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1. Introduction. The theory developed in the present paper applies to any elastic
body (in general anisotropic) possessing a positive-definite strain-energy function,
quadratic in the components of stress. This function provides us with a metric in a
function space in which the point or vector represents a state of stress. The geometry
of the function space follows Euclidean analogies closely, and is powerful in suggesting
methods of approximation. The aim is to obtain approximate solutions of elastic
boundary value problems with errors which are calculable, the error being measured
in terms of distance in function space, or, equivalently, in terms of strain-energy.

After dealing with notation and basic concepts in Sec. 2, we discuss vectors in
function space in Sec. 3. Sections 4 and 5 are intended to introduce the reader to the
ideas which lie behind the general method; only a first approximation is discussed,
and only the simplest types of boundary conditions.

In Sec. 6 more general types of boundary conditions are introduced, and higher ap-
proximations under these boundary conditions are treated in Sees. 7—11. Throughout,
the basic plan is to locate the solution of the elastic boundary-value problem (con-
sidered as a point in function space) on a hypercircle of determinable center and
radius. As a practical test of the method, it is used in Sec. 12 to obtain approximate
solutions for the torsion of a prism of square cross section. In Sec. 13 reference is made
to other work, and some known results are strengthened by use of the present method.

2. Notation and basic concepts. Latin suffixes take the range of values 1, 2, 3 and
the summation convention operates on repeated suffixes. The coordinates Xi are rec-
tangular cartesians, and differentiation with respect to a coordinate is indicated by a
comma (F%i = dF/dxi).

By a state of an elastic body we understand a set of six stress components Eij
(En — En), given as functions of the coordinates throughout the body. For simplicity,
we shall consider only functions which are continuous in the body and on its surface,
and possess continuous first and second order derivatives in the body. It will be obvi-
ous that these conditions may be weakened, in the sense that these conditions hold
throughout each of a finite number of parts into which the body is divided, with
suitable continuity conditions across the surfaces which separate the parts.

The body is assumed to possess a strain-energy function

W (2.1)
* Received September 20, 1946.
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where the constants Ci;mn satisfy

Cijmn ~ Cjimn ~ Cijnm ' Cmniji (2«.2)

and are such that the form W is positive-definite (i.e. it is positive unless all the stress
components vanish).

We now introduce the strain components in an unconventional way. Instead of
defining strain in terms of displacement, we define it by the generalized Hooke's law

Cij = Ci jpin 1'*mn ■ (2 . 3)

Thus (2.1) may be written

W = \eiiEij. (2.4)

It follows from (2.2) that for any two states, En and E[j, we have the reciprocity
relation

etjEij — eijEij. (2.5)

The usual equations of compatibility read

6ij,mn 6mn,ij &im,jn + Cjn ,im• (2.6)
By (2.3), these can be translated into conditions on the stress components. In general,
they will not be satisfied by an arbitrary state. But if they are satisfied, then the
partial differential equations

W, | y -j- 2/yti — 26j i, (2.7)

have solutions Ui, unique to within an infinitesimal rigid body displacement,1 and Ui
is the displacement for the state En- We are to remember that an arbitrary state has
in general no corresponding displacement.

Should we wish to construct a state satisfying the equations of compatibility,
the simplest plan is to choose a set of displacements, use (2.7) to obtain en, and then
solve (2.3) to obtain En- The compatibility equations (2.6) will be automatically satis-
fied on account of (2.7).

Throughout this paper, we shall suppose that body forces are absent.* Thus the
equations of equilibrium read

Eij,j = 0. (2.8)

In general these equations will not be satisfied by an arbitrary state.
We shall denote by Wj the unit vector normal to the surface of the body, pointing

outward. Then the stress across the surface is

T, = Eijn,-. (2.9)

The following notation for "inner products" will be found convenient. Since it will
be obvious whether an integration throughout the body or an integration over its sur-
face is implied, one type of notation serves for both types of inner product. We shall
write

11. S. Sokolnikoff, Mathematical Theory of Elasticity, McGraw-Hill, New York, 1946, p. 24.
* The extension to the case where body forces are present will be made in a later paper.
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(e ■ E') = J enE'jdv,
(2.10)

(u-T') = f UiT'idS,

the former integral being taken throughout the body, and the latter over its surface.
The interpretation of similar expressions will be obvious to the reader.

In attempting to solve a problem in elasticity, we seek a state which satisfies
(i) the equations of compatibility (2.6),

(ii) the equations of equilibrium (2.8),
(Hi) the assigned boundary conditions, which will generally be T,• assigned, or w,-

assigned, or 7\- assigned in part and assigned in part.
We approach the solution by considering states in which one or more of these condi-
tions are relaxed.

3. Geometry in the function spaces of states. Since
the power of the present method lies largely in the stimu-
lation of geometrical intuition, it is well to pictorialize
from the start. We shall develop some simple properties
of the function space of states. s"=s+s'y

The unstressed state, = 0, is represented by the
origin 0 (Fig. 1). Any other state is represented by a point
such as A. Just as we describe the position of a point in
ordinary space by a position-vector drawn from the
origin, so we describe the point or state A by the vector
OA, or more compactly by a single letter (S) in heavy Fig. 1.
type. Thus the symbol S represents a state of stress (six
functions of position throughout the body).

We add vectors in an obvious way. If we have two states,

S with stress components and

S' with stress components

we define the sum S" = S-f-S' to be the state with stress components

E" = En + E'j.
The definition of S — S' is obvious.

To multiply a vector by a scalar constant k, we write S'=£S, and define S' by
the equations E'ij — kEij. Note that are functions of position in the body, but k is
a constant. The distributive laws are satisfied, so that

(k + k')S = kS + k'S, k(S + SO = kS+ kS'.
So far we have mentioned only vectors drawn out from the origin 0, i.e. bound

vectors. But the idea of a free vector, familiar in ordinary space, can be used with ad-
vantage. Apart from the geometrical representation, there is no real distinction be-
tween a free vector and a vector bound to 0: each corresponds to a given set of stress
components. But in the geometrical representation, a free vector S starts from any
initial state A and proceeds to that state B for which the stress components exceed
those of A by the stress components corresponding to S. In fact, a free vector may be
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regarded as a transition from one state to another, and we make it a bound vector
if we specify the initial state.

The algebraic procedures apply to free vectors. The addition of vectors follows
the familiar parallelogram law (Fig. 1).

It should be amply clear from the context or from the appropriate diagram
whether a free or bound vector is meant. In any case of doubt, a vector should be
interpreted as a vectcr drawn from the origin 0.

Fig. 1 will also draw the reader's attention to the geometrical relation between the
vectors S and kS. If k were negative, there would be a reversal of sense.

We define the length or magnitude S of a vector S by

S2 = J 2Wdv = J etjEijdv = (e-E), S ̂  0, (3.1)

the integrals being taken throughout the body. Here e;j is the strain corresponding to
the stress Eij, by (2.3). Since the strain-energy W is positive-definite, the length of
any vector is real, and is zero only for the unstressed state, £<y = 0. Sometimes it will
be convenient to denote the length of a vector S by | S |. A vector S is a unit vector
if 5 = 1.

