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—NOTES-
■v

ON BERNOULLI'S METHOD FOR SOLVING ALGEBRAIC EQUATIONS*
By BERNARD DIMSDALE (Ballistic Research Laboratories, Aberdeen Proving Ground, Md.)

1. Introduction. Both Graeffe's and Bernoulli's method for the solution of algebraic
equations have the considerable advantage that no initial approximation to a root is
required. Graeffe's method, although the convergence is quadratic, leads to factors1
whose roots are large powers of the roots of the original equation, and for which the
determination of angle is therefore quite difficult. Bernoulli's, method, as amplified
below, leads to factors of the original equation and therefore avoids this difficulty. While
it is true that the convergence is slower (doubling the number of steps is roughly equiva-
lent to one step of the Graeffe process) this is not a consideration of first importance if
high speed computing machinery is available. Also, there is the possibility of applying
rapidly convergent processes when a "sufficiently good" approximation is obtained.
Furthermore, the method applies equally well to equations with complex coefficients.

Bernoulli's method consists of defining a sequence s„ in terms of the coefficients of
the original equation, and taking quotients s„+1/s„ . If these quotients converge, they
converge to the root of largest modulus. If not, there are at least two roots of largest
modulus. It will be seen that in this case successive systems of linear equations can be
defined in terms of the s„ whose solutions will tend under certain conditions to the co-
efficients of a factor of the original equation.

2. Preliminary remarks. Let

Pn(z) = J2 a*zN~', Oo = 1 (1)
>< = 0

with unequal roots zi , z2 , ■ ■ ■ , zN, , of multiplicities , c2 , • • ■ , cN, , respectively.
The notation is chosen so that no modulus exceeds any preceding modulus. Let

Pm{z) = z a0 = 1, M < N' (2)
f-0

with roots zt , z2 , • • • , zM , and M < N' if zN. = 0. Let
N' M

s» = C-Z" ( s'n = S z"
v-1 yl

for all2 n. We then have Newton's identities for sn :

So = N j
■n— 1

53 a-vSn-, + nan = 0, n — 1, • • • , N — 1,
v = 0

N

T. avs„~, = 0, n > N.

*Received Aug. 8, 1947.
'Bodewig, E. On Graeffe's method for solving algebraic equations, Q. Appl. Math. 4, 177-190 (1946).

The methods described there apply only to equations with real coefficients.
2If zNf = 0, then s0 is not defined. Setting s0 = N, as we are about to do, however, leads to no error

in the rest of the sequence.
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by which sn can be calculated directly from the coefficients of (1) for all3 n. The same
identities hold for s„. when N, a, and s are replaced throughout by M, a, s'.

Consider the system of equations linear in a„n
M

&unSp—v OCqn 1) (3)

where p = n, n 1, ••• , n + M — 1; n > M. It will be shown in the next section
that if | | > I 2i/4 i |, then the system has a unique solution for all sufficiently large
n and that a,„ — a, — 0{zM+l/zM)n, so that m. Hence for all such values
of Ma factor of (1) in. the form (2) is obtained, and (1) can be separated into factors
each of which has roots of equal modulus. Then for each of these factors a shift of origin
will result in further factorization.

3. Convergence. Let

A()n(s) = S„ s„_, • ■ • Sn_M + l

Sn + AT-2 Sn+M-3

and let A,„(s) for v = 1, 2, • • • , M be the same determinant with the column headed
by s„_„ replaced by s„, s„+1, , sn+4r-i, so that, if A0n(s) ̂  0, then ay„ = — A,n(s)/A0„(s).
Let

1 1 ••• 1

5>(Zxi , Z\2 ' ' ' t Z\m) — 2xi Z\2 * * * Z\M

M M M
2<X1 2X2 * * * Z\M

0,1 ,M,

where the row with zM~' is absent. For brevity let 5, = 5,(2, , z2 , • • ■ , zM). We note
that Si is the discriminant of (2) and is therefore not zero, since all the roots of (2) are
different. Then, by factoring,

A,„(s') = ±(2i , z2 • • ■ ZmY~mS0S, (4)

and, using the theorem for addition of determinants

A„„(s) = ± (cxiCx2 * " • • 4 • Z\m) 8o(Z\i , • • • , Z\m)

5,(2X1 , • " " , ZXM)

= (CiC2 • • • Cm)A,„(s') ± 22',

where £ denotes summation over all combinations of the M integers Xj < X2 < ■ • • <
\M chosen from 1, 2, • • • , N', and XI' is the same sum with (1, 2, • • • , M) omitted.

From (4), we have A0„(s') ^ 0 for all allowed values of M. Since the z's have been

3The original Bernoulli method permits an arbitrary selection of the first N of the s„ . In case there
are two equal roots of largest modulus and the remaining roots have smaller moduli, it can be shown that
for an arbitrary selection the convergence of sn+i/sn will in general be 0(l/n) whereas for this choice it
will be in our present notation, 0{zi/z\)n.
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arranged in order of non-increasing moduli, it follows that if | zM+1 \ < \zM\, then
A0n(s)/A0n(s') = (cic2 ••• cM) + 0(zM+1/zM)n, and therefore that for sufficiently large
n, A0n(s) 5* 0. Hence, for such n, a unique solution of (3) exists. If 8, is not zero, we
can also write A„n(s)/A„„(s') = (cyc2 • • • cM) + 0{zm+i/zmT from which

A„„(s)/A0„(s) = [1 + O(zJlf+1/zM)"]A,,n(s/)/A0„(s'),

that is

a,n = [1 + 0(zM+1/zM)n]a, .

