2,k's will form a sequence converging to Xi more rapidly
than the sequence of fa's. Applying the same process to the 02,/c's will then result in a
still more rapidly convergent sequence, and so on.
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However, the remainder term in the sequence obtained by applying the <52 process
twice is of the form 0[(g|/g1)ft]+0(g3). Thus the improvement in convergence will
be slight if \qi\ and |g2| are nearly equal, especially if — Qi-

12. Extension of the S2 process. For this case, we shall develop a modified pro-
cedure which proves more efficacious.

We define a second derived sequence

<t>3,k = ii.k/xs.k (k = 0, 1, 2, • • • ), (23)

where

^3,k =

<t>k 0/i+l <t>k+2

4>k+1 <t>k+ 2 <t>k+3

4>k+2 <t>k+3 4>k+i

^2,fc+l ^2,k+2

^i.k+l ^2,fc+3

and

X3,*
52<f>k+1 <>20/c+ 2

&2<t>k+2 S2<t>k+3

4>k+2 (24)

(25)

It can be verified that

<t>3,k — Xi + 0(173). (26)

It should be noted that if the elements 4>k of the original sequence are replaced by
cf>k — c, where c is a constant, all the sequences will converge to Xi —c. Thus if the first
few digits of the 4>k s are the same for all k, we may simply ignore these digits in
computing the derived sequences.

Example 4.
2 1-1 3"

A =
1 0 0-2

-1 0-3 5 V =

1
-1

3
-33-2 5 -2.

Carrying out the foregoing procedure, we form the following table:

V'AkV <t>k b~<i>k ^2,k-l 4>2,k-l <t>3,k-2

20 -8.550000000 -8.59
-171 -8.602339181 .066643012 -.006071541 1105433 -8.59

1471 -8.588035350 -.018447694 .001683322 1248386 120357
-12633 -8.592179213 .005452930 -.000497222 1184409 120331

108545 -8.590870146 -.001769071 .000161358 1210537
-932496 -8.591330150

8011381

(In the above, <£* — 8.5, rather than <j)k, is used in computing the later columns.)
Further derived sequences, showing still better convergence, could be defined in

a similar fashion. However, the extra computation required and the rapid accumula-
tion of rounding-off errors make such a procedure of doubtful value.
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The same process can be used in finding the elements of X\ (see the paper quoted
in Footnote 2).

IV. Finding the Remaining Roots and Vectors
In Sees. II and III we saw how all the roots of A could be obtained, though with

limited accuracy for the smaller roots in practice. Now we consider methods of
getting both roots and vectors at once, at the same time improving the accuracy of
the former.

13. Xj-differencing. Perhaps the simplest method is that of Xi-differencing the
sequence (8). That is, we form the differences

Ak+W - \iA kV = a2(X2 - AOAaXs + a3(X3 - Xi)X3Z3 + • • • + an(\n - X0X>n. (27)

If X2 is larger numerically than the other roots and 0 the first term predominates,
and we find X2 and X2 much as we originally found X\ and Xi.

The disadvantage of this method is that nearly equal numbers have to be sub-
tracted at each stage with a resulting loss of significant figures. The better the con-
vergence of the original sequence is, the worse this becomes. Needless to say, the
difficulty is increased if we try to find X3, X4, etc., by repeating the procedure.

14. Deflation.1'2 We may also proceed by deflation, which consists in replacing
the matrix A by a matrix A\ having the same characteristic roots and vectors as A,
except that Xi is replaced by zero. Applying the method of iteration to A\ will then
yield X2 and X2. Deflating again give X3 and X3, and so on.

We set up the matrix Ai as follows:

Xi
Ay = A XiX{. (28)

XI Xx
Note that X{ X\ is the scalar product (sum of squares) while X\X[ is the matrix
product

~ (1)2 (1) (2) (1) <.n)~~
X\ Xi Xi • • • Xi Xi

(2) (l) (2)2 (2) (n)
X\ X\ Xi ■ • ■ Xi X\

(n) (l) (») (2) („)2
_ Xi X\ Xi X\ • • • X\

That A\ has the desired properties can be seen by substitution:

Xi
AiX! = AXi - X1X/X1 = XiXi - X1X1 = 0,

Xi
AiXi = AXi 7 XxX{Xi = XjX,- (i ^ 1).XI Xi

Let us apply this procedure to Example 1:

X{Xi. = 2.38837102, \x/X(Xi = 3.44400985
2.55599015 1.82909247 -2.92711248 - .47370045"
1.82909247 3.71445974 .46392273 -1.16375997

A1 = -2.92711248 .46392273 - .07832518 3.05627400

L- .47370045 -1.16375997 3.05627400 -1.50364702.

