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THE FLOW OF AN IDEAL INCOMPRESSIBLE
FLUID ABOUT A LENS*

BY

MAX SHIFFMAN (New York University) and D. C. SPENCER (Stanford University)

1. Introduction. The irrotational flow produced in an ideal incompressible fluid
by the motion of an immersed object is described by a velocity potential function
satisfying certain boundary conditions. For three-dimensional flows the velocity po-
tential has been determined explicitly only for a very limited category of geometri-
cally prescribed objects. In the present paper, we shall add to this list by constructing
the flow about a lenticular object formed by two intersecting spheres, typical examples
of which are illustrated in Figs. la-c. This lens flow is closely related to the well
known case of two completely separated spheres, which might from a general point of
view be considered as two spheres having an imaginary circle of intersection. In fact,
it is this relationship which forms the point of departure of the present work and
which will be clarified herein.

Fig. la Fig. lb Fig. lc

We shall consider, then, a lens formed by two intersecting spheres submerged in
an ideal incompressible fluid and moving at unit velocity in the direction of its axis of
symmetry. The velocity potential for the analogous two-dimensional problem could
be easily determined by the use of conformal mapping but this is of no avail for three
dimensions. Rather, we shall continue the potential function $ analytically as far as
possible across the two faces of the lens, and determine its singularities. The extended
function $ is then defined over a multi-sheeted—in general infinite-sheeted—Riemann
space with the sharp rim of the lens, the circle of intersection of the two spheres, as
the branch line around which the Riemann space winds. By the nature of the analytic
consideration, the singularities are located not only at the inverted points but also at
the points at infinity in the various sheets. It is then necessary to construct funda-
mental potential functions defined on the multisheeted Riemann space and having
prescribed singularities at given points. For this construction we shall use the same
type of procedure as was introduced by A. Sommerfeld in his classical work on the
theory of diffraction, where a similar question was considered for reflection across
plane surfaces.

* Received Sept. 27, 1946. This paper is essentially an excerpt from a report by the authors entitled
"The Force of Impact on a Sphere Striking a Water Surface," AMP Report 42.1R, Feb. 1945, Appl. Math.
Group at New York University, prepared for the Office of Scientific Research and Development. The
application to impact will be published separately.



FLOW OF AN INCOMPRESSIBLE FLUID ABOUT A LENS 271

2. Procedure for separated spheres. Let $ be the velocity potential (we use the
convention that velocity = —grad $). It satisfies the Laplace equation

+ $!/!( + = 0,
vanishes and is regular at oo, and satisfies the following boundary condition: on the
surface of the lens, the negative of the normal derivative of $ is equal to the compo-
nent of the velocity of the lens along its normal, or

  = cos X.
dn

To see how to construct the potential function <J>, let us first consider the case in
which the two spheres forming the lens do not intersect and are thus completely
separated (Fig. 2).

A classical procedure for finding the flow due to the vertical
motion of the two spheres is by the method of images (see [l ], p.
131 or [2], p. 420).* The flow produced by a single sphere alone
moving in an infinite body of fluid is that created by a dipole of
suitable strength placed at the center of the sphere. Thus, dipoles
situated at 0 and 0' in the figure would individually give the
correct flow if the influence of the other sphere could be neglected.
But the dipole at 0' destroys the correct boundary condition on
the sphere K, and likewise for the dipole at 0 and the sphere K'.
To remedy this, introduce the image of the dipole at 0' relative
to K (and likewise for 0 and K'), namely, a dipole of suitable
strength situated at the inverse point Q% (and at the inverse
point Q{ ). But again the dipole at Q{ violates the boundary con-
dition on K, etc. Indefinite continuation of this process leads to a
convergent expression for the potential function which satisfies
the boundary conditions on both spheres.

We shall apply a generalization of the above process to the
lenticular case, when the spheres intersect. The process as it Fig 2
stands leads to a serious difficulty, namely that some of the suc-
cessive images of the dipoles lie directly in the fluid, thus creating singularities
inside the fluid which violate the requirements of the problem. For examples, in
the particular case of Fig. la, the very first dipoles at the centers of the respective
spheres already lie in the fluid. The difficulty may be overcome by using multi-
valued dipoles, the images of which lie in the various replicas ("sheets") of a Rie-
mann space and do not insert singularities in that portion of the space in which
we are interested. However, there is no difficulty in the special cases when the exterior
angle between the intersecting spheres has the value tt/w where m is an integer. This
is discussed in App. A. It should of course be mentioned that when the exterior angle
between the intersecting spheres is greater than it, as in Figs, la, b, the velocity of the
fluid is infinite on the sharp rim of the lens.

