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Introduction. In this paper, we consider the two dimensional flow of an incom-
pressible viscous fluid

a) in a bounded domain D, the velocity vanishing at the boundary B of the
domain; B is assumed to be a regular curve;1

b) in the entire plane, the velocity vanishing at infinity, this case being regarded
as a limiting case of a).

Since the fluid is assumed to be incompressible, there exists a stream function yp{x, y, t)
such that the two components u and v of the velocity are given by

«(*, y, 0=—' U)
dy

d\f/
v(x, y, t) = - — • (2)

dx

According to the boundary conditions, we have

u{x, y, t) = 0, v(x, y, t) — 0 on B (3)

or

dyf/
\j/{x, y,t) = 0, -— = 0 on B. (4)

dn

The vorticity is given by2

£(*, y, 0 = - hW- (5)
According to the Navier-Stokes equations the vorticity must satisfy the equation

3? df
  f- u —• + v ■—■ = (6)
dt dx dy

* Received March 1,1947. This paper was presented on February 24, 1947 at a joint Colloquium of
the Department of Physics and the Graduate Division of Applied Mathematics of Brown University.

1 What is meant here by the term regular curve is only that B fulfills the conditions required for the
use of the Green formula.

2 Aip indicating the Laplacian: A\p — d'^/dxi-\-d^/dyi.
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in which v is a constant, the kinematic viscosity of the fluid. Substituting the values
(1), (2), and (5) into (6), we obtain a partial (non-linear) differential equation for
ip(x, y, t), which is characteristic for the two dimensional flow of an incompressible

B

Fig. 1

viscous fluid. We shall only deal with regular flows, that is with stream functions such
that the functions

df df di du dv df
v, f, — > —} Af, — i — i — j —

dx dy dt dt dt dt

are continuous in x, y, t for (x, y) in D-\-B and t\
This paper is divided in three parts. In the first part, the Fourier transforms

SEr(coi, 0)2, t), U{ux, «2, t), F(o)i, o>2, t), Z{tui, co2, /) of the stream function \p, the velocity
components u, v, and the vorticity f are introduced and it is proved that St', TJ and V
are obtained from Z by multiplication by simple rational functions of and a>2- Next
the kinetic energy of the flow

E = — f (u2 + v2)da, (da- = dxdy) (7)
2 J D

and its spectral decomposition

E = I 7(0)1, o>2, t)dcc, (dca = duidw2) (8)
J a

are considered and it is shown that the spectral function 7(0)1, 0)2, t) has also a very-
simple expression in Z. In other words, the entire harmonic analysis of the flow can
be based on the Fourier transform of the vorticity.

This part of the paper uses only the definitions of 1p, u, v, f and the boundary
condition; the results are valid whether the fluid is viscous or not.

In the second part Eq. (6) is used and some inequalities are given which must
be satisfied by the Fourier transforms when the variation of the time t is considered.
Some of these inequalities concern the variation of the spectral function with time.
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All inequalities are based on the fact that the kinetic energy of the flow is decreasing more
rapidly than an exponential function of t.

Next, an integrodifferential equation for the Fourier transform Z of the vorticity
is derived from (6). This equation might be the starting point for the study of the
variation of the spectral function with the time t.

Finally, in the third part, the case that the flow fills the entire plane

X — °o < # < -f co, — oo < y < x

is considered as the limit of the flow in a bounded domain, the fluid being at rest at
infinity. The integrodifferential equation simplifies considerably in this case.