.98426969
4.84371497

.51475907
-.08483344
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Starting with the vector Vi below and proceeding as in Sec. Ill, 10, we get in succes-
sion the vectors

Vi = (2, 2, -1, —1)(12.216),

(1.00, 0.96, -0.65, -0.40)(6.4040),
(1.00, 0.87, -0.57, —0.46)(6.0337),
(1.00, 0.88, -0.64, —0.42)(6.2379),
(1.00, 0.85, -0.60, -0.45)(6.0802)

whereas the vector and root to four places are

X2 = (1.0000, 0.8681, -0.6198, -0.4404), X2 = 0.16666.

We see that the difficulty of losing significant figures by subtraction is largely
avoided, while the convergence toward X2 is fairly rapid. On the other hand, the
extra figures in the elements of A\ make the further computations somewhat labori-
ous, and in any case the accuracy attainable in Xi is limited by that of Xi and X\.

Some saving of time may be affected by noting that

A* = Ak- T[^XlXi'

whence
\k

AiV = AkV = — XiXlV,

i.e., the vector A\V can be obtained from AkV without setting up the matrix A\.
But this again brings a loss of significant figures; thus this device is of limited ap-
plicability.

15. Use of matrix polynomials. In view of what has been said above, it would
seem that there is room for a different approach. Now, upon reviewing our work up
to this point, it will be seen that we have tacitly assumed that we had no prior notion
of the location of the roots of our matrix A, and we have indicated no way of using
such information if we had it. However, in a practical case growing out of, say, a
vibration problem, we could usually make at least a guess at where the roots lie. In
any event, we could get an approximation to the largest root by a couple of steps
of iteration, and we shall see shortly how the other roots might be estimated.

Suppose, then, that we have approximate values Xi, X2, • • • , X« of the n roots
Xi,X«, • • • , X„. Now consider the polynomial.

J\(X) = (\ - X2')(X - X,') • • • (X - X„') (28)

and the corresponding matrix

P(A) = (A - \{)(A - X,') • • • (A - X„'). (29)

It follows from equation (9) that P{A) has the characteristic roots Pi(Xi),
Pi(X2), • • • , Pi(Xn). But by definition

p i(x»') = PiW) = ■■■ = P,(K) = 0,
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and since P(X) is continuous one would expect Pi(X2), Pi(\z), • • • , P±(X„) to be
small, how small depending on how good the approximations were. On the other hand,
the roots being supposed distinct, Pi(Xi) would not in general be near zero, and
therefore

| P i(Xi) | | Pi(X<) |, » ̂  1.
If we now choose a vector V of the form (6), with ai^O, we have by (9)

PM)V = aiPiCXO*! + fl2Pi(X2)A'2 + • • • + anPi(\n)Xn. (30)

The first term on the right will predominate strongly, so that if we proceed by itera-
tion, i.e., multiply repeatedly by Pi(A), the convergence to X\ will be very rapid.
(Of course it is all the better if V is already an approximation to X\.)

Once X\ is obtained, Xi can be determined to the same degree of accuracy by
multiplying X\ by A, and to greater accuracy by forming scalar products.

Note that nothing is really altered if Xi is replaced by one of the other roots. For
example, to find X2 and X2 we could use

Pi(A) Es (A - \{)(A - \{)(A - X/) • • ■ (A - A„').

Example 5. Suppose that for a given fourth-order matrix we have

Xi ~ 6.1 = Xi, X2 4.3 = X2', X3~-2.6 = X3', X4~0.4 = X4'.

Then

Pi(X) = (X + 4.3)(X - 2.6)(X - 0.4) = X3 + 1.3X2 - 11.9X + 4.5,

where the coefficients have been rounded off to one decimal place, as there is clearly
no advantage in retaining more. In fact, we should in practice make a further simpli-
fication, and replace Pi(X) as written above by a polynomial like X3+X2 — 12X+4
or 2X8 + 3X2 —24X+9, whose coefficients are small integers. In this way, the subsequent
computations would be simplified without slowing down the convergence much.
Where to strike the balance in practice is largely a matter of experience and "feel"
on the part of the computer.

16. Application of orthogonality. Let us return to Sec. 1,2, but suppose that V,
instead of being a completely arbitrary vector, is orthogonal to X\, i.e., Oi = 0. (We
shall see later how to select such a V.) Then

AkV = azKiXi ^3X3X3 + • • • + an\nXn,

P(A)V = a2P(\2)V2 + a3P(\3)X3 + • • • + anP(\n)Xn.

To see the application of this, consider Example 5 again and suppose that Xj
has been found to the desired accuracy. From what has been said before, our first step
in gett Xi would be to set up the polynomial

P2(X) = (X - 6.1)(X - 2.6)(X - 0.4).

