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ON THE NATURE OF THE BOUNDARY LAYER NEAR THE LEADING
EDGE OF A FLAT PLATE*

BY

G. F. CARRIER (Brown University) and C. C. LIN (Massachusetts Institute of Technology)

1. Introduction. The customary treatment of boundary layer flow1 furnishes what
is essentially an asymptotic expansion of the stream function (or an equivalent function
defining the velocities). This solution is valid, of course, only in a region far downstream
of the leading edge of the obstacle. Since one knows, however, that to all practical
purposes a potential flow exists sufficiently far from the obstacle, there remains only
a closed region in the neighborhood of the origin in which the nature of the flow is not
known. It is the purpose of the present paper to show the nature of the flow of an in-
compressible fluid in this region when the obstacle is a flat plate.

2. General development. The equations governing an incompressible, viscous, fluid
flow are, in conventional notation2,

dwi dui (l\dpi . /1N+ w£-'a"" (1)
p. + (1) 52! _ , ,2)

dXi dy, \p) dyl

r' + ^-o. <3)dxt dy,

These may be reduced to a single equation in one unknown function in any of several
ways. For convenience, we first introduce the following changes of variable: p =
Pt/pul , x = XiUo/v, y = y^Uo/v, u - ujuo = d^/dy, v = vju0 = —ty/dx, x + iy =
z = rex>. Here, u0 is the free stream velocity. With the introduction of these variables,
Eqs. (1), (2), (3), are readily reduced to the form

d*yj//dz2 3z2 = J-. [dip/dz d3ip/dz2 dz — d\f//dz d3ip/dz dz2]. (4)

Here z is the complex conjugate of z and, we might note now, u + iv = —2id\f//dz.
If we restrict our analysis to the flow past a flat plate such that as x —» — 00, ̂  —* y,

we must impose the boundary conditions dip/dz = 0 when 0 =• 0 and when 6 = 2ir.
Furthermore, we must anticipate that the line 9 = 0 will be a branch line of our solution
since the higher derivatives of ^ will be discontinuous along this line. We may construct
such a function which is a solution of Eq. (4) in the following manner. We note that

= A[zz,/2 + zz1/2 - z3/2 - z3/2]

2 ( 6 3d\ ®icosg- cos ~2 )= Af.3/2

*Received Nov. 17, 1947.
•See, for instance, L. Prandtl, The mechanics of viscous fluids, in vol. 3 of W. F. Durand's Aerodynamic

theory, p. 34, Springer, Berlin, 1934.
2The subscript unity is adopted so that we may use the variable without subscripts for the quantities

to be introduced later.
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is a biharmonic function for which 0 = 0 is a branch line, along which the velocity
dyj//dz vanishes. If we write Eq. (4) in the form

Ut) = . - (6)
where L is the biharmonic operator and L*(\p) is the rest of Eq. (4), then we may define

L(t o) = 0,

L(^) = L*(*0),
(7)

L(tn) = L*(*„ + • • • + tn-l) — 0 + • • • + ^n-2),

Over any region in which the series

t = to + ii +■■ ■ (8)

converges then, we may take (as defined above) as a solution to Eq. (4).8 In this case,
a particular integral for ipi is

= AV[(sin 20)/4O — (0 cos 0/64], (9)
and a biharmonic function which when added to adjusts the conditions at the plate,
is

A2
\f/[2) = r3[ln r(3 sin 0 — sin 30) + 0(3 cos 0 — cos 30)

. l^O

(10)
- (a sin 0 + (3 sin 30)],

where a + 3/3 = 1. As we shall see later, \p[2) « ipo in the matching region so that the
choice a = 1 serves our purpose. The function i/', becomes then

"Ai = ^i<u + = [4V/128][0(cos 0 — cos 30) + In r(3 sin 0 — sin 30)]
(ID

+ [AV/40][sin 20 - 2 sin 0],
It is fairly evident that the higher approximations will contain terms in r9/2, rl\

?,9/2 In r, • • • , and will also involve coefficients with higher powers of A. As we (again)
shall see later, A = .083. Thus, it is evident that within some circle this development
is convergent and represents some flow. It is not immediately evident that the expansion
for \p converges for y <3C 1, x > 1. However, since our solution is of the Stokes type, it
is to be anticipated that the leading term of the expansion describes the flow in a suffi-
ciently thin neighborhood of the plate. Since we do not need to establish such a region
of convergence, however, we shall not pursue the question further.4

3. The matching procedure. The solution obtained by Blasius for the velocity profile
in the downstream region is usually presented in the form

3This implies that we base the expansion on the Stokes type slow-flow solutions.
4We note, however, that the choice of a for Eq. (10) and the corresponding "arbitrary" coefficients

in if/n , where n > 1, would be governed largely by this convergence consideration.
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U = f'(v), v = [Vf'(V) - /(,)], (12)
2(x)

where, in our notation, rj = y/x1/2. In Eqs. (12), /(17) can be given by a power series of
the form1

/ = V/2! - «y/2-5!+ ••• , (13)
where a = .332.