If f(x, y) is a real function of the real variables x and y defined3 and continuous
in its Fourier transform, is given by

F(tai, o>2) = f f(x, y)e-i^x+"™)do,
47r-J d

(9)

where the frequencies Wi, co2 are real. We shall use the following well-known properties
of the Fourier transforms.4

a) F(Wi, co2) is a complex function of the two real variables «i, co2 defined in the
entire plane

0 — =0 < 0)1 < + 00, — OC < C02 < + 00 .

b) F( —o>i, —0)2) = F(0)1, o)2),

where F denotes the conjugate of F.
c) F(0)1, o)2) is a continuous function of the two variables 0)1, o)2 in every point of 0.
d) F(ui, 0)2) is bounded in R:

| F(wu 0)2) | ^ — f | f(x, y) | da. . (10)
4t2 J D

We shall also use the bound

| F(Ult o)2)| jj(x, yY-dcJ", ■ (11)

where S = fndcr. Equation (11) is deduced from (10) by means applying Schwarz'
inequality.

e) If |o)i| +|o)2|—>+ co, then F(0)1, o)2)—>0 (Riemann's theorem).
/) If 4>(x, y)=af(x, y) -\-bg(x, y), where a, b are constants, and f(x, y), g(x, y)

continuous functions in D-\-B having the Fourier transforms F{0)1, o)2), G(u 1, <o2),
then (j>(x, y) has the Fourier transform $(0)1, oj2) =aF(ult co2) JrbG{oiu oj2).

g) If f(x, y) and g(x, y) are continuous functions in D-\-B having the Fourier
transforms F(ui, o)2) and G(ui, o)2), respectively, and if

F(«i, o)2) — G(0)1, o)2),

3 In order to apply directly most of the known results of the theory of the Fourier transforms, it is
often useful to consider f(x, y) as defined in the entire plane X with fix, y) =0 at every point outside
D+B.

4 S. Bochner, Vorlesungen ilber Fouriersche Integrate, Leipzig, 1932, pp. 183-197.
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then

/(*. y) = g(%, y)
in every point of D+B.

h) If F(cx>i, oj;) is absolutely integrable,

/| F(u\, <o2) | du < + oo,
a

the integral

/F(wu uje'^'^^dai
a

defines a continuous function of x, y for all values of x, y; in D+B:

f(x, y) = I F(wi,
J S2

while

0=1 F(ixn, co2)ei("lx+"a!')rfco
J n

outside D+B. Since the integral is continuous for all values of x, y, the function
f(x, y) must vanish on B. Thus, if the given function f(x, y) does not vanish on B,
its Fourier transform cannot be absolutely integrable.5

i) If f(x, y) .has continuous derivatives df/dx, df/dy in D+B (which is always the
case for the functions considered here), one has

fix, y) = f F(aii, «j)e<("lx+*,,,,)<fo) (12)
J S2

in every point of D, the integral being now an improper integral defined as the limit

lim I F(wi, o>2)ei^lx+"iy)do}, (13)
X—>+00 J

C\ being the circle «?+co2=^2 (Cauchy's principal value). As a rule, (12) does not
hold on the boundary B.

j) f(x, y) and g(x, y) being continuous functions with continuous derivatives in
D+B and F(coj, «2) and G(o>i, w2) their Fourier transforms, we have

  f /(*• y)s(x< y)e~i<-eix+iiy)d<r = f F(ui, w2)G(coi + 6lt co2 + 92)doi, (14)
4it2 J d J a

the meaning of the integral being the same as in (12). Here, $i and d2 are arbitrary
real variables; in particular for 61=62= 0 one has Parseval's formula:

6 For instance, taking for D+B the square — 1 gxg +1, —lgy^+1 and assuming that f(x, y) = 1
in D+B we obtain the Fourier transform F(u 1, 02) = sin "i s'n "2 which is not absolutely
integrable. Eq. (12) holds, however, with the definition (13).
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f /(*> y)g(x, y)dcr = f F(coi, co2)G(coi, <o2)</o). (15)

1. Let us introduce the Fourier transforms of the stream function, the velocity
components and the vorticity:

¥(«i, o)2, t) = f y, t)e-i(-aiI+a,iv)d<r, (16)
4tt2 J D

U(u 1, <o2, t) = — f u(x, y, i)e-<<">r+"«'(/or, (17)
4ir2J D

F(<oi, o)2, t) =    f v(x, y, t)e~i(-ulx+0'™'>d<T, (18)
4w2 J D

Z(<01, 0)2, /) = f f(*. y, f)e-i^lx+W2v)da. (19)
4ir2 J d

The first part of the present paper deals with the purely kinematical significance
of 4'/, u, v, f, all computations being supposed to be made at a given time t. Thus, there
is no particular need for stressing the particular value of t. For the sake of brevity we
shall therefore write ip(x, y), yF(wi, w2), etc. for \p{x, y, t), co2, t), etc.