However, if we are to work with a vector V orthogonal to X\, we might just as well
use the simpler polynomial

(MX) = (X - 2.6)(X - 0.4).
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The fact that (MAi) is not small compared with Q?(ki) has no effect on the iteration,
for

Qz(A) V = + d3Q2(\z)X3 + aiQi(\i)X4.

How can we select such a vector V? Consider any vector V0 = (»o \ v„\ • • • , v^)
Then the vector

(l) (l) (2) (2) (n-l) (n-l)
/ (l) (2) (n-l) to T'l ^1 1 r'o %1 \
[^Vo , Vo , ■ • ■ , Vo  J (32)

will be orthogonal to X\ and can serve as V (provided x[n) ̂  0).
Note that we have altered only the last element v^ of Vn. We could, of course,

have altered any other element p® instead, provided x'f15*0. In general it is best to
alter an element corresponding to one of the larger elements of X\ so that V may
differ as little as possible from Vo.

In order to avoid the accumulation of rounding-off errors, it is generally desirable
to repeat the orthogonalization at each step of the iteration. Also, it is well to de-
termine the elements of Xi to one more significant figure than is required in those
of the other vectors. (Of course we could use any of the vectors Xi as a starting point.)

17. Obtaining the first approximations. It is well to give some attention to the
question of getting rough values of the roots when these are not available before-
hand. Since the procedure is rough and ready rather than fixed, it is best shown by
an example. For this purpose we return to the matrix A of Example 3.

We have already seen that

Xi = - 9.886, Xi = (1.000, 1.470, 1.302, -1.725, -0.228).

Looking back, we see that one or two steps in the iteration would have sufficed to
give us one-place accuracy, which is all we need at this stage.

Referring to equation (10), we see that

Xi —(— X2 —X3 —X4 —Xb = — 2 + 0 — 5 — 3 — 1 = — 11, (33)

so that A must certainly have a root A2 greater than —1. It follows that the matrix
Ai=A-\-6 will have a root A2+6>5, which is greater in absolute value than its root
A1 + 6. Trying out simple vectors like (1, 0, 0, 0, 0), (0, 1, 0, 0, 0), etc., we see thatthe
combination

Vi = (0, 1, 0, 1, 0)

looks hopeful. In fact

AxVi = (1, 11, -2, 8, -1), A\v = (7, 110, -28, 81, -16),

and by taking scalar products we get X2 + 6^10.2, A2^4.2, while AlVi will stand as
a first approximation to X2.

To proceed further, we note that Ai + 3~ —6.9, A2 + 3~7.2. Therefore the matrix
(^4+3)2 —50 will have two roots near 0 and three between —50 and 0. This matrix
could be used to obtain another root A3 of A. However, it probably has two or three
roots near —50, which would be difficult to separate, so we used instead the matrix
^2 = (^42 + 6^1 +9) — 35 =yl(^4 +6) — 26.
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After a few trials we decide on the vector F2 = (2, 0, 0, 1, 4). Then A2V2 = ( — 70,
— 4, — 6, — 27, —128), and taking scalar products yields

(As + 3)2 — 35 ~ — 32.5, (X3 + 3)2 — 2.5, X3 + 3 ~ ± 1.6,

so that X3-~ —1.4 or —4.6. Since AV2 = ( — 5, 1,5, — 1, — 7) and AiV2 = (7, 1, 5, 5, 17),
the value X3~ —1.4 must be the correct one.

To get approximations to X4 and X6, we take the sum of the principal diagonal
terms in A2:

E (a! + 6Xt- - 26) = - 55,
1=1

so that, from (33)

Xi + A2 + X3 + \4 + Xj — 141. (34)

Combining (33) and (34) with the known values of Xi, X2, and X3, we get X4~0.9,
X<~ —4.8.

18. Examples. Two more examples show how to carry through the process.
Example 6. Find to six decimal places the roots of

"2 2 0 4~| 8

2-1-1 3 3
0-1 0-2 -3

_4 3 2 0_ 5

A =

Using the methods of the last example, we conclude that Xi~7.06, X2~ —4.19,
X3~0.45, X4 2.32, Xi~(106, 67, -38, 100), X2~(53, 53, -41, -106) = 7,.
We next compute X\ to greater accuracy in order to obtain Xi to six places. Since
we want Xi to seven significant figures, four figures in the elements of X\ should be
sufficient, as the formation of scalar products about doubles the number of signifi-
cant figures, as explained above. In order to avoid rounding-off errors, both here
and in the later calculations, we carry an extra figure.