The distance between the extremities of two vectors, S and S', drawn from 0,
is defined to be the length of the vector S —S'. Thus this distance is given by

| S - S' |2 = J (eii - e'n)(En - E-,)dv. (3.2)

It vanishes if, and only if, S = S', i.e. if the two states are identical.
The scalar product plays an important role. We define the scalar product of two

vectors as the inner product of the corresponding states:

S ■ S' = J enE'ndv = (e ■ E'). (3.3)

It is obvious, from the reciprocity relation (2.5), that the scalar product has the com-
mutative property

SS' = S'S. (3.4)
Two vectors are said to be perpendicular or orthogonal if their scalar product vanishes.

Let us explore the physical meaning of the scalar product. Let us suppose that S
satisfies the equations of compatibility, so that it arises from a displacement, and that
S' satisfies the equations of equilibrium. Then

SS' = (e-E') = J" eijEijdv = J Ui,,Eijdv

= J UiEijUjdS — J* UiE'njdv, (3.5)

by Green's theorem. The last integral vanishes, since S' satisfies the equations of
equilibrium (2.8). Hence

S S' = J UiTidS = (u-T')\ (3.6)
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in words, the scalar product SS' equals the work done in the displacement of S by the
surface stress of S'. If the vectors are orthogonal, this work is zero.

As an example, consider a prismatic bar. Let the states S and S' correspond to
simple tension and flexure, respectively. Then S is orthogonal to S'.

It should be noted that the scalar product can be interpreted in terms of work
only if one of the states satisfies the equations of equilibrium and the other the equa-
tions of compatibility.

We come now to a fundamental inequality. From the positive-definite character
of strain-energy, it follows that if S and S' are any two arbitrary states, and k an
arbitrary real number, then

f (e'a - ken)(E'h - kEi,)dv ̂  0, (3.7)

the integral being taken throughout the body. This reduces to

Sn — 2£SS' + k2S2 ̂  0, (3.8)

and since this holds for all real values of k, we deduce the Schwarzian inequality

| S-S'| ^ SS'. (3.9)
If the sign of equality holds in (3.9), then it is easy to see that the states S and S'
must be connected by a relation S' = i£S, where K is some real constant; in other
words, the vectors S and S' have the same direction, or opposite directions.

We can now define the angle 6 between two vectors S and S' by

S • S'
cos 6 = > 0 < 6 < v. (3.10)

SS'

By virtue of (3.9), the angle so defined is always real, and is of course equal to
when the vectors are orthogonal. For the angle between two unit vectors, I and I',
we have

cos 0 = I I'. (3.11)

The whole of Euclidean geometry holds in any linear subspace of our function
space based on a finite number of vectors. In particular, we have the theorem of
Pythagoras, the theorem that any side of a triangle is less than the sum of the other
two sides, and the theorem that the greater side of a triangle is opposite the greater
angle. All this is well known, but the abstract and general form usually given to the
theory of function space may easily obscure the intuitive simplicity of the approach.

Scalar multiplication is distributive, as is easily seen, so that

Si-(S, + S3) = SrS, + Si-S,. (3.12)

As an exercise, let us prove the theorem of Pythagoras. We have, for any two vec-
tors, S and S',

! s - s'|2 = (s - s'MS - so
= S2 + S'2 - 2S S'

= S2 + Sn - 2SS' cos e, (3.13)
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where 6 is the angle between S and S'. Putting 6 = J71-, we get the theorem of Pythag-
oras.

4. First approximation with surface stress given. Let us suppose that the surface
stress Ti is assigned, satisfying the conditions of statical equilibrium, so that a solution
S exists. We may refer to the solution S as the natural state, to distinguish it from the
artificial states which we shall introduce.

Let S* be a state which satisfies the equations of equilibrium and the boundary
conditions, but not the equations of compatibility. (If the equations of compatibility
were satisfied, we would have S* = S, the natural state.) Let us evaluate the scalar
product SS*. We find

SS* = (e-E*) = J e{,E*dv = J Ui,jE*dv

= J UiT*dS = J UiTidS = (e-E) = S2; (4.1)

in carrying this out, we have used the fact that S* satisfies the equations of equilib-
rium, and also the fact that it satisfies the boundary conditions, so that 7V = TSince
52 = S- S, we may write (4.1) in the form

S(S-S*)=0. (4.2)

This tells us that the vectors S and S — S* are orthogonal; this means that the extremity
of S is located on a hypersphere H having the vector S* for diameter; in fact, (4.2) is the
equation of this hypersphere, S being regarded as a current vector. The center of the
hypersphere is at |S*, and its radius is |5* (Fig. 2). The equation (4.2) may also be
written in the equivalent form

| S - iS* I = iS*, (4.3)

Fig. 2. Fig. 3.

which shows up the center and the radius.
We now take another state S" which satisfies the equations of compatibility, but

not in general either the equations of equilibrium or the boundary conditions. In fact,
we can build such a vector S" by choosing an arbitrary set of displacements through-
out the body. Let us investigate the scalar product S - S", S being the natural state as
before. It is easy to see that

SS" = (e"-E) = (u"-T). (4.4)
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Although S is unknown, we do know Ti from the assigned boundary conditions, and
so the expression («"• T) is calculable. If 6 is the angle between S and S", we have

5 cos 6 = S ■ S"/S" = (u" ■ T)/S". (4.5)

The right hand side is a definite calculable number, and S cos 8 is the orthogonal
projection of S on S". It follows that the extremity of the natural vector S lies on a
definite hyperplane P which is orthogonal to S" (Fig. 3).

Now

S* ■ S" = («' • £*) = («" • T*) = («" -T). (4.6)

Comparison with (4.4) reveals a rather remarkable fact: the extremity of the vector S*
lies in the hyperplane P.

On account of (4.6), we can write (4.4) in the form

SS" = S*S"; (4.7)

thinking of S as a current vector, we may regard
this as the equation of the hyperplane P.

We have now located the extremity of the
natural vector S on the hypersphere (4.2) and the
hyperplane (4.7); we have therefore located it on
the hypercircle F which is the intersection of the
hypersphere and the hyperplane. The situation is
therefore as shown schematically in Fig. 4. The
hypercircle T passes through the extremity of S*
and also through 2", the foot of the perpendicular
dropped from 0 on P. We have Fig. 4.

S*-S"
2" = S"   — • (4.8)

S" 2

If I" is a unit vector codirectional with S" (and therefore also satisfies the equations
of compatibility), we have

I" = S"/S",
and (4.8) can be written in the form

2" = I"(S*-I"). (4.9)

The points 2" and S* are at the ends of a diameter of the hypercircle T, because

(S - 2") • (S - S*) = 0

as follows from (4.2) and (4.7). The center C of T is therefore at

C = !(S* + 2") = |[S* + I"(S* I")], (4.10)

and the radius R of T is given by

R = 1(5*2 - S"S)i/2 = i[s*2 _ (S* !")2]1'2. (4.11)
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Of all points on J1, the endpoint of 2" is nearest to 0 and the endpoint of S* most
distant from 0. Thus, 2"2 ^ S2 ̂  5*2 or

(S*-I")2 ^ S2 ^ S*2. (4.12)

This relation gives upper and lower bounds for the strain energy associated with the
state S.

