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VIBRATIONAL PROBLEMS IN ELLIPTICAL COORDINATES*

BY

N. W. McLACHLAN
(University of London)

1. Introduction. We commence with the differential equation
%0 0% 9%,
+

— K =0, (1.1)
dx? ay? at?
K being a constant. Writing {o=e™*(x, ¥) in (1.1), it becomes
9% 9% 2
— 4+ —4+ k=0, 1.2
st TR (1.2)

with #2=w?K. This is the familiar two-dimensional wave equation for sinusoidal
time-displacement, expressed in rectangular coordinates. The ordinary differential
equations used herein, into which (1.2), expressed in elliptical coordinates, may be
decomposed, are identical in form with those obtained by Mathieu' when he solved
the problem of the elliptical membrane. Their preferred canonical forms are

d*y
—+ (a — 2g cos 23)y = 0, (1.3)
dz?

and
d%y '
—— — (e — 2q cosh 2z)y = 0, (1.4)
dz?

with ¢>0. In dealing with an elliptical plate, these equations are used with ¢20.
(1.3) is known as the ordinary Mathieu equation, and (1.4) as the modified Mathieu
equation. They are derivable from each other by the substitution + 1z for z. Recently
lists of solutions of (1.3), (1.4), and the corresponding equations for ¢ <0, have been
published.234 By aid of these we shall derive formal solutions pertaining to the vi-
brational modes of:

(a) A uniform, homogeneous, loss-free stretched membrane in the form of an
elliptical ring;5

(b) Water in a lake of uniform depth whose plan view is an elliptical ring;

(c) A uniform, homogeneous, loss-free, elastic elliptical plate;
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§ An elliptical ring is that portion of the ellipse enclosed by the inner and outer confocal bounding
ellipses.
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(d) A uniform, homogeneous, loss-free, elastic elliptical ring plate.

In all cases, as the outer bounding ellipse tends to a circle, the formulae degenerate
to those already known for a circular boundary.

2. Elliptical ring membrane. In this case & =w?,;/7, where p; =mass of membrane
per unit area, T =radial tension per unit arc length,® both of the latter being constant.
To derive the appropriate formal solutions, we first transform (1.1) to elliptical
coordinates,” where

x = h cosh & cos 7, y = h sinh £ sin 7, (2.1)
2k being the interfocal distance. Then if ¢ is the displacement of a point (£, ) on
membrane, we get

X X bas(cosh 2 — cos 205 = 0 2.2)

— 4+ — + 2k%(cos — cos =0. .

o8 o’ 2 n
with k2=1k2h?=wh%p,/4r.

3. Solutions of (2.2). The appropriate type take the form
S ) = x(®¥() (3.1)

where ¢ and x are functions of 7, £ alone, respectively, which satisfy the ordinary
equations

i d + (e — 2q cos 29)¢ = 0, (3.2)
dn?

and
ﬂ — (6 — 2q cosh 2&)x = 0. 3.3)
dg?

a is the arbitrary separation constant, while ¢=%2, £>0. These equations have the
same forms as (1.3), (1.4), and we designate their first and second linearly independent
solutions by

\01(777 q)r '/’2("7: ‘I); (34)
XI(E) q)v X2(£r ‘I) (35)

As shown in the papers mentioned in Footnotes 2, 3, 4 these solutions have a plu-
rality of forms, so the next step is to select those appropriate to the problem of the
ring membrane.

4. Physical conditions. Consider the maximum displacement of all points on a
confocal ellipse on the membrane. If we start at =0 and move round the ellipse
counterclockwise, the maximum displacement varies continuously. If may be re-
peated between n=m and 5 =2m, but it is always repeated at interval 27. Thus { is
single-valued and periodic in the coordinate 7, the period being either 7 or 2w, ac-

¢ To obtain uniform tension, the membrane may be stretched with uniform radial tension over a
circular frame, the elliptical rings then being clamped in position within the frame. The plane of the
membrane, when at rest, is horizontal,

7 A simple method of transformation is exemplified in Phil. Mag. 36, 600, (1945).
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cording to the mode of vibration. Consequently ¥1(y) and y»(n) must be functions
such that either