If we were to follow rigidly the procedure outline above (paragraph 18), we should
begin by writing the polynomial (X + 4.19)(X —0.45)(X + 2.32). However, we note
that the simple linear matrix polynomial ^42 = 1 + 2 has very favorable root ratios,
and since the number of figures required is not great anyway, it seems worthwhile to
go ahead with this matrix rather than taking the time to set up a more complicated
expression. Applying A2 to our first approximation and dividing by the leading
element at each step yields successively

(106, 67, -38, 100)(958),
(1.000, .644, -.358, .941)(9.052),
(1.0000, .6435, -.3582, 19423)(9.0562),
(1.00000, .64360, -.35826, .96206)(9.05544),
(1.00000, .64360, -.35826, ,94213)(9.05572),
(9.05572, 5.82825, -3.24438, 8.53158).
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The last vector was obtained by applying A2 once more without division. Taking
scalar products of the last two vectors, we get

2.4301801245
22.0069707442 9.055695307

199.2884216617 9.055695307

We conclude that Xi = 7.055695307, to greater accuracy than was required.
We could now find X2 in the same manner by starting with A — 2, say. However

the convergence would be rather slow because the ratios of the roots would be less
favorable than before. Instead, we proceed as in Example 5. Since

(X + 2.32) (\ - .45) = X2 + 1.87X - 1.04,

we set up the matrix ^43=^42 + 2^4 — 1. Now if we start with a vector orthogonal to
X\, we shall get a sequence converging to X2. We therefore start with the vector F2,
but modify its last element so as to make it orthogonal to Xi. The modified last
element is

- [53(1.00000) + 53(.64360) - 41(- ,35826)]/.94213 = - 108.05. (35)

We now apply A3 to the modified vector several times, repeating the orthogonal-
ization process at each step. We get successively

(53, 53, -41, —108.05)(417.90),
(1.000, 1.130, -.739, — 2.11438)(8.21364),
(1.0000, 1.1257, -.7384, -2.11122)(8.19976),
(1.00000, 1.12581, -.73843, —2.11130)(8.20028),
(1.00000, 1.12579, -.73842, -2.11128).

Applying A\=A — 2 (of which X2 — 2 is the numerically largest root) and taking scalar
products yields X2 —2 =—6.1937207, X2= —4.1937207. It follows by direct calcula-
tion that X3 = 0.464791, X4= -2.326766.

Example 6. Find to five significant figures the characteristic vectors of the matrix

B =

'2 10 4"

1-1-1 3
0-1 8-2

.4 3-2 Oj 5

First we compute B2 and Bi.
Proceedings as in the previous example, we shortly conclude that -X\~(76, 44,

-30, 76), X2~(67, 84, -37, -129), Xi~6.56, X2 4.53, X3~0.69, X4 1.72.
Next we find Xi to the desired accuracy. Since more accuracy is required than

in the previous example, it is worth while to go to more trouble to secure rapid
convergence. We have

(X - 0.69)(X + 1.72)(X + 4.53) = X3 + 5.56X2 + 3.48X - 5.39.
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Thus = —11 will have three roots near zero. We get successively

(76, 44, -30, 76) (81506),
(1.0000000, .5789512, -.3916276, ,9944053)(1069.511549),
(1.0000000, .5789483, -.3916329, .9944266)(1069.520900),
(1.0000000, .5789483, -.3916329, .9944265).

The rapidity of convergence is to be noted. (As before, the extra digits are retained
to avoid rounding-off errors both here and in the orthogonalization that follows.)

To obtain the vector X2, we write (X —0.69)(X+1.72) =X2 + 1.03X—1.19, and
set up the matrix B% = B2-\-B ~ 1. As in the previous example, we must operate on
vectors orthogonal to X\. Orthogonalizing at each step we get in succession

(67, 84, -37, —129)(1048),
(1.0000, 1.1698, -.5821, —1.915902)(14.877570),
(1.0000, 1.1894, -.5893, -1.930148)(15.003080),
(1.000000, 1.189683, -.589403, -1.9303534)(15.0048880),
(1.000000, 1.189687, -.589404, -1.9303561).

The convergence could have been improved by setting up a cubic matrix poly-
nomial as was done with Xi, but the extra time needed for doing so would have
more than offset that saved later.

We could now obtain X3 by starting with 23 + 2, say, and working with vectors
orthogonal to both Xi and Xi. The double orthogonalization, however, would be
time-consuming, so we start again with (X + 1.72)(X + 4.53) =X2+6.25X + 7.79.

Use of B1-\-6B-\-8 suggests itself. However, a quick estimate of the roots indi-
cates that this will not lead to very rapid convergence, and as yet we have not even
a first approximation to X3. So we use instead B3 = 4B2+25B +31.