3. Dipoles. We select the toroidal coordinate system (cr, \p, 6) as most appropriate
for our domain. These are formed from bipolar coordinates in the plane by rotation
about an axis, and are defined by

* Numbers in brackets refer to the bibliography at the end of the paper.
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x = r cos (p, y = r sin <p, r + iz = ai cot + ia)

where x, y, z are rectangular coordinates, r2 = x2Jry2, and r, z can be expressed sepa-
rately in terms of u, \f/ by

sinh o- sin \f/
r = a > z = a 

S — T S — T

where
s = cosh <r, r = cos

(See[2], p. 165.) Because of rotational symmetry, the angle 6 will never enter. In the
r, z-plane, the curve = constant is a circular arc connecting the points -\-a and —a
on the r-axis, while a = constant is a circle with these two points as mutually inverse
points. By letting vary from -co to + °o without any identification, there results
an infinite-fold Riemann space with the circle r = a, z = 0 as branch line.

t - Log
pp2

Fig. 3

The inverse distance between a point on the z-axis a — 0 at =\po and an arbitrary
point (cr, 9) is the absolute value of the quantity

... sin (i/V 2) / s - r
Pit o) = A/ ——a V s — cos (w —- h)

This represents a pole of strength +1 at the point <r = 0, o- We shall consider a
dipole q(x[/0) of strength a3| csc3(^0/2) |/2 situated at the same point, and pointing
downwards, namely

a3 d
q{io) = - — esc3 G/V2) — pty0)

2 dz
a C(s — r)1/2 sin — ^0) (s — t)1/2 cot (^o/2) "l

2 \ [s — cos — ^o)]3/2 [5 — cos (tp — ^0) ]1/2/

The Stokes' stream function t(\pa) corresponding to q(ipo) is (see [2], chapter XV,
especially page 414):

(3.1)
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KM - i«'csc. wtm - 2(s !,nchos^_w],„ • • 2)

From this it follows that the potential function

?(<M - qW)
has vanishing normal derivative on the spherical cap \[/ = c if

M = 2c.

For then i/'o') vanishes on \p = c.
4. Multi-valued dipoles. The quantities g(£), K£) remain as potential and stream

functions respectively of a flow if ipo is replaced by a complex number £. Considering
ct, \p temporarily as fixed, g({) and /(£) as functions of f in the complex f-plane are
multi-valued and have branch points at the zeros of 5 — cos (^ —£), that is at

£ = \f/ + itr + 2 kir, k = 0, + 1, + 2, • • • .

I
I
1
I
I
I
ly-2ir+io-

£-plane
I
I
I
J''I
1

y+io- iy+ait+ir

y-io-

Fig. 4

For convenience, cut the £-plane by vertical lines proceeding from the branch points
to ±i » as shown in Fig. 4. The functions g(£), /(£) are single-valued in this cut £-plane
and take opposite signs on the opposite sides of each cut. We define [5 —cos (1^ — £)]1/2
to be positive when £ is real.

The basic multi-value dipole Q(\p0) situated at a (real) point <r = 0, ^ =^0 on the
2-axis of our infinite sheeted Riemann space is defined as follows

1 C ?(£)Qtto) = — I (4.1)
Ziri J w £ — yo

where the path W of integration is the two-branched path indicated in Fig. 4. The
function <2(^o) is a potential function in (a, \p) since differentiations can be performed
under the integral sign, the path W being temporarily fixed.

For an w-sheeted Riemann space in which values of the angle \[/ differing by 2nir
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would be identified, the corresponding w-valued dipole CO^o) is

1 C ?© £ — l^oQM{$o) = — I ^ cot di;. (4.2)
2iri J w 2n

Since cot (£ — \[/0)/2n is periodic in £ of period 2wtt, and q{£) is periodic of period 2ir,
it is easy to see that QM(\po) is periodic in \f/ of period 2nir.

We now briefly describe the properties of <2(^o), a similar description applying to
Q(ypo) (see [3], [4] for a complete analysis, the following being but a bare sketch).
On account of the pole of the integrand in (4.1) at \po one sees that

Q($o) — o)

is regular as cr—>0, (where \po^2jir). Thus Q(\p0) behaves like a dipole near
(t — 0, \l/=\l/0, but is regular near <r = 0, \p =^0+2^7t, k= +1, ±2, • • • since the in-
tegrand is regular at these points.

In addition, there are still the poles of q(£) itself at £ = 2kir, k = 0, +1, +2, • • •
due to the presence of the term cot £/2 (see (3.1)). One easily sees that

0(* o)
2kir —

as <7 —^0 and \f/-^>2kir, k=0, +1, +2, • • • (\[/09*2jir). Thus the function Qtya) is not
simply a multi-valued dipole at \J/0 but it has certain non-vanishing values at °o
(cr = 0, \l/ = 2kir) in the various sheets and has no other singularities.

(A constant value at oo may be considered as a pole at <». If in the definition of
q(i-) the term cot £/2 were replaced by cot \pa/2, the resulting function in (5.1) would
be zero at the points at » ; this would be a simple dipole. However, a simple dipole
would lead to great difficulties, and our definition of g(£) is in this case the correct
generalization to the multi-sheeted case. This illustrates how careful one must be in
the choice and analysis of the singularities, with special reference to the behavior at
infinity.)