Therefore, a,„ — a, = 0(zM+1/zM)n. This equation is easily established if S, , that is,
ay , is zero.

It might be remarked finally that if M > N', the system (3) is dependent for every
n\ if M — N', then a„n = a, for all n if zN. ^ 0, and if zjV. = 0 then in this case (3) is
again dependent for all n.

4. Example. We apply the method to the equation

z5 - 3z4 - (2 + i)z3 + (12 + 5i)z* - (8 + 8i)z + M = 0,

whose roots are

= -1 - (1 + i)U2 = -2.098684113 - 0.4550898608t,

z2 = 2, z3 = 1,

z4 = -1 + (1 + ifn - .0986841134 + .4550898608?',

and Cj = c3 = c4 = 1, c2 = 2. Here | zx \ = 2.147459380, | z41 = .4656665498. We ob-
serve that | z21/| Zi | = .931, | z3 |/| z2 I = -5 and so we would expect the quotients to
converge much more slowly than the solutions of the second order system. We observe
that as a matter of fact convergence of the quotient is not visible for n < 30, but that
n = 30 gives us nine place accuracy in the second order system.

On solving the quadratic

Z2 + ali29 Z + <*2,29 = 0,

we obtain

z, = -2.098684113 - 0.455089863?, z2 = 1.999999998 + 0.0000000041
The third order system is not computed, because significant digits are lost in the

computation. If we carry ten significant figures throughout, we will have only one or
two left toward the end of our computation for n = 30. This corresponds to the fact
that the second order system has converged to eight or nine significant figures by this
time. This is true in general of the behaviour of these systems, and therefore one would,
in practice, only carry the method to the lowest order which converges with sufficient
rapidity ("sufficient" in this case referring to the speed with which these computations
can be performed). On removal of the factor obtained, one could repeat the operation
with the reduced equation. It is interesting to observe in our present example that
since the quotients converge, we will, if we go far enough, begin to lose significant digits
in the second order system, but that in the meantime we will have obtained all the
accuracy possible with ten digits.

For any n, the fourth order system has the solution aUn = —1, a2,„ = —4 — i,
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as n — 4 -f Si, a4,„ = — 2i, and the corresponding equation has the roots zx , z2, z3, z, .
This occurs because of the presence of the double root z2 = 2. For the same reason, all
fifth order systems will be dependent.

A practical difficulty may arise with fixed decimal point machinery in that s„ may
go off scale either on the right or the left. This will happen for sufficiently large n when
| Zi | ^ 1. This difficulty may be overcome by a transformation z' = z/r, where r =
I oiM,n \1/M, M being the order of a convergent process, n being "sufficiently" large. In
our example we have r = | a2,„ |1/2. For n as small as three, | s„ | would remain in a very
satisfactory region.

AERODYNAMIC FORCES ON A SLOTTED FLAT PLATE*
By EDMUND PINNEY (University of California, Berkeley)

The derivation of the flat plate approximation to the aerodynamic forces exerted
by an incompressible fluid on an airfoil is simple and is to be found in most textbooks.
The present note treats the less simple case in which the airfoil contains slots oriented
parallel to its length. This problem is of importance in the theory of suspension bridges
where slotted roadbeds are used to cut down aerodynamically driven oscillations.

The spaces between the slots will be called "lanes". Let V be the velocity of flow,
and a the angle of attack, assumed to be small. Let the plate occupy the interval — b<
x < b, y = 0 of a rectangular coordinate system, and let u{z), v(z) be the velocity com-
ponents of the fluid parallel to the x and y axes, respectively, at the point z = x + iy.
Then, if powers of a higher than the first are neglected,

u(z) —> V, v(z) —> Va as | 2 | -> co. (1)

By two-dimensional potential theory, v(z) + iu(z) is an analytic function of z away'
from the plate. Consider

- v(z) + iu(z) = iV + Va ft, (z - tnbY/2(z - lnb)~1/2 (2)
. i

where x = tnb and x = lnb are the trailing and leading edges, respectively, of the n-th
lane, and N is the total number of lanes. The lanes are numbered from left to right so
that

= 1) ^n+l ^ ) ^n + 1 In > ^n+1 ^ tn , tff = 1. (3)

As z —» oo; it is seen that (1) is satisfied.
In the n-th lane lnb < x < tnb, and by (2),

N

v(x ± iO) + iu(x ± z'O) = iV ± iVa ]j[n | x — tnb |1/2 | x — lnb |~1/a.
1

Therefore

u(x =k iO) = V ± Va | x — tnb |1/2 | x — lnb |~1/s, v(x ± iO) = 0. (4)

'Received Sept. 22, 1947.