Starting with a vector that turns out to be a rather poor guess and orthogonalizing
with respect to Xi at each step yields the following rapidly convergent sequence:

(1,0, 0, -1),
(21, -10, 26, —5)(1036),
(1.0000, -.5097, 1.2838, -,203265)(50.266140),
(1.000000, -.516826, 1.293370, -,195347)(50.513110),
(1.000000, -.516805, 1.293339, -.1953714).

The vector X4 can now be determined from the fact that it is orthogonal to
X\, X2, and X3. We set

Xi = V + arXt + a2X2 + a3X3t (36)

where V is any vector not orthogonal to XI. Multiplying (36) by X{ gives
0=X{V+a1X{X1, whence

ai=-X{V/X{X 1 (37)
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and similarly for a2 and a$. Choosing V—{\, 0, 0, 0), we obtain ai=—0.4036424,
02=—0.1541062, a3=—0.3357978. Substituting in (36) and dividing through by
the leading element of the resulting vector yields Xt= (1.000000, —2.287233,
-1.741508, -0.359851).

The characteristic roots can be found, if desired, simply by computing the lead-
ing elements of BXi, BXi, BX3, and BX4. Greater accuracy can be achieved by form-
ing scalar products as in previous examples.

19. Summary. We now summarize our procedure.
(a) Obtain rough values of all the roots. This may be done by operating on

properly chosen vectors with matrices of the forms A-\-n, (A +w)2+«, etc. After
all but two of the roots have been located in this way, the last two can be found by
solving a quadratic equation.

The examples indicate that three significant figures in the roots are amply suffi-
cient at this stage, and one could often get along with fewer. Certainly a dispropor-
tionate amount of time should not be spent in getting these first approximations, as
their sole purpose is the saving of time in the later steps. Fortunately the question is
beside the point in many practical cases, where rough values of the roots are known
to begin with; this step can then be omitted.

Naturally, if only a few figures are wanted in the final results, it may prove most
economical to carry the work to a conclusion at this stage, rather than taking the
time to set up the matrix polynomials of the succeeding steps.

(b) Select a polynomial P(X) such that, for some X,, | P(X,) | > | P(Xy) |, j ^i, and
operate on a suitably chosen vector with P(A) until Xi is obtained to the desired
degree of accuracy.

P(A) will ordinarily be chosen as in the examples. It will be noted that one or
two figures in the coefficients are enough for rapid convergence, and more should
not be used as time will be wasted in computing the elements of P(A). It should be
borne in mind that the coefficients of the higher powers are the most important.

Care should be taken to avoid errors at this stage, as much time can be lost if
P{A) is incorrectly chosen or written.

An extra place should be retained in the elements of X,- to avoid rounding-off
errors, and it may be well to keep two such places if vectors orthogonal to Xi are to
be constructed in step (e).

(c) Proceed similarly to obtain the other characteristic vectors, making use of
the orthogonality of the vectors as in the examples given. If only the roots are de-
sired, two of the vectors need not be computed. If all the vectors are wanted, the last
one may be obtained from the others by the condition of orthogonality.

(d) Once the vectors are obtained, the corresponding roots may be found to about
twice as many significant figures as the vectors by the scalar product method. In case
the order of the matrix is greater than four, it may be necessary to use a matrix of
the form (A -j-m)2-l-n to do this, getting first the square of the root and then finding
the root itself by taking a square root. The last two roots may be obtained from the
others by solving a quadratic as before.

In case A has multiple roots, this fact should become evident while carrying out
step (a). We can then proceed much as before, except that we should not, of course,
expect to find unique vectors corresponding to the multiple roots.
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V. General Matrices; Complex Roots

We now approach the problem of the general (unsymmetric) matrix. Unlike
the symmetric case, the characteristic roots are no longer necessarily real, and there
are two sets of characteristic vectors instead of one, having less convenient ortho-
gonality properties.

Most of the methods of the preceding section remain applicable. However, we
cano no longer make such effective use of the orthogonality relation. Also, since the
elements of the row vector V'A need not be the same as those of the column vector
A V, the method of scalar products no longer effects a great saving of time. On the
other hand, new methods are required to handle complex roots.

20. Real roots. The case where all the roots are real presents few difficulties, and
the procedure is very similar to that for the symmetric case. Some use may even be
made of the orthogonality properties.

The same can be said if only two of the roots are complex, and the real roots can
be found first, since the complex pair can then be obtained by solving a quadratic
equation. The following example illustrates these points.

Example 7.

A =

2 0-1-3-
1 -3 0 -2

-2121

3 4 0 -1.