For the special case in which is a multiple of 27r, the integrand in (4.1) has a
double pole. For example, (?(0) has an integrand in (4.1) which has a double pole at
f = 0, and the residue there is

a sin i/' fa / s — r \1/2~| sin &
 )-o —I ) =a—-—- = z.
2 s — t L d£ \5 — cos (^ — £) / J j_o s — r

Therefore

Q(0) - !-^0 as ir->0, f-t0 (4.3)

and so <2(0) behaves like z near the point at » in the first sheet. A similar analysis
applies to Q(2kir).

In the «-sheeted case, it is of interest to consider the special case n = 1 where we
are in the original single-sheeted space. The integrand in (4.2) is then of period 2ir,
and we have

Qa>GM = qtyo) — a/2 cot (t^o/2), h^0, (4.4)
so Q(1,(^o) differs from an ordinary dipole q(\f/0) by a constant. If in (4.4) we now let
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i/'o—>0, we obtain

Qdjty„)_>z as i^0 —> 0.

It may also be verified directly that

Q(1,(0)=2. (4.5)

S. Inversion of multi-valued dipoles. It is well known that in ordinary space the
image of a dipole with respect to a sphere is another dipole situated at the inverse
point. In this section the theorem will be extended to multi-sheeted spaces.

Theorem 5.1. The function QWo) —Qtyo) has vanishing normal derivative on the
spherical cap ^ = constant = c if 1^0+i/'o =2c.

Proof. The stream function T(\[/o) corresponding to Q{\p0) is

1 f '(£)nh)=—   (5.1)
Ziri J w £ — y0

where f(£) is the stream function corresponding to q(0< obtained from (3.2) by replac-
ing \p0 by £. It is required to show merely that T(x[/o) — is constant on \p = c.

Make the substitution £—^ = Then

a2 sinh2 <7
t(0 = (5.2)

2 {s-Tyi*{s- cosf)3'2

1 C t(£)n*o)=— J V # (5.3)
ZtI J W' Sir — Y0

where W' is the path in the f-plane shown in Fig. 5. By the symmetry of the path W\
the lower path W{ is obtained from the upper path WJ by replacing f by — f. The

^-plane|
I
I

i<r

ut - 11 + ut.
-ir T W " " u Wi

I
I

'i

I
Fig. 5

function t(£) is by (5.2) an even function of f, and (5.3) can be written in the form

T(M = iriL,'m (f + J - «+f - J -(5'4)
Likewise for T(ypi). Evaluating at 1p = c, and noting that the hypothesis i/'o+'/'o —2c
can be written c—\po= — (c—1^0). eq. (5.4) shows immediately that Ttyo) — Ttya) =0
when ^=£, and the theorem is proved.
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Theorem 5.2. The function Q(^o) + C(—*Po) vanishes on \p = (). In particular <2(0)
vanishes on \p = 0.

Proof. For 1^ = 0 the function g(£) is an odd function of £ by (3.1). The same argu-
ment as above yields Q(\p0) = —Q(—^o) for \p = 0.

6. Construction of the potential function for a symmetrical lens. We are now pre-
pared to apply "the method of images described in Sec. 2. For the sake of convenience
we shall first consider the case of a symmetrical lens, the two spherical portions hav-
ing the equation 4/=P and \p= — /3 where the exterior angle between the two inter-
secting spheres is 2/3. The radius of the circle of intersection of the spheres is a, the
semi-thickness of the lens is B, and the radius of the two symmetrical spheres is A,
as indicated in Fig. 6. The motion of the lens is in the negative s-direction.

Let $ be the desired potential function,
and set

V = $ - z. (6.1)

Then V is a potential satisfying the following
conditions

dV
 = 0 on \p = P (6-2)

dn

dV
 = 0 on \p = — j8 (6.3)

dn

and

V behaves like — z at . (6.4)

The potential function V corresponds to the flow about a fixed lens, the fluid having
unit velocity at <x>.

We shall construct Fby the method of images, using the infinite sheeted Riemann
space described by 0^<r^— °o <\p < oo. (It may be pointed out that if the angle
/3 = nir/2q where n, q are integers, it would be sufficient to use an w-sheeted Riemann
space in place of the infinite sheeted one.) First start with — Q(0) which has the cor-
rect behavior (6.4) as a—>0, ̂ —>0 (by (4.3)). To satisfy (6.2), one must add <2(2/3)
by theorem (5.1); and to satisfy (6.3) one must add Q( — 2/3). But <2( —2/3) destroys
the correct boundary condition on ip=l3, and likewise for <2(2/3) on the spherical cap

/3. To remedy this one must add — <2(4/3) by Theorem 5.1, and likewise
— <2( — 4/3). Continuing this process indefinitely, one obtains

oo

V= X (- l)k+1Q{2kp). (6.5)
Jc=—00

The convergence of this sum follows directly from its evaluation below.
We may write (6.5) in the forms

oo

v = £ (- l)*+1fe(- W) - Q{2(k + 1)0)] (6.6)
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oo

V = Z (- l)fc+1[<2(2^) - Q(- 2{k + 1)0)]. (6.7)
k=0

By virtue of Theorem 5.1, eqs. (6.6) and (6.7) show that (6.2) and (6.3) are satisfied
respectively. From the appearance of — <2(0) in (6.5) we see that (6.4) is also satisfied.