THEOREM I—The Fourier transforms of the stream function and of the velocity
components are expressed in terms of the Fourier transform of the vorticity by means of

2
■^(o)!, 0)2) = Z{0)1, 0)2), (20)

0)f + O

2io)2
U(o> 1, <o2) =  — Z(o)i, o)2), (21)

0>1 + 0)1

— 2ia>i
F(<oi, <02) = Z(<oi, <o2). (22)

<0? + 0)|

1 r di
V = -—; I —e-««i*+»ni)da

dy

Substituting (1) into (17) we obtain

-±f4ir2 J d

ird zo)2 c
= ■  I —: Jo- _| I

.47T2Jfla>rL 4t2JD

Application of Green's formula to the first integral yields

U = — f ^e'^^+^ds + to)21^.
4ir2 J /i

On account of the boundary condition (4) the first integral equal zero. Thus

U — to) 2^. (23)

Similarly

V = — io)iM>. (24)



6 J. KAMPfi de FERIET [Vol. VI, No. 1

Next, let us apply Green's formula

f (/Ag ~ = - f (/ - g -A ds
J d J b \ on on/

setting./ = \p, g = e~i(wix+"*y). On account of the boundary condition (4) we have:

/[\p Ae~i(wlx+U2y'> — Aipe~i(-"lx+w'iy)]d<T = 0.
D

If we replace A\p by — in accordance with (5), and remark that

Ag-Hatx+utv) _ _ )e-i(uiz+wiv)i (25)

we obtain

- (oil + u2) I ie-'^+^dtr + 2 I {e-i(uix+u*»')d<T = 0
J D J D

which is Eq. (20). Inserting the value (20) of ^ into (23) and (24) we immediately
obtain the expression (21) and (22) and our theorem is proved.6

Combining (21) and (22) we obtain the following relation

2iZ = co2Z7 - coiF. (26)

THEOREM II—The spectral function 7(0)1, o>2) of the kinetic energy E which is de-
fined by (8), is expressed in terms of the Fourier transform of the vorticity by means of

I Z(a>i, 012) I2
7(01, co2) = 8tt2 ——-— • (27)

0)j + cos

To prove this, we start from Green's formula

©V--K*
The integral over B equals zero on account of the boundary condition (4). If we re-
place A\f/ by its value (5) and d\p/dx, d\f//dy by (1) and (2), we obtain

E = f Mda. (28)
J D

Applying Parseval's formula (15), we find

= 4tt2 f VZdu, (29)
J a

and hence
7(0)1, oi2) = 4ir2l$,(«i, <o2)Z(«i, o>2). (30)

6 It is perhaps worthwhile to stress that the boundary condition (4) plays an essential part in this
proof. As a rule, the relation Fi—ioiiF does not hold between the Fourier transforms F(a 1, co2) and
Fi(coit w2) of f(x, y) and df/dx. For instance for the function/ = 1 considered in remark 5, Fi=0, while
iu\F = (iir2/ui) sin coi sin too.
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From this we deduce (27) by inserting the value (20) for >&.
The theorems I and II reduce the harmonic analysis of the flow to the study of the

Fourier transform Z of the vorticity. We shall now establish some properties of this
function. According to (12).

y) = I £(«i. "2)ei(uix+w"')do)
J S2

= lim I Z(on, co2)ei(uix+"2!')(/aj. (31)
X->+°° J C-y

We can then interpret Z(coi, a)2)duido)2 as the contribution of vortices, the frequencies
of which are between «i and wi+Jcoi, and o>2 and «2+<ia>2.

co2) is continuous and bounded in the whole plane £1 Noting that

*(0, 0) = — f \pda
4tt2J d

is finite, we obtain from (20),

Z(0, 0) = 0. (32)

Equation (26) then yields

2 I Z I ̂  IC021 i U I + I coi I I VI. (33)
On account of (11) we have

and consequently

i S
U 2 + \ V 2 ^ E.