We may also write (4.11) in the form

R=$S* sine, (4.13)

where 6 is the angle between S* and S".
Let us now consider the question of getting an approximation to the solution S

of the given boundary value problem. Various definitions of a "good" approximation
might be given. We might base a definition on the maximum deviation of displace-
ment or stress from the correct value. We shall, however, use our geometrical picture
as the basis of a test for goodness, and say that an approximate solution S is good if the
distance {in function space) between S and the true or natural solution S is small. We
shall define the error e of any approximate solution by

« = | S - S|.

Returning to the discussion of the hypercircle T, we ask whether our knowledge
based on S* and S" enables us to give an approximate solution. Suppose we accepted
S* as an approximate solution, how great an error would we commit? It is easy to
set an upper bound to this error, because S lies on T, and the point on T most distant
from S* is the point 2", which is diametrically opposed and at a distance 2R. Thus we
may state that the error of S* does not exceed 2R, where R is given by (4.11).

Similarly, if 2", as in (4.8) or (4.9), is taken as an approximate solution, the error
does not exceed 2R.

We can however do better. If we take C, the center of the hypercircle I\ as approxi-
mate solution, the error is precisely R. Thus, if we change from S* to C, we exchange an
unknown error which may be as great as 2R for a certain error which is only R.

It should be pointed out that the approximate solution C will, in general, not sat-
isfy the equations of compatibility, nor the equations of equilibrium, nor the boundary
conditions.

The hypercircle T, formed for states S* and S", gives us a yardstick by which
we can assess any proposed approximate solution S. If Di is the least distance of S
from r and Z>2 the greatest distance, then the error e of S satisfies

Di g sg ft. (4.14)

It is easy to prove by elementary trigonometry that D\ and D\ are given by

(S - C)2 + R2 + 2R [(S - C)2 - (I"-(S - C))2]1'2. (4.15)

5. First approximation with surface displacement given. In the preceding section
we have considered the case where the surface stress Ti is given. We shall now take up
the other type of problem in which the displacement u, is given on the bounding sur-
face of the body. The argument runs closely parallel to that of Sec. 4.

First we choose a state S* which satisfies the equations of compatibility and the
boundary conditions. This is a much easier task than we had in Sec. 4, because
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all we have to do is to take a system of displacements which assume assigned values
on the bounding surface, and satisfy the general conditions regarding continuity of
derivatives.

Next we choose a state S" which satisfies the equations of equilibrium, but not in
general the equations of compatibility, so that satisfaction of the boundary conditions
is meaningless, since displacement does not exist. Let I" be the corresponding unit
vector.

We have

S-S* = (e*-E) = (u*-T) = (u-T) = S2. (5.1)

Accordingly, the endpoint of S lies on the hypersphere

S-(S-S*)=0. (5.2)

Also,

S-S" = (e- E") — (u ■ T") (5.3)

which is calculable, and

S*-S" = (e* ■ E") = (m* • T") = (u-T"). (5.4)

Thus,

S-S" = S*-S". (5.5)

Let us compare the equations (5.2) and (5.5) with (4.2) and (4.7), respectively.
They are formally the same equations, although S* and S" now have new meanings.
Hence, just as we obtained (4.10), (4.11) and (4.12), we are now led to the result:
when the surface displacement is given, the natural vector S has its endpoint on a hyper-
circle with the center at

C = i[S* + r(S*-I")], (5.6)
and the radius R given by

R = ![S*2 - (S*-I")2]1/2; (5.7)

the strain energy associated with the state S is bounded in accordance with

(S*-I")2 ^ S2 ^ S*\ (5.8)

6. Boundary conditions. Two types of boundary conditions may be regarded as
fundamental: (i) stress assigned, (ii) displacement assigned. As we have seen in Sees.
4 and 5, there is remarkable duality between these two types of boundary condition.
This duality extends to more general types of boundary condition, which will now be
described before we proceed to generalize the ideas developed in the preceding sec-
tions.

We consider boundary conditions which involve the following elements at points
of the bounding surface:

normal stress T(«>; tangential stress T(«>;
normal displacement «(„); tangential displacement M(,>.

The normal elements are of course scalars and the tangential elements vectors in the
tangent plane.
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We shall classify points on the bounding surface according to the conditions as-
signed at them. Thus, a point will be said to be of the class Tco] if the normal
displacement and the tangential stress are assigned at the point. Cases of vanishing
elements are important, and for them we shall use the following type of notation:
[w(„) = 0, J\t) ] means that the normal displacement and the tangential stress are as-
signed, and that the normal displacement is zero.

Two types of boundary condition will now be defined. These may be regarded as
generalizations of the simple types of boundary conditions in which stress is assigned
all over the surface, or displacement is assigned all over the surface.

Stress Boundary Conditions (or briefly SBC): The bounding surface may be
divided into regions such that all the points in any region belong to one of the follow-
ing classes:

lT(n), T(t)], [7\n), "to = 0], «(B) = 0], [«(„) = 0, U(t) = 0j. (6.1)
Obviously, if the complete surface stress 7\ is assigned all over the surface, all

points belong to the first class, and so this is a particular case of SBC. Note that in
SBC any displacement elements which may be assigned are zero.

Displacement Boundary Conditions (or briefly DBC): The bounding surface
may be divided into regions such that all the points in any region belong to one of the
following classes:

[«(»)> ««)]> [M(n)> = 0], |tt«)> 2\n) = 0], [r(„ = 0, T(() = 0]. (6.2)

Note that the case where displacement is assigned all over the surface is a particu-
lar case of DBC, and that in DBC any stress elements which may be assigned are zero.

As an illustration, consider a horizontal beam carrying a load on its smooth upper
surface and supported on smooth unyielding supports. The points of the surface may
be classified as follows:

upper surface under load [T(n), T(t)= 0]
surface in contact with supports [I^q =0, = 0]
rest of surface [7\„) = o, r(0=o]

The boundary conditions are evidently SBC, only the first and third classes of (6.1)
occurring.

As a second illustration, consider the classical Saint Venant torsion problem for a
beam of arbitrary section. The classification is as follows:

ends of beam [«<«), 7"(«) = 0]
sides of beam [T(n) = o, r(l)=o]

Here we have DBC, only the third and fourth classes of (6.2) occurring.
7. Associated and complementary differential equations and states. When we

have to deal with SBC, we have reason to regard the equations of equilibrium,
rather than the equations of compatibility, as particularly associated with the
boundary conditions. On the other hand, when we have to deal with DBC, we regard
the equations of compatibility as particularly associated with the boundary conditions.
The real reason for these associations lies in the theory which follows, but we may
note the following facts which will help in remembering which differential equations
are associated with which boundary conditions.

In the simplest type of SBC {Eijtij assigned) and in the equations of equilibrium
(£ij,j' = 0), the stress components are involved in a very simple way. On the other
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hand, the assignment of DBC would be meaningless unless the equations of compati-
bility were satisfied, because displacement would not exist.