Substituting from (4.1) we obtain

V = ?(*) Z (-l)^—±—d!
2-kiJ w k—» £ — 2&/3

or

x£

2jriJw 2/3 2/3

For the desired potential function $, we have from (6.1) and (4.5),

V = - — f q(£) — csc ̂  d£. (6.8)
ti J w 2.8

If / t 7r£ 1 | \
— I </(£) I — csc cot — ) </£.

\2/3 2/3 2 2 /
$ = ——; | ?(|) ( — csc — — cot — )d£. (6.9)

2iri.

Formulas (6.8) or (6.9) are the final expressions for V or $ respectively.
The integrals may be expressed in real form by integrating by parts and then mov-

ing the path W into the cuts which it surrounds. The results are

A sin (3 f °° / s — r £ ?r£ x 7r£ ir£~|
V =  I \I   Im cot— csc K •— csc — cot — du,

2/3 J, V cosh u - s L 2 2/3 (3 2/3 2/3 J
where £ = 1p-\-iu, and an analogous expression for <!>.

7. Virtual mass of the fluid. The kinetic energy of the fluid is (M/2) X (velocity
of object)2, where

M = p J j" j" (— grad fI>)'hlxdydz = — J"J" ^

and p is the density of the fluid, n is a normal directed into the fluid. The contribution
due to a surface integral over a surface which approaches 00 vanishes. Using the
boundary condition for — d$/dn on the surface of the lens,

M = p J I 3> cos \dS, (7.1)
** J lens

where X is the angle between the normal and the direction of motion, indicated in
Fig. 6. This quantity M is called the "virtual mass" or the "added mass" of the fluid.
The same formula (7T) is obtained if the virtual mass is based on the vertically down-
ward momentum of the fluid.

The virtual mass M is more easily calculated by obtaining a different form for
(7.1).* Formula (7.1) can be written (motion is in the negative z-direction)

M = - p f f t>^-dS,
J J lolens dn

* The longer calculation required in (7.1) was carried out in the original OSRD report with the same
result.
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since — dz/d« = cos X. Green's formula,

C C ( dv du\
J J \ dn on/

can be applied to the two potential functions $, z yielding

C C d<3? r r / dz d<£\
M = -p z dS + P ( $ z -—)dS (7.2)

J J ^ns dn J J x\ dn dn )

where the last integral is taken over a surface which approaches oo, for example a
sphere of radius R where R—><x>. At °°, $ behaves like a dipole and we may set

cos 9/R2 at oo (7.3)

where (cos 6)/R2 is a unit dipole at th origin pointing in the direction of motion of
the lens, and D is the strength of the dipole equivalent ta oo to $. Then on a sphere
of radius R, z = —R cos d, and a simple calculation gives 47rpD as the value of the sec-
ond integral in (7.2).

For the first integral in (7.2) over the surface of the object, we have

 = cos X
dn

and

z
lens

f f z dS = p f f z cos \dS = — p ■ volume of lens
J J lens dn J J

since cos \dS= +dxdy, the sign depending on the sign of cos X. Substitution of both
evaluations into (7.2) yields the final formula, valid for any symmetrical object mov-
ing in an infinite fluid :*

M = AirpD — mass of fluid displaced by object (7.4)

where D is the "dipole strength" at oo of the potential function $ as defined in (7.3).
It remains to evaluate the dipole strength D for the particular lens flow. The

dipole q(t;) from its very construction has strength

a31 csc3 (£/2) | /2 (7.5)

where |csc3 (£/2)| is the piecewise analytic function of the complex variable £ equal
to i csc3 (£/2), the sign being determined in such a way that | csc3 (£/2j| is positive for
real £ (there are vertical cuts extending from 2nir — i<x> to 2w7r+i°o). This may also
be verified directly from (3.1) or (3.2).

The dipole strength of $ can now be obtained from (6.9). The integrand has no
singularity near £ = 0 or near (we are considering \[/—>0), so that the path W may
be deformed into the path W" indicated in Fig. 7a. Inserting the dipole strength
(7.5) of #(£), one obtains for the dipole strength D of $ at oo :

 71 csc*m 1 (ifjcsc 2ij " 7cot l)il (7 •6)

* The same formula applies for any (asymmetrical) object but then D is the component of the dipole
strength at °o in the direction of motion.
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where now the diagram in the £-plane is indicated by Fig. 7b. The second term in the
integrand involving cot £/2 can be integrated explicitly and has the value zero. Fur-
ther, the path W" reduces to W,"by replacing {by — £. Making the change of variable
7r^/2/3 =z, we have

a3 r (iz
D = —• I csc3— csc zdz (7.7)

2xl J L 7T

where the path W{' is henceforth denoted by L and is a vertical line slightly to the
left of the imaginary axis.