¥(n, Q) =y + Q), 4. 1)

or

v(n, @ = ¢(n + 2, q). (4.2)

According to the references in footnotes 2, 3, the only functions which satisfy these
conditions are, respectively,

'pl(nv Q) = Cez,,(‘)], Q)r Sez,,+2(17, Q)y [a2ny b2n+2],8 (43)

and

iln, @) = cezna1(n, @), sezny1(n, q), [@2n+1, B2nt1],8 (4.4)

n=0, 1, 2, - - - The functions in (4.3), (4.4) are first solutions of (3.2). Linearly
independent second solutions are non-periodic and, therefore, inadmissible here.
There is no physical reason for discriminating between independent solutions of (3.3)
so we may include both. Then,?23

xi(§, Q) = Cen(t, q)r Sen($, ‘I)v [amv bm]’ (4.5)

and

x2(§ 9) = Feyn(t, @),  Geyn(, @), [am, bm], (4.6)

where m=2n, 2n+1, 2n+2, as the case may be. The second alternative solutions
Fe.(§, @), Gen(£, ¢) may be used for x:(£, q), but for reasons stated in the references
mentioned in Footnote 3, the solutions (4.6) are preferable.

5. The formal solution. This is to be constructed from (3.1), and (4.3)-(4.6). We
arrange the xi in groups, the functions in each group having the same characteristic
number. Thus, introducing the real part of the time factor from Sec. 1 with an arbi-
trary phase angle, we have the component solutions of order m, corresponding to a.
and b,,, namely,

CmEym, 8) = [C,,,,Ce,,.(ﬁ, q) + FrnFeyn(s, q)]“m(ﬂv q) cos (wmt + €m), (5.1)

and

?m(s, n ) = [SmSem(E, q) + GnGeyn(t, q) ]sem(m q) €os (Omt + &n). (5.2)

In (5.1), (5.2), Cn, Fu, Sm, Gm, are arbitrary constants determinable from the dis-
placement and velocity over the surface of the membranal ring at =0, while wp, @m
are the respective pulsatances of the mth free modes of vibration, and e€n, &, their
relative phase angles. w, and @, are different as will be evident from the next section.
For Ce, ce, Fey, m=0, 1, 2, - - -, while for Se, se, Gey, m=1, 2, - - - . The complete
solution, without the time factor, maybe written

6 1) = 2 6t ) + 2 Pl 1), (5.3)

m=0

8 These are the characteristic numbers corresponding to the Mathieu functions ce, se of integral order
2n, 2n+1, 2n+-2.
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6. Vibrational modes of ring membrane. We use the boundary conditions
£=§, { =0 at the outer clamp, £=§;, { =0 at the inner clamp. For modes of order m
corresponding to characteristic number an, by (5.1) at the outer clamp

[Cmcem(go, 9) + FmF'eym('EOr ‘I) ]Cem('l], q) = 0 (6 1)

At the inner clamp

[CnCem(tr, q) + FuFeym(£1, q) [cem(n, ) = 0. (6.2)

These equations are independent of 5 at the clamps, so for Cn, F. to be non-zero,
we must have

Cem(o, QFeym(t1, @) — Cem(t1, Q)Feym(ko, ) = 0, (m = 0) (6.3)

which is the pulsatance equation. Moreover, corresponding to each value of gm,p,
p=1,2,3, - - for which (6.3) is satisfied, the elliptical ring has a vibrational mode
of order m and rank p. Since gm,,=F% ,=w3 ,h%1/47, the pulsatances of the modes
are given by

2

Wm,p = 47¢m,»/ B’p1, (6.4)
= 41qm,»/d’e’p, (6.5)

where % =ae, a being the semi-major axis, and e the eccentricity of the outer bounding
ellipse. gn, are the parametric zeros of (6.3), and determine the positions of the nodal
ellipses, of which there are (p —1) within the clamping rings. The nodal hyperbolae
are determined for any ¢=gu,, by

Cem("l: Q) =0, (m > 0)' (6'6)

For the set of modes corresponding to characteristic number b,, the pulsatance
equation defining the nodal ellipses is

Sen(ko, )Geym(Er, @) — Sem(br, Q)Geym($0, ) = 0, (m > 0), 6.7)
where ¢=gm,,. The nodal hyperbolae, for any g=gm,,, are given by
sen(n, ) = 0, (m > 0). (6.8)

7. Elliptical ring lake. The formal analysis is identical with that for the ring
membrane, but the condition at the inner and outer boundaries is zero velocity
normal to them. Thusif { represents the tide height or vertical displacement of the
water from its equilibrium level, we have?