-2
-4

2
6

Find all the roots correct to six places, given that \i~2.49. —1.77.
We compute A2 and A3 and deduce that Xs.^ — 0.36 +3.28i. Since

(X + .36 - 3.28i)(X + .36 + 3.28t)(X + 1.77) = X3 + 2.45X2 + 12.2X + 19.3,

we can get Xi by using the matrix A\ =4^43 + 10^4 -\-49A +77. After a few steps we
obtain

Xx = (-.3637407, .0336918, 1.0000000, -.2743017),

whence (multiplying by A once) Xi = 2.4868715.
To find X2, we make use of the fact that the characteristic row vector F2 is

orthogonal to X\. We have

(X + .36 - 3.28t)(X + .36 + 3.280 = X2 + .72X + 10.9.

Writing

As = 10A2 + 7A + 109

93 -130 -47 -61"
-63 98 -10 36
-54 37 183 57

91 -132 -30 -58.

-145

61
223

-129

we get the following sequence of row vectors by multiplying on the right by A2 and
orthogonalizing with respect to Xi at each step:
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{0, 1,0,0},
{1.00, -1.56, -.46, -0.57},

{1.0000, -1.5795, 0.26538, -0.5526},
{1.000000, -1.579690, 0.2653589, -0.552692},

{1.0000000, -1.5796883, 0.2653587, -0.5526927}.
Operating once with A yields X2 = —1.7684837. It follows that X3,4= —0.3591939
+ 3.2840-604;.

How to find the characteristic vectors corresponding to such complex roots will
be explained below.

21. Complex roots. When the complex roots cannot be approached from behind
in this fashion, a new method of attack is necessary. Since such roots come in conju-
gate pairs of equal modulus, applying the matrix repeatedly to an arbitrary vector
will not result in a convergent vector sequence (in fact such behaviour is sometimes
the best indication that the largest roots are complex).

However, if Ai = Xa = |Xi| = | X21 >) X31 > • • • , we can still find the
product XiX2 = r\ by the method used in Example 2; indeed the convergence should
be relatively better than when |Xi| > |X2|, since the loss of accuracy due to subtract-
ing almost equal numbers will not arise. Having r\, we can find Xi and X2 as follows.

First by operating repeatedly on a vector V with A (or better, with some power of
A) we obtain a vector W of the form

W = a 1X1 + a2X2 + A, (38)

where A is as small as we please. It can now be seen that

rW«> + (A*WY»
n cos 0X = —    1- 0(A) (j = 1, 2, 3, • • • , n). (39)• 2 (AWy»

Thus Xi and X2 are determined, to any desired accuracy.
Furthermore,

AW + i(rsW - A*W)/2r 1 sin 6X
2 2

XlX2(<ZlXl "I- &2X2) — &1X1X1 — $2X3X2
= ttiXxXi + a2X2X2 + i —  — + 0(A) (40)

i(Xi — ^2)

= 2aiXiXj -f- 0(A)
so that Xi and X2 can be found once Xi and X2 are known.

The problem can also be approached by operating with a matrix of the form
A-\-ni, whose roots will ordinarily have distinct moduli, but in practice this method
will usually prove more laborious than the preceding one

If all the roots are wanted, we begin by locating them roughly, as in the sym-
metric case. Then matrix polynomials can be constructed to secure rapid convergence
to more accurate values. These points will become clearer in the following example.

Example 8.
-5

A =

1-2 0 -4'
3 0 12

-1 3-1 1

1 0 4 Oj 5
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Find the roots of A to seven decimal places and its characteristic column vectors to
seven significant figures.

A2 =

As usual, we write down A2 and A2

-9 -2 -18 -81 -37

4-3 7 -11 -3
10 -1 8 9 26

-3 10 -4 oj 3

A 3 =

-5 -36 -16 14'
-23 13 -54 -15

8 4 27 -34
31 -6 14 28j

-43
-79

5
67

Thus ZtiX^O, Z'=i^2=-4, and the largest root must be complex.
Starting with the vector V = (0, 0, 1,0), we operate repeatedly with A3, rounding

off to three or four figures at each step to avoid accumulating useless digits. After
several such multiplications we come to the sequence of vectors given below:

(-458, 752, -68, -432), (-2974, 3046, 1220, -3176),
(1588, 898, 1293, -1823), (-7060, 572, 8778, -8756).

As we proceed, we form two-rowed determinants from the first and second ele-
ments of successive vectors, and likewise from the second and third elements, and
then take the ratios of the values of successive determinants. The terms of tehse
sequences corresponding to the above vectors are

841380 2166396 5431544
257 251

1224568 2482918 7143048
253 251

(The sequences of ratios above show convergence to r\, aside from the location of the
decimal point, which is immaterial at this stage.)

The agreement of the last numbers suggest that if we now operate on the last
vector with A and form ratios of determinants as before, we shall obtain r\ to about
three figures:

(-7060, 572, 8778, -8756), (26820, -29914, -8758, 28052),

(-25560, 127806, -79752, -8212), (-248324, -172856, 480518, -344568),
19585 266316 3615550

13.60 13.58
. 25758 350503 4762747

13.61 13.59

Thus 13.6. Using equation (39) with W as the second vector above yields

ri cos 0i ~ — 2.27, ri sin d\ ~ 2.91,
Air 2.27 + 2.9H, Xi   2.27 - 2.91i.