(34)
Equation (33) gives then the following upper bound for | Z\ :

v//2 S
Z | g    ( I CO! | + | «2 i WE. (35)87T"

At this point it seems interesting to note a property of the Fourier transform Z. If
4>(x, y) is an arbitrary harmonic function in D, and cf>(wi, co2) is its Fourier transform, Z
is orthogonal to <f>, i.e.,

LZ(u>l, C02)4>(wi, w2)<ico = 0.

In fact, the vorticity f is orthogonal to any harmonic function cf> in DP To prove this
we need only use Green's formula

7 J. Kamp6 de Feriet, On a property of the Laplacian of a function in a two dimensional bounded domain,
when the first derivatives of the function vanish at the boundary, Mathematics Magazine No. 2, 1947.
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/(<£A^ — \f/A<j>)da = — f (<f> \p —^ ds.
d J b\ dn . dn/

On account of the boundary condition (4) the second integral vanishes. Setting

Ai = - 2f, A<f> — 0
in the first integral we find

/,
4>{d<r = 0

D

which, on account of (15), is fully equivalent to our statement.
Let us now consider the spectral function 7(0)1, co2). We can interpret 7(o>i,co2)<iw]do>2

as the amount of kinetic energy coming from the vortices with frequencies between
.Wi and Mi+rfcoi, and co2 and w2+<fco2.

The Fourier transforms SF and Z being continuous and bounded in the entire plane
0, we see from (30) that 7(0)1, «2) is also continuous and bounded in the entire plane.
Moreover, 7(0)1, a>2) §: 0 for all values of o>i and co2; on account of the same formula

7(0, 0) = 4tt2*(0, 0)Z(0, 0),

and hence

7(0, 0) = 0. (36)
More precisely, if we write Eq. (30) in the following manner

we see that

2 2 I
7(0)1, 0)2) = 2;r2(cOl + 0)2) I "^(o)!, co2)

7(0)1, 0)2) , ,
lim —   = 2ir2 | *(0, 0) |2. (37)

M,->0,iO2->0 0)| -(- 0)|

Since ^ and Z tend towards zero when |«i| + [w2| —»+ °°, we have

lim 7(0)1, o)2) = 0. (38)
Iw j H~ I w2 I *"f" 00

From (27) it follows then that 7(coi, o>2) is decreasing more rapidly than l/(wi+w|).
Combining (27) and the inequality (35) we obtain an upper bound for 7(0)1, w2):

, . „ s (I I + I "21 )2
7(0)1, oj2) ^ —  — j E,

4 r oil -+- C02

and hence
5

7(0)1, &)2) ̂  —— E. (39)
2 7T

2. Let us now consider the variation of the flow with the time t, in accordance
with Eq. (6) for a viscous incompressible fluid.

We shall use the following proposition:8 The kinetic energy is always decreasing

8 J. Kampe de Feriet, Sur la dZcroissance de I'energie cinitique d'un fluids visqueux incompressible
occupant un domaine plan borne, C. R. Acad. Sci. Paris 223, 1096-1098 (1946).
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{dE/dt <0); more precisely, it is decreasing more rapidly than an exponential function of
the time:

\

ESE-exp(-7Tj) (40)

Here, E0 is the value of E at the time < = 0, and Kn is a positive constant depending
only on the domain D.

Applying this result to (35) and (39), we have the following
THEOREM HI—The upper bounds of \ Z| and y given by the inequalities (35) and

(39) are always decreasing, more precisely,

, , V25-Eo ,1111 / 4i> \
I £('o>i, co2, t) I iS   — ( | toi | + | <o21 ) exp ( — 1 — t) (41)

Sir2 \ VKd /
, SEq / 8v \

. —«p(-^/). (42)

A more concrete picture is furnished by the surface 7(0)1, w2, t). This surface passes
through the origin O and is asymptotic to the plane 7 = 0 for large values of «i, <02;
its possible maxima are all below a given plane 7 = M; with increasing time this plane
approaches the plane 7 = 0 in an exponential manner.