The virtual mass can now be obtained from (7.4), (7.7) and

mass of displaced fluid = §TpA3(2 — cos j8) cos4 /3/2. (7.8)

-plane ^-plane

1
Y+i<r

Y-iu-
T

U"

The integral in (7.7) is evalu-
ated for angles /3 which are rational
multiples of ir in Sec. 9. The results
for the virtual mass as a function
of the thickness of the lens are ex-
hibited in dimensionless form in
Figs. 8 and 9. In Fig. 8 we have
plotted M/irpA3 as a function of
B/A, where A is the radius of the
spheres bounding the lens and B
is the half thickness of the lens.
The case of completely separated
spheres, B/A>2, is included in Fig. 7a Fig. 7b
the graph (see App. C). It is also
of interest to emphasize the presentation surface of the lens, and for this purpose we
have plotted M/irpa3 as a function of B/a in Fig. 9, where a is the radius of the sharp
circular rim of the lens. For B/a> 1, the lens has a figure eight cross section and the
presentation radius is preferably A instead of a, so that Fig. 8 should be used for this
range.
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.6

.2

■ Virtual Miss Coefficient K
M = Trpa3,K

8. Potential function and virtual mass
for an arbitrary lens. We construct the
velocity potential of the flow around an
asymmetrical lens bounded by the spherical
caps yp = a—ft and \p = —ft, where ft and a — ft
are both positive. We suppose that the lens
is immersed in an infinite fluid and that it is
moving downward (i.e. in the negative s-di-
rection) with unit velocity. The symmetrical
lens is obtained by taking a. = 2/3, and this is
the case which has been discussed in the
main body of the paper.

The potential function describing the
^^ '—g L_b-1 flow satisfies conditions (6.1)-(6.4) as in

a Sec 6, but. in place of (6.2), we have
Fig. 9

W , ,
   = 0 on \p = a — ft and on ip = — ft. (8.1)

dn

In order to illustrate a remark made in Sec. 6, namely that the w-fold Riemann space
may be used if the intersection angle, here equal to a, is rational, we suppose that
a = nir/m. The formulas which we obtain are then valid for all a by continuity.

The solution is the potential function

V = Z [Q^(2ka - 2ft) - <2(n)(- 2ka)}
(8.2)m

= H\Q(n)(2(k + l)a - 2/3)- 0(n)(- 2ka)]
k= 1

making use of the fact that QM(^o) is periodic in \po of period 2nir. The first form of
(8.2) shows by Theorem 5.1 that V has vanishing normal derivative on \{/ = — ft, while
the second form yields the vanishing of the normal
derivative on ip = a—ft. Furthermore, at co in the
first sheet (cr = 0, \p = 0), all the terms in the
summation are regular except — Q<-n)( — 2ma) —
~~-Q(n)( — 2mr) = — QM(0) which behaves at oo like
— 3+0(1) (compare (4.3)). Substituting from (4.2)
into (8.2) and evaluating the sums, we obtain the
formula

1 P 7r / 7r(| + 2/3) tt \= — I ?(€)—(cot   cot — W. (8.3)
ZiriJw Zct \ La. Za/

The desired potential function <J>= F+z.
Formula (8.3) reduces to the old formula (6.8) in

the special case when a = 2/3. It is interesting to note that (8.3) is built out of two
terms of the type
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— 1 C "" — o)QUo) = — I ?(£) — cot—— d£. (8.4)
liri J w 2a. 2a

According to Theorem 5.1, the image of —Q(0) relative to \p= —/3 is Q( — 2/3), while
its image relative to \p = a—j8 is Q(2a — 2(3). But Q(—2/3) = Q(2a — 2/3) since Q(4>0) is
periodic in \fto of period 2a. Thus the potential function

V = - Q(0) + Q(- 2j8) (8.5)
satisfies the boundary conditions on both \[/= —/3 and \p=a — (3, and has the required
behavior at oo. It is therefore the solution to our problem. This is exactly (8.3).

The expression Q(\po) m (8.4) might be interpreted as a fundamental dipole in a
space obtained by identifying angles xp which differ by 2a. This would be analogous to
the two-dimensional case in which V could be extended across \p= — /3 into the region
between \p= — /3 and \p= —a—j3 by inversion and then noting that this extension is
likewise the extension across \p=a — /3 if one identifies \f/=a — /3 with \p= —a — f3. But
the simple extension by inversion does not apply in the three-dimensional case but
rather a more complicated continuation. In fact Q(^o) in (8.4) is not single valued in
the space obtained by identifying angles \p which differ by 2a. Thus the analogy with
the two-dimensional case given by formulas (8.4), (8.5) is not exact, but is neverthe-
less noteworthy.