9t/9t =0 at £=£&, andalsoat &= §. (7.1)

The conditional equations have the forms (6.1), (6.2), but the functions are replaced
by their first derivatives with respect to £. Hence by (6.3) the pulsatance equation is

Cen(to, QFeyn(ts, q) — Cen(kr, QFeym(bs, ) =0,  (m = 0), (7.2)

g having those values ¢, ,, p=1, 2, - - - for which (7.2) is satisfied. These determine
the nodal ellipses, while the nodal hyperbolae for the same values of g are given by

9 H. Jeffreys, Free oscillations of water in an elliptical lake, Proc. Lond. Math. Soc. 23, 455 (1924).
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(6.6). In the present problem k?=g=w?h?/gd, g being the acceleration due to gravity,
and d the uniform depth of the lake.
For the set of modes corresponding to characteristic number b, we have

Sen(Er, DGeym(En ) — Sen(es, OGeyn(bn, ) =0,  (m > 0), (7.3)
and
se,,.(n, Q) =0, ' (m > O): (7°4)
with ¢g=gp.»
8. Elliptical plate. Let p be the density, ¢ the uniform thickness, ¢ <1 Poisson’s
ratio, E the modulus of elasticity, and c¢2=E#2/12p(1—0), whose dimensions are
(velocity).? Then if { varies as e®! in the various vibrational modes, k2 =w?/c?, and

rotation effects are ignored, the differential equation of motion expressed in rectangu-
lar coordinates, may be shown to be

a4 94 294
HLA f _e=o, 8.1)
dxt  dy*t 9x%dy?
or
(62+62+k’)(62+62 kz)r 0 (8.2)
dx?  9y? VACY ay? T )
If a function {; satisfies
g % 2
kit =0, 8.3
Pye + 2yt + kify (8.3)
and another function {, satisfies
0%, 9%, 2
ax2 + ay2 - klg'z = 0, (84)

their sum, with the appropriate arbitrary constants, is a solution of (8.1), (8.2). To
obtain this solution, (8.3), (8.4) are expressed in elliptical coordinates, thereby
yielding two equations of the form (2.2), with 442 in one and —k2 in the other.
These may be split up into pairs of equations like (3.2), (3.3), one pair being asso-
ciated with +¢ and the other with —gq. Then omitting the time factor, the solutions
of order m corresponding to (8.3) are

6V ) = [CuCentt, ) + FuFeym(, )loen(n, @ (6 = an),  (8.5)

(m)
§1 (& 1) = [SwSen(t, @) + GuGeyn(t, @) )sen(n, 9),  (a = bu). (8.6)
The solutions corresponding to (8.4) are

¢2" (6, m) = [CuCen(t, — @) + FuFekn(t, — q)Jcen(n, — 0) 8.7

for a=as,, m=2n; a =bzny1, m=2n-+1, and

87 m) = [SuSens, — @) + CaGeknlt, — g)Jsen(n, = 0 ®-8)



294 N. W. McLACHLAN [Vol. V, No. 3

fora=by, m=2n;a=2n+1,m=2n+1. In these cases ¢ <0in (2.2) and the functions
Fekn(¢, —q), Gekn(£, —q) have been used in preference to Feyn(¢, —q), Geyn(€, —q),
since the former are real, while the latter are complex if £ is real.?