We shall therefore speak of associated and complementary differential equations in
accordance with the following table:

Table I.

Type of boundary
condition

Stress (SBC)

Displacement (DBC)

Associated differ-
ential equations

Equilibrium
(2.8)

Compatibility
(2.6)

Complementary
differential equations

Compatibility
(2.6)

Equilibrium
(2.8)

This terminology will permit us to discuss both types of boundary condition with a
single argument, which bifurcates only for details.

We note that the solution of an elastic problem involves the satisfaction of
(1) the associated differential equations,
(2) the complementary differential equations,
(3) the boundary conditions.
The following table sets forth schematically notation and terms to be used:

Table II.
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We note that S, the natural state, is the solution of the elastic problem with which
we are concerned. It is to be regarded as unknown. All the other states are artificial
states which we build up with a view to getting an approximation to S; they are
to be regarded as known.

In any particular problem, the boundary conditions will be either SBC or DBC.
Hence, in any particular problem, we shall have occasion to consult the two columns
under SBC, or the two columns under DBC, according to the type of boundary con-
dition.

The table is self-explanatory, but it may assist the reader if we interpret it in the
case where the stress T, is given all over the surface. Here we have SBC, and the
following interpretation:

S* is any state which satisfies the equations of equilibrium (2.8), and has at
each point of the surface the assigned value of Ti.

Sp form a set of states, each satisfying the equations of equilibrium and homo-
geneous boundary conditions 7\ = 0.

S" form a set of states, each satisfying the equations of compatibility, but not
subjected to any boundary conditions.

Ip form an orthonormal set of states, each being a linear combination of the
states S/ ; each therefore satisfies the equations of equilibrium and makes
Ti = 0 on the surface.

I5" form an orthonormal set of states, each being a linear combination of the
states SQ" ; each therefore satisfies the equations of compatibility.

The procedure for forming an orthonormal set by linear combination of linearly
independent states is a well known procedure. The general conditions for orthonor-
mality read

lp *Ir = Spr (p, T — 1, • • • , Pi)
t" t"— a ( — 1 "i (7-1)Ig ' Ig 0q8 (<^, S 1, , tl).

These conditions imply that each vector is of unit magnitude, and that all vectors
in each set are mutually orthogonal.

We shall always assume that the states Sp' are chosen linearly independent; other-
wise the number of orthonormal vectors 1/ would be less than the number of vectors
S/. The same remarks apply to the states S3".

The following statements are easily verified:
I. Any linear combination of homogeneous associated states is itself a homogeneous

associated state.
II. If any linear combination of homogeneous associated states is added to a completely

associated state, the resulting state
m

s* + i>;s; (7.2)
p=i

is a completely associated state.
III. Any linear combination of complementary states

it*" S" (7.3)
q= 1

is itself a complementary state.
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8. The associated and complementary hyperplanes. If, in (7.2), we assign arbi-
trary values to the constants a/, we get a linear subspace or hyperplane of m dimen-
sions. We shall call this the associated hyperplane, and denote it by L£. Similarly,
we define the complementary hyperplane by (7.3), and denote it by Li'. Fig. 5 shows
these hyperplanes for the case m = l, n = 1, when, of course, they are straight lines in
function space.

Fig. 5. Fig. 6.

The associated hyperplane and the complementary hyperplane play important
roles. If they possess a point of intersection, then the state corresponding to that
intersection is the natural state S; for this state satisfies the associated differential
equations, the complementary differential equations, and all the boundary condi-
tions. The object of our approximations is to draw these hyperplanes together, and
to locate their closest points, so that we may get a good approximation to S.

We shall now prove the following:
IV. The associated hyperplane L*n and the complementary hyperplane L" are mu-

tually orthogonal.
The hyperplanes are orthogonal if every vector lying wholly in one hyperplane is

orthogonal to every vector lying wholly in the other. The general vector lying wholly
in L„* is

S' = £ a'XVIpt

p= 1
rr

and the general vector lying wholly in Ln is

S"= ±a'X
3=1

The necessary and sufficient condition for the orthogonality of the hyperplanes is

S'.S" = 0. (8.1)

To prove that this relation holds, we must consider SBC and DBC separately. For
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SBC we have, since S' satisfies the equations of equilibrium and S" the equations of
compatibility,

S'.S" = (e".E') = J e'i'jE'ijdv = J u",E'tjdv

= j u'i'T'idS - J u'i'Eijjdv

= J" U(n)T(n)dS + J" U(t)T(t)dS, (8.2)

the last integrand being the scalar product of vectors of displacement and stress lying
in the tangent plane of the bounding surface. Let us now use the columns under
SBC in Table II, and consider the integrals in the last line of (8.2) taken over the
several regions into which the surface is divided. We see that

on [rc„), T{t)] we have T[n) = 0, T{t) = 0,

on [l^), W(o = 0] we have T'm = 0, u{'t> = 0,
on |Y(,), w(n) = 0] we have T{t) = 0, u"n) = 0,

on [«(„) = 0, M(j) = 0] we have u{'n) = 0, u['t) = 0.

Hence the integrals in the last line of (8.2) vanish, and (8.1) is proved; this estab-
lishes the orthogonality of the two hyperplanes. The proof for DBC follows the same
lines.

From (8.2) we have

Ip-Ig'= 0 (p = 1, 2, ■ • ■ , m; q = 1, 2, • • • , «). (8.3)

9. Some basic relations. We shall now prove a number of results.
V. For the natural state S and any completely associated state S*, the following rela-

tion holds:

S(S-S*)=0. (9.1)

Hence the extremity of S lies on a hyper sphere having the vector S * for diameter-, the center
is at §S* and the radius is \S*.

To prove this, we separate the cases SBC and DBC. For SBC we have

SS = (u.T) — J" U(n)T(n)dS + J* U(t)T(t)dS,

S-S* = (u.T*) = J u(n)T(*)dS + J uwT*t)dS.
(9.2)

By Table II,

on [r(„), T(t)] we have T*n> = TM, T*t) = Tc0

on [r(n), M(t) = 0] we have T*M = T(n), m(() = 0,

on [T(o, uM = 0] we have T*t) = T(i), uM = 0,

on [«(„) = 0, M(j) = 0] we have U(„) = 0, M((> = 0.
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On using these values in (9.2), we see that S- S = S- S*, and so (9.1) is proved for SBC.
The proof for DBC is similar. Since (9.1) may be written

(S - iS*)2 = ±S*\ (9.3)

the truth of the statement about the hypersphere is obvious.
VI. The natural state S is orthogonal to any homogeneous associated state S':

SS' = 0. (9.4)

Hence S is orthogonal to the associated hyperplane L* and

S ip = 0 (p = 1, 2, ■ • • , m). (9.5)

Since any homogeneous associated state may be expressed as the difference be-
tween two completely associated states (cf. Table II), (9.4) follows if we write down
relations of the form (9.1) for the two completely associated states and subtract one
from the other.