The calculation of the virtual mass is similar to that of Sec. 7. The result is

M = M i — AT 2 (8.6)

where

7t/3 1 f az i / 7r/3\ / 7r/3\ "k
Mi = 2tvpa3 sin ; I csc3 — csc z < csc ( z -\ I — csc I z ) > dz (8.7)

a 2iriJ l t l \ a/ \ a/)

and where

i r /3 /3
M2 = — Tpa3 (2 — cos iS) cot — csc2 •—

6 L 2 2
a — fi a — /3~|

+ (2 — cos (a — (8)) cot —-— csc2 —-—J (8.8)

is the mass of the fluid displaced by the lens.
9. The symmetrical lens. Virtual mass in special cases, (i) For the determination

of the virtual mass there remains but to evaluate the integral in (7.7), and this can
be done in terms of residues when the angle /3 is a rational multiple of ir. Suppose that

nw
P =  (9.1)

where n and q are relatively prime integers and n<q. The integral to be evaluated is
then

I =   f csc3—csc zdz (9.2)nriJ L
nz

2 Tri J l q

where we repeat that L is a vertical line slightly to the left of the imaginary axis.
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Let 5 be a fixed positive number and introduce the factor e~iz in the integrand in
(9.2). Then

±f2iriJ l

nz
csc3 — csc ze~8zdz = — sum of residues to the right of L

q
(9.3)

1 sum of residues
1 — (— ijn+qe-6qr between 0 and qir.

Calculating the residues between 0 and qiv, letting 5—>0 and observing that the coeffi-
cient of 1/6 must vanish, we obtain two different results according as n-\-q is odd or
even. If n+q is odd,

JHT
csc3 

i r3-1/-T[g
i ( q2 d2 ) ~i

+ —S(- l)4-1<cscz + — — (cscz)V , (9.4)
2n ic=i I. nz dz1 )

1
n-1 t g2 d2

and if w+g is even,

jnir
1 )'j csc3  

1
^ ( q2 d2 } 1
T. (— csc z -1 (z csc z) > . (9.5)
ti I n2 dz2 7 2=*9T/J2n k=i

The computations based on these formulas were used in plotting the graph of Fig. 8.
It is interesting to note that formulas (9.4), (9.5) involve angles which are multi-

ples of qir/n as well as those which are multiples of wx/g. These trigonometric sums,
which would normally depend in a highly discontinuous manner on the angle /? = W7r/g,
do indeed depend continuously since they are special cases of the integral (9.2).

For the purpose of checking, it is worth while to calculate the virtual mass in
certain easy special cases where it can be calculated by other means.

(ii) If (3 = 7t/2, eq. (9.4) for n = 1, q = 2 gives 7=1/2, or from (7.4), (7.7), (7.8)

M = frpA3.
This trivial case corresponds to the flow about a sphere in an infinite fluid, and the
virtual mass is then known to be as stated.

(iii) If we let /3—>0, we obtain from (7.7) and the fact that a = A sin j3,

7t3^43 r csc z ™
D "*• —~dz = a3 £ (- D'-Vf.

2m J l z j=i

Substituting in (7.4), (7.7), (7.8), the virtual mass of the fluid, when the two spheres
are tangent (j3 = 0), is

M = 4tM 3 [ Z ('- 1) '-Vi3 - 2/3J. (9.6)

This value agrees with the limit obtained when completely separated spheres ap-
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proach tangency (see App. C) and so is a consequence of known formulas (see [2],
p. 447).

(iv) Taking /3 = 7r, the virtual mass M is obviously zero. However if we keep a
(instead of A) as fixed, then we obtain the virtual mass for a circular disc of radius a.
Taking /3=7t in (7.4), (7.7), (7.8), we obtain

47rpa3 f
M = — I csc4 zdz - f pa3.

2iri J l

This is also a known result (see [2], p. 428).
10. The symmetrical lens. Derivative of the virtual mass. For the application of

the lens flow to the impact of a sphere on a fluid surface, it is necessary to calculate

dm
  where m = M/irpAz, b = B/A.
db

This can be done by differentiating formulas (7.4), (7.7), (7.8), leading to another
trigonometric contour integral. This integral can then be evaluated for (3 = mr/q as
in the preceding section, with two cases appearing, according as n-\-q is odd or even.
We shall not write down these formulas since they are complicated and are similar
to those in the preceding section. Just the remark should be made that in equating the
coefficient of 1/5 to zero one obtains evaluations of certain trigonometric sums, in-
volving angles which are multiples of qir/n and nir/q, which appear at first glance
quite startling.

On the basis of these formulas, a graph of dm/db was prepared and is shown in
Fig. 11.