It follows that A3,4 = 2.27 + 1.96^'.
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*
In order to get the roots more exactly, we note that

(X - 2.27 + 1.96/) (X - 2.27 - 1.96/) = X2 - 4.54X + 8.99.

Thus the matrix A\ = 2A2 — 9^4+18 will have two roots near zero. Rounding off the
elements of the last vector above, we multiply it by ij and obtain ratios of de-
terminants formed from the first and second, and second and fourth elements:

(-2483, -1729, 4805, -3446)(-243759, 188294, 153735, -27083),
(-6120173, 18490944, -8355979, -4216169),
(53044664, 46504148, -111097501, 75339351),

(56799532, -40188604, -39094634, 63788114),
-888993313 -335494216 -126545934 -477320484

3774 37719260 37719148
111704493 421315396 158916507 599419524

3771 37719131 37719148

We now multiply the last vector above by A and form ratios of determinants,
getting

(56799532, -40188604, -39094634, 63788114),
(-117975716, 258880190, -74482596, -99579004),

(-237420080, -627567752, 869519878, -415906100),
9962994304 1355011183

13.6004404
1311417783 1783585959

13.6004405

Taking ^ = 13.6004405, we obtain, by using (39), Xi,2= —2.26774878 + 2.90822213/.
Using equation (40) with W as the first vector above gives

laxXx = (- 117975716 + 173631636*, 258880190 + 13923461/,
- 74482596 - 240907341/, - 00579004 + 220659305/)

Xi = (1.00000000, - 0.63822188 - 1.05732751/,
- 0.74982611 + 0.93844573/, 1.13604812 - 0.19839177/).

The remaining roots must be X3,4 = 2.26774878 + 1.95642866/.
22. Finding the remaining vectors. The vector X3 cannot be determined as

Xi was, since there is no ready-made vector sequence available. However, the matrix
polynomial

A2 = (A + 2.26774878 - 2.90822213i)(^t + 2.26774878 + 2.90822213/)
•(A - 2.26774878 - 1.95642866/)

= (A3 + 2.26774878^42 + 3.31507144^ - 30.8423824)

+ /(l.95624866,42 + 8.8733774L4 +• 26.6082916)
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%
has three roots so near zero that a single multiplication of an arbitrary vector by A2
should give us Xz to about eight figures. To do this it is not necessary to compute the
elements of the matrix A2, for by (9)

A2V = AW + 2.26774878A2V + 3031507144^7 - 30.84238247
+ *(1.95642866,42F + 8.8733774L4F + 26.6082916F).

Taking

V (1, 1,1,1),

we see that A V, A2V, A3V are the sum solumns of A, A2, A3. Then

A2V = (- 174.3244445 - 90.1464559*, - 96.7552001 + 73.9792701*',
39.7292288 + 95.2221916*, 59.5362211 + 76.8444646*)

X3~ (1.00000000, .26477276 - .56129590*, - .40277933
- .33795067*, - .44932357 - .20845922*).

(The second vector above was obtained from the first by dividing by the leading ele-
ment.) As a check, we perform the same operations with

Vi = (1, 0, 0, 0)

(note that A Vi, A2V, A3Vi are simply the first columns of A, A2, A3) and get

(1.00000000, .26477273 -.56129590*, -.40277934 -.33795066*,
-.44932357 -.20845922*).

VI. Solution of Algebraic Equations by Matrix Methods
23. The companion matrix. Before closing we consider briefly the solution of an

algebraic equation

/(X) = X" - M"-1 ~ Mn~2 -•••-/>» = 0 (41)

by the use of the "companion matrix"

~pi p2 • • • pn-i pn

1 0 • • • 0 0
0 1 • • • 0 0C =

.0 0 ■ • • 1 0J

(42)

(Bernoulli's method). It is easily seen that (42) has the same roots as (41) and that
the characteristic column vector of (42) corresponding to the root Xj(*= 1, 2, • • • , n)
is

= (Xj , * • * , \iy X,, 1) or (1, Xj , Xj , • • • , Xj ). (43),

Thus the roots of (41) are determined if either the roots or the column vectors of
(42) can be found.

24. Special methods of solution. While the methods employed in handling a gen-
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eral matrix are applicable in this case, the special properties of C can be used to
speed up the solution. First, equation (41) helps us in locating the roots, especially
the real ones. Again, if X/ is an approximation of X„ the matrix polynomial

®J!! (44)
X - X/

(which may be obtained by synthetic division) will have only one large root, cor-
responding to X,. We recall that to set up the corresponding polynomial P(A) in the
general case approximations to all the roots are required. (However, (44) is not
easily set up if X< is complex.)