VII. The difference between the natural state S and any completely associated state
S* is orthogonal to any complementary state S":

(S-S*)-S" = 0. (9.6)
Hence this difference is orthogonal to the complementary hyperplane I" and

S<=S*< (q= 1,2, ••• ,n). (9.7)

For SBC we have

SS" = (e"-E) = (u"-T) = J u"n)TMdS + J u"t)Tu)dS,

S*S" = (e"-E*) = 0u" T*) = J u"n)T*n)dS + J u"t)T
(.9.8)

?t)dS.

On reference to Table II, it is easy to see that these expressions are equal, and so
(9.6) is established for SBC. The proof for DBC is similar.

VIII. The difference between the natural state S and any completely associated state
S* is orthogonal to the difference between S and any complementary state S":

(S - S*)-(S - S") = 0. (9.9)

Thus the natural state lies on every hypersphere which has for diameter the line joining
a point of the associated hyperplane to a point of the complementary hyperplane.

Equation (9.9) is an immediate consequence of (9.1) and (9.6). The statement
about the hypersphere is verified by writing (9.9) in the form

[S - KS* + S")]2 = HS* - S")2. (9.10)

10. The hypercircle. In (9.1) we located the natural state S on a hypersphere,
and in (9.5), (9.7) we located it on m+w hyperplanes. This means that the extremity
of the natural vector S lies on a hypercircle T, which is the intersection of the hyper-
sphere and the hyperplanes.

The center C of T may be found by starting from the center of the hypersphere
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(|S*), and proceeding through suitable distances in directions normal to the hyper-
planes until we arrive at a point on all the hyperplanes. Thus, we write

C = £S* + £ a'X + ± a'X, (10.1)
p= 1 5=1

where the coefficients are to be determined from the conditions

C i; = 0 (P = 1, 2, • • • ,m), C-l" = S*-l" (q = 1, 2, • • • , n). (10.2)
By (7.1) and (8.3), we find

«;= -§s*-i;, a':= (10.3)

and so the center C of the hypercircle T is at

1 r m » ~i
c = — s* - h;(sm;) + Eia'(s*-i9") .

^ L P=1 • 0=1 J
(10.4)

J>=1 ' 3=1

We note that the magnitude of C is given by

C2 = —Hs*2- £ (S*-i;)2 + 3X (S*-l")2l (10.5)
4 L p=l ,_i J

We find the radius R of T from

R2 = (S - C)2
= S-(S - S*) + S-(S* - 2C) +C2. (10.6)

The first term vanishes by (9.1), and we easily find from (10.4) and (10.5)

1 r » " ~i
R2 = — S*2 - £ (S*-i;)2 - E (S*-l'a')2 .4 L P«i ,_i J (10.7)

To sum up:
IX. The natural state S is located on a hypercircle T with center C as given by (10.4)

and radius R as given by (10.7). Using X as a current position vector, we may write the
equations of F in the form

X • (X — S*) = 0, Xi; = 0 (P= 1,2,

X • i" = S*-i;' (?= 1, 2, • •• ,«).
Let us now approach the hypercircle in a different way.
Points on the associated hyperplane satisfy some of the conditions imposed

on S, and points on the complementary hyperplane Z„" satisfy others. If the two
hyperplanes had a common point, then (as remarked earlier) that common point
would be the natural state S. Unless we are particularly lucky in choosing the states
S*, Sp , S3", this common point will not occur, and then it seems appropriate to seek
those points, on L% and V„" onI„" such that the distance | V^ — V„" | is as small
as possible. We may call these two points the vertices of the hyperplanes.

The general point on L* is
m P.

U*=:S*|+ZiX (10.9)
p= 1
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and the general point on L„" is

U "=X>X (10.10)
5=1

The square of the distance between these two points is
(m n \ 2

sHEft-EO" • (io.il)
p=l g=l /

It is easily seen that to minimize this, we must choose

b'P = -S*1'P1 b"= (10.12)

Substitution in (10.9) and (10.10) gives for the vertices of the associated and comple-
mentary hyperplanes respectively

m
r*v* = s*- Eip'(s*-Ip)

p=l

v„"= XX(s*-i"). (10.13)
g=l

We see from (10.4) that

and from (10.7)

C = |(V: + Vl')) (10.14)

= !(v; - v:')2. (10.15)
Thus the points V* and V„" are the extremities of a diameter of the hypercircle F.

Any chord of T may be represented by a vector Y; it follows from (10.8) that every
such chord satisfies YI" =0 (q = 1, 2, • • • n), and hence Y• V/' =0.

We may sum up as follows:
X. The vertices of the associated and complementary hyperplanes, as given in (10.13),

are the extremities of a diameter of the hypercircle I\ described in IX. The position vector
V„" of the vertex of the complementary hyper plane is orthogonal to every chord of F
(Fig. 6).

The above geometrical statement suggests the inequalities

V"^S ^ V*m, (10.16)
and a formal proof is easy. Any point X on T satisfies (cf. (10.8))

(X - V*) ■ (X - V") =0, X■ Vl' = S* • V:', (10.17)
and if we seek maxima and minima of X2 subject to these conditions, it is easy to see
that we must have

X = aVZ + bV", (10.18)
where a and b are undetermined multipliers. When we substitute from this in (10.17),
the second equation gives b as a linear expression in a, and then the first equation gives
a quadratic for a. Thus there are just two solutions, and it is easy to verify from
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(10.17) that they are (a = 1, b = 0) and (a = 0, b = 1), i.e. X = and X = V„". More-
over, by (10.13),

vl =s**~ Z(s*-i;)2,
P=1

(10.19)
V'J = E(S*-02.

4-1

and so, by (10.7),

V*2 - F^'2= 4i?2 £ 0, V* 2: V". (10.20)

Thus Vm is the maximum of X and F„" the minimum, when X is any vector satisfy-
ing (10.17). Thus (10.16) is proved. To sum up:

XI. The vertex of the associated hyper plane is further from the origin than the vertex
of the complementary hyper plane, and the distance of the natural state from the origin is
intermediate between them, so that

n m

Vn= £ (S*-C>* ^ S2 g S*2 - £ (S*-i;y = (10.21)
5=1 p— 1

These inequalities place lower and upper bounds on the strain energy of the natural state S.
11. Approximations. If S (a set of six stress components expressed as functions

of position throughout the body) is suggested as an approximation to the natural
state S, the error, as defined in (4.14), is

e = | S — S |, (11.1)

and the squared error is

e2 = (S — S)2. (11.2)

But we cannot in general calculate this error, because we do not know S.
The hypercircle T comes to our assistance. The following is obvious:
XII. If the center C of the hypercircle T as given by (10.4), namely

1 r ™ n i
c = — s* - Zi*(s*i;) + zi"(s*C) (n.3)

2 L p-i 5-i J

is taken as an approximation to the natural state S, the error e is precisely the radius R
of r, so that by (10.7)

m n

4e2 = 4i?2 = S*2 - X (S* - I,,')2 - £ (S*-02- (11.4)
p=l 9—1

Since the distance between any two points on F cannot exceed the length of a
diameter, we have the following result:

XIII. If any state on the hypercircle T is taken as an approximation to S, the error
satisfies

t ^ 2R, (11.5)

where R is as in (10.7). The same inequality is satisfied if we take as an approximation
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either the vertex of the associated hyperplane,
m

vl = s* (11.6)
P=1

or the vertex of the complementary hyperplane

v:=ix(s*o. (n.7)
9=1

We note that since C does not satisfy the equations of compatibility, there
is no corresponding displacement. Hence, if we are looking for an approximation
for the displacement throughout the body, V„" is the best approximation to take for
SBC, and Vm* the best for DBC.