On the interfocal line of the ellipse £=0. In crossing this line orthogonally from
(0, ) to (0, —n), we must have

(a) continuity of displacement, so {(0, ) =¢(0, —n), and

(b) continuity of gradient, so

9 0
% [c¢& m)]ewo = — % [e& — ) ]io

Remembering that ¢ (¢, 1) =x(£)¥(n), it may be demonstrated that with the product
pairs Feymcenm, Geymsen, Fekncen, Geknse,, conditions (a), (b) cannot both be satisfied.
Hence in (8.5)(8.8) we put Fpn=Gn=Fn=G,=0. Thus the complete formal solu-
tion is

&) = Z CnCenl(t, Q)Cem(ﬂr ‘I) + émcem(fv — g)cen(n, — q)

+ D SuSem(t, Q)sen(n, ¢) + SnSem(t, — g)sem(n, — ¢). (8.9)
m=1

9. Boundary conditions. When the periphery of the plate is clamped, { =0¢/9t=0
at £ =£,. Thus for mode m corresponding to characteristic number as,, we have

’C2nC32n($01 q)ceh(ﬂ’ q) + 62nce2n(£0; - q)ce2n(n’ - ‘1) = 0, (9 1)
and
Cche;n(EOy q)ce2n(771 q) + _C_2nce;n($0; - q)ce2n(7’1 - q) = 0 (92)
For Ci., Ce. to be non-zero, we must have
[Cezn(o, 9)Cesn(E0, ) — Cesnlto, — q)Cesnlko, @) Jcezal(n, g)cean(n, — ¢) = 0. (9.3)
Hence the pulsatance equation is
Ce?n(£0: - q)cezln(gﬂy q) - Cezln(Eo, - q)Ce2n(£01 q) = 07 (n ; 0)) (9'4)

or

d
pr [Cean(t, 9)/Cean(t, — @) Jt—ts = O. (9.5)

This equation is satisfied when ¢=g,, say, where s=1, 2, 3, - - -, and these roots
define a system of confocal nodal ellipses. For the same values of ¢, by (9.3) we have
the equations whose roots define two systems of nodal hyperbolae, namely,

cezn(n, @) = 0, and cew(n, —q) =0  (n>0). (9.6)

For modes associated with the characteristic numbers @241, b2.41, we take the respec-
tive equations, with m=(2n+41),
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CnCem(E, Q)cen(n, ) + SnSen(t, — g)sem(n, — q) = 0, (9.7)*
and
SwSen(t, Q)sen(n, 9) + CnCen(t, — q)cen(n, — q) = 0. (9.8)*
Using the boundary conditions in (9.7) yields for @ =as.,1, the equations
d
pr [Cen(t, ¢)/Sen(t, — @) ]s=t, = O, (9.9)
and .
Cem(ﬂy ‘1) = 01 seM(ﬂr - Q) = Ov (9'10)

for ¢=g,,, these being the roots of (9.9).

Similarly for (9.8) we derive for @ =bs,41, the equations

d

d_E [Se,,,(E, Q)/Cem(fv - q)]E=Eo =0, (9-11)
and

sea(n, @) = 0, cen(n, — q) =0, (9.12)

for ¢=4g,,,, these being the roots of (9.11).

For characteristic number a =b,,, the equations may be obtained from (9.5),
(9.6) by writing Se for Ce, se for ce, s n; fOr @5 ey n = 1.

10. Elliptical ring plate. When an elliptical plate is clamped at its periphery and
also at an internal confocal ellipse, it becomes a ring. Defining the inner and outer
boundaries by £; and &,, the conditions to be satisfied are { =3¢/ =0 at £ =£; and &,
where 0 =&, <&,. If & were zero, the inner clamp would be on the interfocal line of
length 2k. By Sec. 8, the formal solution for characteristic number az,, is

§'(2’n) = [C2nce2n(£v q) + F?nFey2n(£r Q) ]6827;(77: l])
+ [_C?nce%z(sy - q) + F2ﬂFek2ﬂ(£7 - ‘I) ]°e2n(7’v - ‘I)- (10'1)

Then at £=§, and at £=£;, we must have

. [Cane2n(Ey q) + F2nFey2n($, q) ]CeZn(nv 9)
+ [EZnC82n<Ey - q) + I_?2nFek2n($v - ‘1) ](:GZn(ny - q) = 0: (102)
and

[Cane;n(Er 9) + F?nFey;n(E) q)]ce2n(7’y ‘1)
+ [62"C84ﬂ(£r - ‘I) + FZnFekén(Er - Q)]Ce%(nv - ‘I) = 0. (103)

Thus there are four equations from which we can eliminate the four arbitrary con-
stants, and so derive the pulsatance equation, and those for the nodal hyperbolae.
Similar equations may be derived corresponding to @sa41, bant1, D2nte.