Moreover, suppose we have a vector V that is an approximation of Xi and that
D = P(C) is a matrix having P(X») as its largest root. Then our next approximation,
under our previous procedure, would be

DV
W = (1, w2, w3, ■ ■ • , wn) = ' (45)

Instead we may use the more easily computed

W* = (1, w2. wi, w" ).

This can be done because X,- and W* are both of the form (43), and because w2,
being obtained from W, is an approximation to X4_1- Unfortunately this process is
not necessarily convergent (though in practice it generally is,' especially when
| P(X,) |»| P(Xi) |, jVi). However, we can always try it g.nd then fall back on the
standard process if necessary.

Clearly, rather than determining W* from the first two elements of D V, we could
determine it from the last two. It can be shown that this will lead to better con-
vergence if X< is the smallest root of (41), while the first process will work better if
Xj is the largest root of (42). For roots in between we should use one process or the
other depending on their relative magnitude.

25. Examples. The following examples will make this procedure clear.
Example 9.

/(X) = X4 - 4X - 3 = 0. (46)

Direct substitution shows that (46) has real roots between — 1 and 0 and between
1 and 2.

If we take 2 as a first approximation to X,-, the matrix corresponding to (44) is
Ci = C3 + 2C2 + 4C+4.

The vector corresponding to Xi can be written

Xi = (1> Xi , Xi , Xi ).

The first element is taken as unity since Xi is a relatively large root. Since Xi~2, we
start with the vector V = (1.00, .50, .25, .12). Operating with C\ yields the vectors

(1.000, .561, .315, .177), (1.0000, .5604, .3140, .1760).

In forming these vectors, the first two elements of each vector were obtained in
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the usual way, but the last two elements are simply the square and cube of the
second element. Note that only the first two rows of C\ are used in this procedure.

From the last vector we get

1 = 1.794.
0.5604

In order to get Xi more exactly, we divide (46) by X —1.784 getting approximately

X3 + 1.784X2 + 3.18X + 1.68.

Thus the matrix C2 = 5 C3+9C2 +16 C+8 has only one large root, corresponding to
Xi (cf. (44)). Operating as before (using only the first two rows of C2) gives the
rapidly convergent vector sequence

(1.000, .560, .314, ,176)(1.00000, .56043, .31408, .17602),
(1.0000000, .5604256, .3410769, .1760167),

(1.00000000, .56042566, .31407692, .17601677),
whence Xi = 1.7843580.

Note that it was not necessary to approximate the other roots in order to find Xi.
The root X2 can be obtained in much the same way. Starting with the matrix

C3 = C3 - C2 + C - 5

and the vector

V = (-1, 1, -1, 1)

we reach after a few steps the vector

(-.334, .482, -.694, 1.000).

(Since X2 is the smallest root, we take the last element as unity here and use the last
two rows of Ci in the computation.) Thus X2'~ — 0.69. Dividing (36) by X + 0.69 gives

X3 - 0.69X2 + 0.48X - 4.33.

Using the matrix

Ct = - 10C3 + 7C2 - 5C + 43

yields after a few more steps X2= —0.69250484.
The complex roots are then X3,4= —0.5459266 + 1.4593779i.
Example 10.

X4 - 4X + 4 = 0. (37)

Here the roots are all complex. The companion matrix is

D =

0 0 4 -4'
10 0 0
0 10 0

L0 0 1 0J
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By the methods employed in the general case, we get the rough values Xi,2~ —1.05
±1.43/, X3.4~l.O5 ± 0.41/.

Noting that

(X - 1.05 - ,41/)(X - 1-05 + .41/) (X + 1.05 + 1.43*)
= (X3 - 1.05X2 - .94X + 1.33) + /(1.43X2 - 3.00X + 1.82),

we set up the matrix

Di = (10D3 - UD2 - 9D + 13) + /(14£>2 - 30D + 18)
53 -84 8 36-

-9 53 -4 44 + /

■ 18 56 -176 1201

-30 18 36 -56

Since only the first two rows will be used, the others need not be written. Starting
with a vector whose elements are power of ( —1.05 + 1.43»)-1, we get the vector se-
quence

(1.000, -.333 -.454/, -.095 +.302/, .169-.057/),
(1.000000, — .332486 — .453252/, -.094890 +.301400/, .168160-.057202/),
(1.00000000, -.33248603-.45325413/, , ),

Thus

1
Xi = = - 1.0522167 + 1.4344109/

- 0.33248603 - 0.45325413/

and XM = 1.0522167±0.3959609/.