Thus, u = arj — a2t]*/2-4:\ = a?-1/2 sin 9/(cos 0)1/2

— aV sin4 0/48 cos2 6 + • • • . (14)

That is
u ~ or1/20 - a2r204/48 + ■ • • (15)

in the neighborhood of 0 = 0.
The solution of the preceding section implies that the velocity component u (i.e.

Re (— 2id\p/dz) be given by

. u = Ar1/2(5 sin 0/2 + sin 30/2) + ■ • •

or

u ~ 4Ar1/2d + yr2d4 + 8r2 In r04 + ■ • • . (16)

Two facts are evident. If these functions are to represent the same phenomenon in
any overlapping regions where r is not large, then 4A = a. Furthermore, we note that
these two functions can never be identically the same since the r2 In r term is lost in
the asymptotic representation. The latter fact is quite in order since neither solution
has the pretense of being a complete solution. Therefore, we may establish validity of
the leading term of this representation (i.e. \p0) if we can find a region in which both \p0
and / are valid approximations to the rigorous solution. That is, we must find a region
in which L{-f) — L*(ip) « d'V/dr4 (say). Our method of solution and its results indicate
that r ~ 1, 6 <<C 1 is such a region. But for d sufficiently small and r of order unity,
£V2/(>?) is almost precisely the same function as \p0 (see Eq. (15)) and hence is as valid
a solution. This, of course, can be worked out by computing L[xi/2f(t])] — L*[x1/2f (17)],
but this is really not necessary. Hence, we have that in the neighborhood of r = 0,
Eq. (5) demonstrates the nature of the flow field provided A = .083. Figure 1 shows
the four regions into which the flow field may be divided and the solution applicable
to each. In region IV, it is doubtful if any reasonably simple analytic expression could
be found for \p. However, it is suggested that the flow field could be computed if one
combined some intelligent "first guessing" (interpolation essentially) with the relaxation
procedure and applied these to the region IV.

4. A modified Blasius solution. The alternative procedure6 for developing the fore-
going solution leads to a slightly modified boundary layer solution which establishes
more clearly the overlap of the slow-flow solution (which includes the leading edge)
and the boundary layer solution.

'Actually, the two authors arrived at the solution independently by the two procedures described
here, but felt that a joint presentation provided the most lucid account of the matter.
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Fig. 1.

(I) Potential Solution (II) Blasius Solution (III) Slow Flow Solution

It seems that the most natural coordinate system to use for the flow past a flat plate
is the parabolic coordinate system (£, ?j) defined by

x + iy = (€ + iv)2 (17)
or

£ + «»? = r1/2 exp (id/2)

By using this system of coordinates, it is possible to give a unified discussion of the
boundary layer solution and the slow motion solution in the neighborhood of the plate,
including the leading edge.

In the parabolic system of coordinates, the equation for the stream function ip becomes

= (? + - tAti) ~ 2(#£ - £^,)A(18)
where

= (£2 + rj2)AA\p — 4(£A^f + TjA\pv — Aip). (19)

From a consideration of the diffusive effect of the viscous forces, it is obvious that the
effect of viscosity is essentially limited to regions with -q ~ 1, close to the solid boundary.
For very small values of 17, the motion is slow. Since \p = 0 and d\p/drj = 0 at 17 = 0 it
is obvious that in this region a good approximation to (18) is

L{i) = 0. (20)
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A polynomial solution satisfying the boundary conditions \p = \pv = 0 at ?? = 0 is

i = Atf (21)
which agrees with Eq. (5) of Sec. 2. This solution can also be obtained from Eq. (19)
by writing \p = i?2(/(f) + 0(ij)) for small 77.

If £ is large while 77 -—' 1, one may introduce a new variable

r = 4 (22)
where e is a small parameter.6 In the limit e —» 0, the equation (3) becomes

a4,/,'0'r2 = rWrt? - tfW) +
or)

where
= 4

This equation may be solved by putting

= S'fiv);
then/(ij) satisfies

or
r = //'" +

= //";

Fig. 2.

(I) Potential Solution (II) Modified Blasius Solution (III) Slow Flow Solution

6To give t an explicit meaning, we consider the region < t£.
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this is the usual boundary layer equation except that rj is not quite the conventional
parameter.7 Higher approximations may be obtained by solving (18) in powers of e.

Thus, the regions of approximate validity of these solutions are as follows:
(i) potential solution: » 1;

(ii) boundary layer equation: 77 -—- 1, 77 <5C
(Hi) Stokes equation: 17 « 1, irrespective of £.
These regions are indicated in Fig. 2. It is obvious that there is an overlap of regions

(ii) and (Hi) where the solution (5) agrees with the boundary layer solution. Again, we
have not established the convergence of the slow flow solution. However, the physical
considerations which lead to the slow flow and the boundary layer solutions indicate
that they are at least valid asymptotic approximations, if not convergent processes.
This is further strengthened by the identical nature of the leading terms of the two
types of solutions for ti 1.

7Here, ij = r1/s sin 0/2, conventionally rj = rl/1 sin 0/(cos 0)l/a.
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