2.8 b

Appendix A
Figure eight lens with exterior angle ol = tt/m. The elementary process of succes-

sive images of dipoles fails in general without the introduction of multi-sheeted spaces.
But this method succeeds for the special case of a lens with exterior angle a = Tv/m,
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in which case the procedure described in Sec. 2 terminates after m steps. On the twth
step, the same dipole corrects the boundary conditions on both spheres K and K'
simultaneously, and the total number of dipoles is 2m — 1. An example is a figure eight
lens with a=w/2, which has three dipoles situated at the Ki
points 0, 0', Q indicated in Fig. 12. (By inversion relative
to K or to K', the circle OR O'S inverts into the straight
line RQS. Thus Q is the inverse of 0' relative to K and also
of 0 relative to K'.) The dipoles are directed vertically  
downward and their strengths at 0, 0' and Q are

A3/2, An/2 and — A3An/2{00'Y — — a3/2 respectively.

For the general case in which a = ir/m, it is convenient
to use the angular coordinate \p. Let the equations of the
two spherical caps K and K' be \p= — a/2+7 and
\p = a/2+7 respectively, where —a/2 <7 <a/2. The dipoles
are situated on the axis of symmetry at the points

Pv\ iv = — (» + l)a + [l + (— 1)"]y> v =

PI; = (v + 1)« + [l + (— 1)"]y. v = 0, ■ ■ ■ , m — 1.

The points Pm_1 and PJ-1 are identical, since — = 2-ir. The strengths of the
dipoles at Pv and PI are ( —l)"_15P^/2, where 5 is a point on the sharp circular rim
of intersection of the two spherical caps and SP„ is the distance from P, to S.

The expression for the velocity potential is now easily written down in terms of
these {2m — 1) dipoles, and the virtual mass obtained from formula (7.4).

Appendix B
Spherical shell and figure eight lens with exterior angle a = 27r/m. In the special

case when the exterior angle a = 2ir/m, the velocity potential V (or $) can be expressed
in terms of elementary functions. According to Sec. 8 all that is required is a two-
sheeted Riemann space and the fundamental dipoles can then be explicitly integrated.

It is much simpler to obtain an expression for the Stokes' stream function instead
of the velocity potential. Let T^n)(ypn), S, % be the Stokes' stream functions conjugate
to 0), V, $ respectively. Corresponding to (4.2), (8.3) and $= V-\-z we have

1 C t(£) £ - ia
0)=— I ^ (B-1)

Z7TZ J W

1 r irt(£) r x(£ + 2/3) 71-n
5 = —; I -^| cot - cot^ Iff (B.2)

2iri J w 2a L 2a 2a_

X = S + r>/2 (B.3)

where t(i-) is obtained from in (3.2) by replacing 1f/0 by £, and r2/2 is the stream
function conjugate to 0. In any numerical work these have a much simpler form than
the corresponding formulas for the potential.

In the integrand the substitution 5=^ + ^ can be made, and the lower half W{
of the path of integration can be reduced to the upper half W„' by the substitution
f—» — J". There results
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a2 sinh2 <r r 1 sin {'c/n)d'c
r< »>(*„)-  f  (B-4)

47mi(s — r)1/2 J w-u (s — cos f)3/2 cos [(i/' — \po)/n] — cos (f/ra)

Consider now the case n = 2. Make the substitution cos (f/2)=cosh (<r/2) cosh tj
and evaluate the integral. The result is

2
o) —arc tan

7T

' (cosh (<r/2) + cos [Qfr - »/2"
. tcosh (cr/2) — cos [(i/< — ̂ o)/2]f _

21/2a2 sinh2 (cr/2) cos [(^ — i/'o)/2]

x(s — r)1/2[s — cos — *,)]

where is the fundamental dipole in (3.2).
The arc tangent factor in (B.5) illustrates the difference in behavior of 0)

between <r—>0 and ip—>i/'o + 2t, a—>0. In the former situation, the factor ap-
proaches 1 while in the latter it approaches 0. The second term in (B.5) just cancels
the remaining singularity, with the result that r(2)(i^o) — t(ipo) is regular as \p—>^0.
a—>0 while o) itself is regular as \p^>\pa-)r2ir, a—>0.

We may now obtain the stream function for the flow about a figure eight lens with
a = 2tr/m. For the stream function S conjugate to V we have a formula analogous to
(8.2):

m

s = 22 [r(2'(4i6f/« - 2/3) - r<2>(- 4kr/m)]. (B.6)
k= 1

The case m = 1 is especially noteworthy since this corresponds to the flow about
spherical shell (exterior angle 2ir):

S = y(2>(_ 20) — r(2)(0), a = 2-ir (spherical shell). (B.7)

For the stream function x, conjugate to we have

x = y(2)(— 2/3) + Tm(2ir), a = 2ir (spherical shell) (B.8)

since r2/2 = T(1)(0) = r(2)(0) -\-Tm{2ir). The flow about a spherical shell has also been
obtained by Basset [5 ] using spherical coordinates.