In order to study the variations of the spectral function y(ui, W2, +) with the time
t, we shall establish the equivalent of Eq. (6) in terms of Fourier transforms. To this
end, we must compute the Fourier transforms of d£/dt, of ud^/dx+vd^/dy and of Af.

Fig. 2
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For the first function the result is obvious. Since f and d^/dt are continuous in t,
the functions Z ancl dZ/dt are also continuous in t. Thus,

d 1 r df
— Z(«i, co2, t) = I — e~i(wlx+"2y)d<T. (43)
dt 4ir2 J d dt

The Fourier transform of d'(/dt is therefore given by dZ/dt.
To compute the second Fourier transform, we start from the equation

/ df df\ d d
I 11 [- 1]   J -f-    |y£-e-«(«lx+a>2D)J
\ dx dy) dx dy

We integrate this equation over D and note that by Green's formula,

/— [u$e-i<-"lx+atv)]do = — f at^e~i("lx+"2V)ds — 0, (44)
D dx J B

/— [v^e'i(-"lz+'"ty)]diT = — f /3ii£eri<"ix+a«')ds = 0, (45)
d dy J b

on account of the boundary condition (3). Accordingly,

f (u — -f- v —^ e-i^+^da = iun f u(e-i^lx+aM'>dir
Jd\ dy dyf Jd

+ iw2 I v^e-Uaix+u"/)d<T.
J D

Using formula (14), we obtain

■  f u%e~l(-"ix+my^do — f U(6i, 6i)Z(6i -f- «i, 02 -f- «2)dd,
4IT2 J D " ®

— f vfe-i("lx+w21/)dcr = f y(02, 02)Z(0i + wi, 02 + u2)dd, \
4ir2J d J ®

where the variables of integration are now called 61, 62, and dd denotes ddiddi, the inte-
gral being extended over the entire plane 0. We thus have proved that the Fourier
transform of ud£/dx-\-vd£/dy equals

i f [cOiU(0l, 02) + CO2F(01, 02)]Z(0l + COl, 02 -f" C02)dd
J 0

or, what is the same by (21) and (22),

01 CO 2 OoCdl  
2 - Z(0i, 02)Z(0i + «i, 02 + o)2)dd. (46)

e 01 + 02

Let us now consider the Fourier transform of the Laplacian of the vorticity:

€(wi, cos, I) =  f Ate-t^+^da. (47)
4IT2 J D
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Applying Green's formula

D

and setting

we obtain

r <5 i—   I  g-t(«iar+«lJ/)   f  ((>- i(.uix+a>iv)^ I
J is Ldn dn J

4>(<ox, on, t) — —- f ["— + i(ui<x + co2/S)r~| (48)
n\_dn J

2 2
C(«,, OJ2, /) = — (oil + (02)Z((0i,-0)2, t) — 4>(cOl, C02, i). (49)

Reviewing the expressions of the Fourier transforms of d£/dt, ud^/dx+vd^/dy, and
Af we may state the following

THEOREM IV—Equation (6) is equivalent to the following integrodifferential equa-
tion for the Fourier transforms:

d r 61W2 —  
  Z(oil, 0)2, t) + 2 I Z - Z(61, 02, t)Z(d\ + CO], 02 + <02, 0^®
5/ J e 0i + "2

2 2
= — v(o)l + 032)Z(03i, 002, ^) — C02, t). (50)

This equation, being fully equivalent to the Navier-Stokes equations, is the rational
starting point for any rigorous study of the Fourier transform of the vorticity and
hence, of the spectral function. This study seems to be very difficult; perhaps it will
be only possible to check, in some approximate way, some of the working hypotheses
which were assumed in recent papers, e.g., the assumption that the big eddies have a
tendency to degenerate into smaller ones. This means that when t is increasing the
peak on the spectral surface y(«i, «2, t) is gradually shifted towards the high fre-
quencies COi, 0)2.