We may add that if we take as an approximation

S = aV*m + bV" (a + b = 1, a ^ 0, b ^ 0) (11.8)

then e satisfies

2Kb < « < 2Ra if b < a,
(11.9)2 Ra ^ 2 Rb if a g, b.

Finally, we shall show how to use the hypercircle T to obtain lower and upper
bounds for the error of any suggested approximation S. It is a question of finding
the least and greatest distances of S from the hypercircle with the equations (10.8).
That means that we are to find the minimum and maximum values of

(X - S)2

when the vector X is subject to the conditions (10.8).
It is clear that we must have

m n

X - S = a(2X - S*) + £ c'X + £ c'X, (11 • 10)
p= 1 5=1

where the coefficients are undetermined multipliers. Equivalently,
m n

(1 - 2o)X = S-aS* + + Z c'X- (11-11)
p= 1 5=1

Hence, by (10.8),

(1 - 2a)X-Ip = c'p + S-Ip - aS*-Ip = 0,
(1 - 2a)X-l"= c'v'+ S-l'q'-aS*-l'q'= (1 ~ 2a)S*-l"

If we now substitute in (11.11) the values of c/, c5" given by these equations, we get

(1 - 2a)X = V - 2aC (11.13)

where C is the center of T, as in (11.3), and V is defined as
m n

V = s - Ei;(s-i;) - Ei"[(s - s*)-i;']. (11.14)
p=1 5=1

(11.12)
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We may interpret (11.13) as follows: The points on T at minimax distances from S
lie on the diameter of T which passes through V, and these points divide the line join-
ing C to V in the ratios a'. — §. We have still to determine a.

The constant a is found by the first of (10.8). On substitution from (11.13), it is
found that a satisfies the quadratic equation

4a2C• (C - S*) + 2a[V-(S* - C) + C (S* - V)] + V(V - S*) = 0. (11.15)

We may state the result as follows:
XIV. The square error of any state S lies between

(Xi - S)2 and (X2 - S)2,

where Xi and X2 are the vectors given by (11.13) when the roots of (11.15) are substituted
for a.

Less precise but simpler bounds on the error of S may be established by using,
instead of the hypercircle F, the hypersphere with same center C and the same radius
R. We first find whether S lies outside or inside this hypersphere by computing

(S-CY - R\ (11.16)

If this is positive, S is outside, if negative, inside. If S is outside, we have

| S - C| - R ^ ^ | S - C| + R. (11.17)
If S is inside, we have

2?-|S-C|g«££ + |S-C|. (11.18)

12. Example. As an illustration of the preceding relations, we consider the torsion
of a prism of square cross section. We choose the centroid of one end section as the
origin of coordinates and let the x3 axis coincide with the axis of the prism. To avoid
carrying along unessential constants, we consider the prism bounded by the planes
xi= +1, X2= +1, x3 = 0, X3= 1 and assume that the shear modulus G and the angle of
twist# equal unity. On the end sections of the prism we have r3 = 0, and the tangen-
tial displacements ua (a = l, 2) are given, viz.

ua — 0 on x3 = 0,

U(x — on x$ = 1,

where £11=622 = 0, €12= — £21 = 1. On the lateral faces of the prism Ti = 0 (i— 1, 2, 3).
We thus have a case of DBC.

A suitable completely associated state is defined by

Ua = — (ot»Xt3X3, u3 = 0, (12.1)

or, with the shear modulus G = 1,

E ai = — CapXp, Eap = E33 = 0. (S*)

We have

S*2 — j" J" EazEaidx-idxi = J" J" (xi + x^)dx\dxi = — • (12.2)
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A homogeneous associated state is defined by

ua = 0, u3 = <p(xi, x2). (12.3)

The corresponding vector S' is

£<* 3 = <P,a Eap = £33 = 0, (S')

and we have

5'2 = o: tp ,<x*p ,ad cc\d%2t (12.4)

As is easily seen, the "warping function" <p must assume values of equal magnitude
but opposite signs in any two points which are symmetrically situated with respect
to any one of the lines Xi = 0, X2 = 0, Xi = Xz, Xi= — X2. A function of this type is

2p-l 2p—1 22
<Pp = Xi x2 (Xi — *2), (12.5)

leading to the vector

£13 = xi" 2»2P 1[(2/> + l)*i + (2p — 1)^],

£23 = Xi X2 [(2/> — l)»i + (2 p + 1)^2]* (Sp)

We find

s, g, = 2M4[(/> + 02 + 2Pr ~ (P + 03 ~ 7I , ,
r \2(p + r) - 3}\2(p + r) - l]\2(p + r) + l][2(p + r) + 3]

and

2*
S*S;    (12.7)

(2p + 1)(2p + 3) .

A complementary state can be derived from a stress function \f/(x 1, x2) which van-
ishes along the contour of the cross section. The corresponding vector S" is

Ea 3 = Eap = £33 = 0, (S")

and we have

S" 2 = IX ip,Jp,adx\dxi. (12.8)

As is easily seen, the stress function must be symmetric with respect to xi and X2
and even in both these variables. Such a function which vanishes on the boundary of
the cross section is

ft = (xl"— l)(x2— 1), (12.9)
leading to the vector

£13 = 2q(xx — l)x2 , tf
„ „ 29-1 2 q (S4)
£23 — — 2qxi {Xi — 1).
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We find

S". S"= 2 Wg + x + 1) 
5 ' (2q+ l)(2s + 1)[2(? + s) - l][2(? + s) + 1]

and

26 a2
S*-S" =    (12.11)

(2g+l)2

We now proceed to determine the vertices V* and Vm" in accordance with (10.13).
We have

Ii'(S*-I/) = S/(S*-S {)/S{\ (12.12)
where

24 25-3
S*Si' = , S{* =  (12.13)

3-5 5-7

by Eqs. (12.7) and (12.6). Thus,

and

7
Vf = S* - 1/ (S*-Ii) = S* + S/. (Vi»)

2-32

In a similar manner, we find

V"= li'(S*li') =— S" (V")
23

To obtain V* and V2", we must first orthogonalize S2' and S2" with respect to
Si and Si", respectively. As is easily seen the vector

Si' = Si' - Si' (Si' • Si' )/S{2 (12.14)

is orthogonal to Si. Using (12.6), we find

S,'-S,'-— Si' (§,')
33

and

212
Si 2 = Si2 - (S/ • S2')2/5i'2 = 35 ^ • (12.15)

In a similar manner, a vector orthogonal to Si" can be derived from S2". One finds

§2"= S2"~ Si"(Sr- Si)/S"2 = S2' - ^ Si' (§;')



1947] APPROXIMATIONS IN ELASTICITY 263

and

Si'1- ^'2- (s^s;')7s;,2= • (12.16)

We now determine

I* (S* • Ig) = S2'(S*-S2')/S2'2.