11. Examples. 1°. Elliptical ring membrane. The first pulsatance equation is (6.3),

* It should be observed that cesny1(n, @) and sezny1(n, —¢) have a=as. 41, while for sesnyi1(n, ¢) and
cesny1(n, —q), @ =>bsns1. Similarly for Ceand Se.
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and we have to find those values gm,, =w? ,h%0:/47 which satisfy it. In the absence of
tabular values of the two functions involved, calculation of the values g for the
modes of lower order would be tedious. However, by aid of formulae asymptotic in
k=+4g2, we can easily determine the approximate roots of (6.3). When g=£2 is
large enough?

Ce
Fey

K., cos

} &g ~——"— _ (»—0), (11.1)

(cosh £)'/2 sin

where K,, is a constant dependent upon ¢, v,=2k sinh &, and 6,=(2m+1) tan—!
(tanh 3£,). Using (11.1) in (6.3) leads to

sin [(vo — v1) — (8o — 61)] = O, (11.2)
SO '
(vo — v1) = pr + (60 — 6v), (11.3)
p integral =1. Thus (11.3) gives
B, p = (p7 + 0o — 01)/2(sinh & — sinh £). (11.4)

If ¢ is the eccentricity of a confocal ellipse £ e'=cosh £ and, therefore,
sinh £=¢~1(1 —e?) Y2, Substituting this into (11.4) yields

2
Imp = km,p

o~ (pr + 60 — 61) eoer/Ales + €1 — 26061 — 2e1e0{(1 — eN(1 — )} ],

(11.5)
ey, €1 being the eccentricities of the outer and inner bounding ellipses, respectively.
The accuracy of (11.5) improves with increase in e and p. The second pulsatance
equation (6.7) may be treated in a similar manner.

2%, Elliptical plate. Referring to (9.5), we shall consider the modes of order 2
corresponding to the characteristic number a.,. As before, owing to absence of tabular
values, we shall assume that % is large enough for (11.1) to be used. This formula
applies when ¢>0, but we also require one for ¢<0. To derive this we write (§+3m1)
for £ in (11.1), since this substitution changes the sign of ¢ in (3.3) of which (11.1)
is an approximate solution when g is large and positive. As explained in the paper
quoted in Footnote 3, it is also necessary to multiply by (—1)" and select the real part
of the formula, since £ is real. Then if |£[>>%7r, we obtain

Ceg,.(é, - q) ~ Kz,.)a/(Sinh 2)1/2, (11 6)

where x1 =cosh u cos ¢2,+sinh % sin ¢z,, w =2k cosh £, ¢p2.~(4n-+1) tan—! (tanh 3£),
and K., is a constant dependent upon g. Thus from (11.6) and (11.1), we get
(K-‘Zn) Cesn(£, q) (tanh £)1/2 cos x
Zin ~ ,
K2n Ce2n($’ - q) X1

with x =2k sinh £—(4n+1) tan—! (tanh }£). Performing the differentiation indicated
in (9.5), and equating to zero, leads after a little reduction to the pulsatance equation

tan x = (1/x’ sinh 2§) — (xi'/x1x’), £ = &. (11.8)

(11.7)
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If £, is large enough, x1'/xix'~—1, while x’ sinh 2£2>1. Then (11.8) reduces to
tan x>~ —1, or x~(s— P, (11.9)

s being a positive integer such that x is large enough for the above approximate
asymptotic formulae to be valid. Thus (11.9) entails

2k sinh §,~ (s — )7 + (4n + 1) tan™! (tanh 3%). (11.10)
If & is such that 2% sinh &, ~ ke%, and tanh 3£ ~ 1, we obtain
Gons = Eana o (s + 1)2me 2%, (11.11)