3. We can get interesting general results, if we consider the case where the flow
extends over the entire plane.

X — CO < # < + =0 , — 00 < y < + 00 .

This case may be regarded as a limiting case of previous problem. The boundary
condition (3) means now that the fluid is at rest at infinity:

lim u(x, y, t) = 0 lim v(x, y, t) = 0. (51)
f—00 r—►+ 00

r = + V^2 + y2-

If the kinetic energy is to remain finite,

E = -— f («2 + v^da < + 00,
2 J x (52)
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the decrease of u and v must be sufficiently rapid. A sufficient condition is

u = 0(r~3/2), v = 0(r~3/2) for large values of r. (53)

To insure the existence of the Fourier transform

Z(co,, <o2, t) — f t(x, y, r, (54)
4tt2 J x

it is sufficient to assume that f is absolutely integrable

f | f | da < + oo. (55)
J x

In this case, all the properties a) to j) enumerated for the Fourier transform (9) still
hold for (54). The condition is obviously satisfied if:

£ = 0(r~3) for large values of r. (56)

To compute the Fourier transforms of d{/dt, ud^/dx-\-vd^/dy, and Af, we can use the
same process as before, taking for D the circle x-^y2 < R2 and then letting R tend
towards + °°. We must observe, however, that we no longer have u = 0, v = 0 on the
boundary B; we must therefore carefully examine some terms in our equations.

In the evaluation of the Fourier transform of ud£/dx+vd£/dy, the two terms
(44) and (45) do no longer vanish. According to Schwarz' inequality we have, how-
ever,

| J au^e-^^ds J | « [ | f | ds £ [ £ uHs

From our assumption concerning the decrease of u and it is obvious that

lim I u2ds = 0, lim j £2ds = 0.
R—»+« J B R—»+°° J B

Similar considerations apply to (45). Thus, at the limit, the expression (46) for the
Fourier transform still holds.

In the evaluation of the Fourier transform of Af we obtain a very fortunate simpli-
fication : from (48) ,we have

The assumption of decreasing of f yields

lim f I — ds = 0, lim f | f | ds = 0;
R—»+» J 21 j dfl fl—*+«> J B

thus

lim $ = 0.
ft—»4- oo

The Fourier transforms C and Z being extended to the whole plane, we have thus
now:
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C — — (oil *4" o>j)Z.

THEOREM V—In the case of a flow extending over the entire plane X, where the fluid
is at rest at infinity, and where u, v, f decrease so rapidly that

E = — r (z<2 + v2)da < +
2 J x

and

f | f | d(T < + 00,
J X

the Fourier transform of the vorticity satisfies the integrodiffeTential equation:

d [* 0jO)2 — 02O)l  
  Z(cO\, 0)2, 0 + 2 I j j Z(0l, 02, t)-Z(6l + «i, 02 + «2, t)d6 (57)
st j © d1 + o<

2 2
= — p(cOl + W2)Z(wll C02, <)•

This equation seems to me the most simple that can be obtained in this manner.

To give at least an application, we shall establish the general solution of (57) for
the particular, but interesting, class of flows, where the vorticity is constant along
every stream line.

The flows characterized by f = F(\p) have been the subject of interesting re-
searches.9 It is in this case and only in this case that.non-linear terms disappear in the
Navier-Stokes equations; their Fourier transform vanishes, of course. Equation (57)
is then reduced to

dZ 2 2
  - — J'(a)] + COj)Z,
dt

and the general solution is

Z(coi, w2, t) = Z0(o)i, w2)e~"^+w")t.

Here, Zo(«i, o>2) denotes the arbitrary value of Z for < = 0. It is seen that, in this case,
not only an upper bound of Z, but Z itself is decreasing exponentially for every value
of Cdi, «2.

9 Ratib Berker, Sur quelques cas d'integration des equations du mouvement d'un fluide visqueux incom-
pressible, Thesis, Lille, 1936.