With the use of Eqs. (12.6), (12.7) and (12.15), we find

I2'(S*-I2') = (12.17)

Similarly,

Thus, by Eqs. (10.13),

and

I2'(S*-I2') = ^-^S2.' (12.18)

3.11 _
V * = V* + Si (V,*)

26- 5

v2 = v;'+^s;: (v2")

In connection with the evaluation of (10.21), we need the values of (S*-Ip')2 and
(S*-Is")2. One finds

23- 7
(S*-I/)2 = (S*-S07Si2 =  > 0.4148

33-5

11
(S*-I2')2 = > 0.0023,

33.52.7

22-5
(S* lD2 = — > 2.2222,

32

22
(S* i;> = > 0.0258.5-31

Now, 52 here equals the product of the torque and the angle of twist. Since the
latter has been taken as unity, S2 represents the torque per unit angle of twist or
the torsional stiffness. Equation (10.21) thus furnishes the following bounds for the
torsional stiffness :*

a) for m=n = l: 2.2222<S2<1 — 0.4148<2.2519.
b) for m = n = 2: 2.2480<S2<2.2496;

the exact value, to four decimal places, is 52 = 2.2492.

* C. Weber [Z. angew. Math. Mech. 11, 244-245 (1931) ] used the variational principles of elasticity
to obtain lower and upper bounds for the torsional stiffness of a square hollow prism. His basic formula
corresponds essentially to the form which (10.21) assumes in the case of torsion for m = n = 1.
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Next, let us consider the maximum shearing stress, i.e. the stress component £23
at the point Xi = 1, x2 = 0. For the various states considered above the value of this
stress component is given in the following table:

State S/ S2' S/' Si

£23(1,0) 1 1 0 -11/33 22-11/(5 • 7)
Accordingly, the stress values corresponding to the vertices of the associated and

complementary hyperplanes are:

7 25
H = — = 1.389 for Vi*

2-32 18

25 311 11 431
  = _= 1.347 for V2*,
18 26-5 33 320

5 5
— 2 = — = 1.250 for Vi and
23 4

5 3-5-7 22-11 343 „
—-1 = = 1.383 for V2!
4 2®-31 5-7 248

The stress values corresponding to

Cx = !(Vi* + vD
and

c2 = Kv2* + v2')

are therefore 1.319 and 1.365, respectively; the exact value, to three decimal places,
is 1.352.

13. Comparison with other work. S. Bergman* has given an exact solution of the
general boundary value problem for an isotropic elastic body, the surface stress or
the surface displacement being assigned. In the vector notation of the present paper,
his solution may be written

00

s = Zzp(zp-s),
p= 1

where Zp form an infinite orthonormal sequence of states, each satisfying the equa-
tions of equilibrium and compatibility. These states are determined explicitly. The
scalar product Zp■ S can be computed when either stress or displacement is given all
over the bounding surface. A point of Bergman's function space is a set of three func-
tions (components of displacement), whereas a point of our function space is a set of
six functions (components of stress), since we relax the equations of compatibility.
But a more important difference between Bergman's work and the present theory
lies in the fact that he was primarily concerned with an exact solution, whereas we are
interested in comparatively simple approximate solutions in which the error can be
easily computed.

It is interesting to discuss, along the lines of the present paper, the results given in

* Mathematische Annalen, 98, 248-263 (1928).
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Courant-Hilbert, "Methoden der mathematischen Physik," vol. 1, J. Springer, Berlin,
1931, pp. 228-230. We shall refer to this work as CH. We shall show how their re-
sults can be obtained without recourse to the calculus of variations. Then we shall
strengthen these results, and express them as a single inequality. Finally, for the
boundary conditions considered in CH, we shall show that the natural state lies on
a certain hypersphere.

The boundary conditions used by CH are different from those of the present paper.
In their simpler type of boundary condition, they divide the boundary into two parts,

and r2, with 7\ assigned on Ti, and Ui assigned on r2. Body forces are included in
CH, but we shall here omit them.

Unless either Ti or T2 disappears, these boundary conditions are neither SBC nor
DBC. We shall therefore abandon our previous notation, and use the following sym-
bols:

S = natural state.
S' = a state satisfying the equations of equilibrium and making T[ = on IY
S" = a state satisfying the equations of compatibility and making ui' = w, on T 2.

Now

J* (en — e'j)(Eij — Eij)dv Si 0, (13.1)

or
S2 + S'2 — 2(e-E') ^ 0, (13.2)

or, in an obvious extension of the notation of (2.10),

S2 + S'2^ 2(w-r')i + 2(u-T')2, (13.3)

where the subscripts 1 and 2 refer to integration over Ti and T2 respectively. Also

S2 = (u-T)i + («• r)2. (13.4)

Subtracting twice (13.4) from (13.3) and using the fact that T[ = Ti on Ti, we get

S'2 _ s2 ^ 2(«-r')2 - 2(m-D2, (13.5)

or

§S2 - (u-T)2 g IS"2 - (m T')2. (13.6)

This is the same as the principle II of CH. By a similar argument, we obtain

iS2 - (u-T)i g |5"2 - («'-r)i, (13.7)

which is the same as the principle I of CH.
If we add (13.6) and (13.7), and use (13.4), we get

\S'2 + iS"2 - (u-T')i - (u" ■ T)i > 0, (13.8)

a result which is of no particular interest.
Now let us strengthen the preceding results, using (3.9), which yields

SS'rSSS', SS'gSS". (13.9)

The first of these gives, instead of (13.3), the stronger inequality

SS' > (M-r)! + = (u-T)i+ (u-T')2. (13.10)
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Subtracting (13.4), we get

SS' - S2 ^ (« r)2 - (u-T)2, (13.11)

or, instead of (13.6),

S2 - (u-T)2 g SS' - (M-r)2. (13.12)

Similarly, instead of (13.7), we get

S2 - (u-T)i ^ SS" - (w"-r)i. (13.13)

When we added (13.6) and (13.7) we got the trivial inequality (13.8), which tells
us nothing about the natural state. But if we add (13.12) and (13.13), and use (13.4),
we get

52 g S(S' + S") - (m ■!")» - («" • T) i, (13.14)

or

[5 - K-S" +sff)]2 ^ K-S" + S"Y - (« r)2 - (u"-T)x. (13.15)

This single inequality bounds the strain energy of the natural state below and above,
for all quantities except S are calculable, and we have

K-S" + S") - R^S ^ h(S' + S") + R, (13.16)
where i?>0 and

r* = i(5' + s"y - («-r)2 - (u"-di. (i3.i7)
But we can do better than this. We have

S2 = (u-T)1 + (uT)t,

SS' = (u-T')i+ («r')2, (13.18)
ss' = («" • t) i + («"-r)2.