For the sake of completeness, we include here the formula for Q&){\po)- It is

a (s — t)1'2 sin [(i^ — i/'o)/2]
Qm(to) = ?(*o)/GM +

ir\/2 s — cos {\p — ^o)

- — csc (tAo/2)/(0) + — tan (ifo/4),

where f(ipo) is the arc tangent factor of t(\l/0) in (B.5),

2 r if(ipo) = — arc tan [ J.
T

The potential function arising from a pole (instead of a dipole) of suitable strength
has the form
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(s - r)1/2

7 n—rrn7T ̂ o) •
[5 — COS — ^0) J1'

In particular if the pole is at infinity o = 0), its form is

This last expression is a potential function, equal to 1 at infinity in the first sheet
(\f/ = 0), equal to 0 at infinity in the second sheet (\p = 2ir) and having no singularities
in the finite.

Appendix C
Completely separated spheres. Although the case of completely separated spheres

can be treated by the method of images described in Section 2, and the virtual mass
computed from (7.4), nevertheless it is of interest to trace a closer relationship to the
case of intersecting spheres. It will be shown that the integral formulas for lens flow
carry over to separated spheres by merely allowing the coordinates a, \p and the geo-
metrical quantities a, jS, a to be pure imaginary.

For simplicity we shall discuss only the symmetrical case, the extension to the
asymmetrical case being clear. Let the two spheres be of radius A, as indicated in Fig.
13, moving at unit velocity in the direction of their line of centers. The distance be-
tween the centers of the spheres is 2(B—A). As in the lens case, set

B = A (1 + cos /3), a = A sin /3 (C. 1)

where now /3 and a are pure imaginary. The points
marked a and — a in the diagram are mutually
inverse with respect to both spheres. As in the lens
case, the dipoles describing the flow are situated
at the points r = 0, z=a cot kfi for k= ± 1, ±2, • • •
with strengths ( —l)i+1|a3 csc3 (&/3)/2| respec-
tively.*

The virtual mass M can be obtained from
formula (8.4) with the result

M " sin3 /3 8
m = -  = 4^ (~ 1)*+1   » (C.2)

irpA3 h=1 sin3 kfi 3

where it should be recalled that /? is imaginary
and so the series is rapidly convergent. In par-
ticular, if the spheres approach tangency, /3 = 0
and the result (9.6) is obtained.

As /3 varies from ir to 0 along the real axis, the
Fig. 13 spheres first form a thin lens which thickens until

the spheres are tangent. Then, as fi varies from 0
to i 00 along the imaginary axis, the spheres separate and move farther and farther

* We remark that in any problem involving successive inversions relative to two equal spheres, the
introduction of /3 by means of (C.l) is a simplifying device. A similar device applies to any two spheres,
and will simplify such formulas as in [l ], pp. 131-133 and [2], p. 420. This remark also applies to the elec-
trostatic analogue, as in [3], pp. 642-649.
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apart. The virtual mass m and its derivative dm/dq vary continuously, but we see
from Fig. 11 that d^m/db"1 has a discontinuity at /3 = 0 (6 = l+cos /3 = 2).

We may also obtain the potential function in a form analogous to (6.8) or (6.9).
Allow the coordinates cr, \p as well as a, 13 to be pure imaginary. (More generally, com-
plex values of <r, i/', a, may also be selected.) Let r, z be connected with a, \p by the
same relations,

a sinh a a sin \p
r = > z =

cosh cr — cos \J/ cosh <r — cos ^

The coordinates r, z are still real when cr, \f/, a are all pure imaginary. In order to have
r^O, we suppose that 0^ Imcr^ir while Im \p varies from - ® to +°°.The locus

—(3 is the sphere of radius A and center at r = 0, z = — A cos /3. The coordinates
Im cr, Im ^ and the angle 9 of rotation form the so-called bipolar coordinate system
in space.

The function defined by (3.1) remains a potential function even though a, \// are
pure imaginary. The branch points of g(£) as a function of the complex variable £
are still located at \p — icr-\-2kir, 2kir but all of these now lie on the line
Im £ = Im \p. The £-plane can be cut along the straight line segments connecting the
two adjacent branch points \l/ — ia-\-2kiv and ^-^-i(x-j-2(k-\-l)Tr (see Fig. 14). Select the
path W as indicated in Fig. 14; W can also be considered as surrounding all the indi-
vidual cuts as well.

5-plane

y-ir-2TT
 Y* 1^ V+1<t+2tt ^ V+ltrfitT

Y-ir+2Tr

-i <r

Fig. 14

The potential function V (or 3>) can now be constructed as in the lens case, with
the same form as in (6.8):

1 r t ?r£
V = g({) — esc — dl (C.3)

2 wiJw 2/3 2/3

The formulas for the virtual mass M is the same as (7.4), (7.7) except that the mass
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of the fluid displaced is merely The integral in (7.7) can then be evaluated by
residues for f3 pure imaginary, with the result already obtained in (C.2).
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