Since («• T)i = (u- r')i, («■ T)2= («"• T)2, we get

S2 - S (S' + S") = - (w-r)2 - (w'-r)!, (13.19)

or

[S — |(S' + S")]2 = R2, (13.20)

where i£2 = KS' + S")2;— (u- T')t-(u*- T)i. Thus the natural state lies on a hypersphere
with center at f(S' + S") and radius R.

As remarked in a footnote to CH, their results apply to more general boundary
conditions. These more general boundary conditions include our SBC and DBC as
special cases, and may be described as follows: The boundary surface may be divided
into four regions:

Tn
r i2

r2i
r22

T(n)t T((> assigned.

r(B),M(o assigned. (13 21)

«(„), T(,) assigned.

«(n), u(l) assigned.
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We define
S = natural state.
S'= state satisfying equations of equilibrium and all boundary conditions on

Tm and T(t).
S" = state satisfying equations of compatibility and all boundary conditions on

U(n) and #(().
Then

S2 = (w(»)7\„))u + (u(t)T(t))u + (W(n)7\„))i2 + («(<) 7\i))i2

+ (M(n)2\„))21 + (M(0^(o) 21 + {.U(n)T 22, (13.22)

SS' = same expression as in (13.22) but with T changed to T', (13.23)

SS" = same expression as in (13.22) but with u changed to u". (13.24)

Now we have

(«(n)Tm)u = (uMT(n))a, (~ (M(o^(o)ii

(U(n)T(n)) 12 = (U(n)T(n))li, (u(t)T(f)) 21 = (U(t)T

(«<(„) 7\„))21 = (M(n)7,(„))21, (U(t)T(()) 12 = (U(t)T(t))ll

{u<,n)T (n))22 = (W(re) Z\»)) 22, (w(«^(o) 22 = (U(t)T (t)) 22.

So we obtain from (13.22), (13.23), (13.24),

52 _ S.(S/ + S") = _ (M".r)n - («-r)22 - («(n,r('B))21 - (u(t)T{t))li

~ (u(n)T(n))n — (w^t)T(())2i* (13.26)

The right hand side is computable. The result may be written

[S - i(S' + S")]2 = R\ (13.27)

where

R2 = i(s# + s")2 - («"-r),i - («-r)22 -
— (u(t)T (()) 12 — 12 — 2. (13.28)

We may sum up as follows:
XIV. PFi/fe boundary conditions as described in (13.21), the natural state lies on

a hypersphere with center at

C = KS' + S") (13.29)
and radius R as given by (13.28), where S' is any state satisfying the equations of equilib-
rium and all boundary conditions on stress, and S" is any state satisfying the equations
of compatibility and all boundary conditions on displacement.

Added November 18, 1946: The authors are indebted to Professor A. Weinstein
for showing a connection between the present method and the method given by
E. Trefftz.* Trefftz dealt with the Dirichlet problem in a plane (to determine a har-
monic function with prescribed boundary values). The Ritz method gives an upper
bound to the Dirichlet integral of the solution u, namely, the Dirichlet integral of a
function v satisfying the boundary conditions. Trefftz supplied a lower bound by

* Proc. 2nd International Congress for Applied Mechanics, Zurich, 1926, pp. 131-137.
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taking a linear combination w of harmonic functions, and choosing the coefficients
so that the Dirichlet integral of the difference (u — w) is a minimum. It should be
pointed out that, although the torsion problem is reducible to the Dirichlet problem,
the torsional rigidity is not given by the Dirichlet integral of a harmonic function.
Hence, in applying his method to the estimation of torsional rigidity, Trefftz had to
proceed in an indirect way.

Let us now consider the Dirichlet problem in the notation of the present paper.
Let a vector in function space correspond to a function with continuous first deriva-
tives in a plane region R, bounded by a curve B. Let S* be a completely associated
vector; this means a function u* satisfying the boundary conditions. Let S" be a com-
plementary vector; this means a harmonic function u". Let S be the solution-function u.
Let the scalar product of two vectors be defined by the Dirichlet integral

r r /dui du2 du\ duA
SiS2= I \irir+irir)dxdy-J J r\ox ox ay dy /

Then

r r /du* du" du* du"\ r du"s*'s" = I I (iT- 7 + 7 7H = I u*~T~ds'
J J r\ox ox dy dy / J n dn

since u" is harmonic. Since S is itself a completely associated vector, we may write
S for S* and u for u*. But u* = u on B, and so we have

S* S" = S S" or S" • (S* - S) = 0. (1)

But S is also a complementary vector, and so we may write S instead of S". This gives

S*-S = S2 or S(S*-S)=0. (2)

This last equation is the Ritz equation (4) of Trefftz' paper.
The equation (1) is not that of Trefftz. However, it tells us that S* —S is per-

pendicular to S". From elementary solid geometry it follows that, if we drop per-
pendiculars from the extremities of S* and S on the line of S", these perpendiculars
have a coimmon foot, say with position vector T" = £S". We have then

T" • (S — T") = 0. (3)

This is identical with Trefftz' equation (10), in which the right side is actually zero.
Obviously, T" is that vector of form &S" which minimizes (S —T")2; thus T" corre-
sponds to that harmonic function of form ku" which minimizes the Dirichlet integral
of u — ku", where u is the solution.

To apply the above ideas to the torsion problem, we recall that the torsional
rigidity (for G — 1) is

//.(
du du\

x2 -j- y2 — x —• — y — )
b\ dx dy/

dxdy,

where u is a harmonic function, taking the value |(x2+y2) on the boundary. If we
write So for the vector %(x2-\-y2), then the torsional rigidity is

S0 — So-S. (4)
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By virtue of (1) and (2) we can build up the theory of the hypercircle, as we did in
the general elastic problem. We can introduce orthonormal homogeneous associated
vectors 1/ (p = 1, • • • , m) with u' = 0 on B, and orthonormal complementary vectors
Ig" (2 = 1, • • • , n), each harmonic. The center C of the hypercircle is then given by
(10.4) and its radius by (10.7). We have

(s-o-i; = o o — i, ■■■,*)
(S — C) Ig'= 0 (? = 1, ■••,»). (5)

Thus we may write

S = C + RJ, (6)
where J is a unit vector satisfying

J T p = 0 (p = 1, • • • , m)
J-tf-O (g = l, •••,«).

Thus

So-S = So-C + 2?So-J. (8)

The maximum and minimum of this expression, as S ranges over the hypercircle, are
to be found from

m n

So = E + E C'X+ cj, (9)
p-1 9—1

where the c's are undetermined scalars. Since IJ ■ Iq" —0, we easily find

c'p = S0Tp (p = 1, • • • , m)

ca"= So-Is' (q = 1, • • • , n)

c2 = s„2- £(s„.i;)*- zcso-O2 (10)
J>=1 5=1

So-J = c.

Hence by (8)

where

S0-C - RA ^ S0S ^ So-C + RA, (11)

[ TO n -11/2

So ~ E (So'Ip)2 - £ (So-I") .
p= 1 q=l J

So we have upper and lower bounds for the torsional rigidity, as given by (4).


