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THE METHOD OF THE HYPERCIRCLE IN ELASTICITY
WHEN BODY FORCES ARE PRESENT*

By
J. L. SYNGE

Carnegie Institute of Technology

In an earlier paper1 the method of the hypercircle in function space for boundary
value problems in elasticity was developed under the restriction that body forces
are absent. The purpose of the present note is to remove that restriction, and present
the method in complete form, using the notation and basic ideas of PS.

Let an elastic body (in general anisotropic) be subjected to body forces Xi per
unit volume, so that the equations of equilibrium are

&„+ Xi = 0. (1)
As regards boundary conditions, we shall suppose that the surface B of the body may
be divided into regions designated by

[«„,«(],_ [«„, Tt], [ut,Tn\, [Tni Tt]. (2)

Here [u„, ut\ indicates a portion of B on which both the normal component un of
displacement and the tangential (vector) component ut of displacement are assigned;
[•un, Tt] indicates a portion of B on which the normal component of displacement

and the tangential component of stress are assigned; and so on.
As in PS, a state of stress throughout the body corresponds to a vector in function

space, and the scalar product is defined by S' ■ S" = JeljE^dv, the integral being taken
throughout the body. We set up the following notation:

S= natural state satisfying the equations of equilibrium and compatibility,
and also the boundary conditions.

S' = basic stress state, satisfying the equations of equilibrium

E-i,i+ Xi = 0, (3)

and all boundary conditions on stress; this means that

T't — Tt on [«„, Tt],
Tn = Tn on [ut, Tn], (4)

27 = Tn and T[ = Tt on [Tn, Tt].
lp(p = l, 2, • • • m) =orthonormal homogeneous stress states, each satisfying the

equations of equilibrium without body forces,

= 0, (5)

and making T[p)n vanish wherever Tn is assigned and making T[p)t vanish
wherever Tt is assigned.

S" =basic displacement state; this corresponds to a state of stress which satisfies
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the equations of compatibility, so that a displacement uj' exists. This dis-
placement satisfies all boundary conditions on displacement, so that

m„" = un and «(" = Ut on [«„, ut],

Un Un On fw,}, (6)

Ut' = ut on \ut, Tn\.

Iy" (g = 1, 2, • • • n) =orthonormal homogeneous displacement states, each cor-
responding to a state of stress satisfying the equations of compatibility, so
that a displacement u[^t exists; this displacement is such that vanishes
wherever un is assigned and u[^t vanishes wherever ut is assigned.

It is important to note that, if k' and k" are any constants, then S'+£'IP' be-
longs to the class of basic stress states (S') and S" + £"Ig" belongs to the class of
basic displacement states (S").

We now proceed to prove that the extremity of S lies on a hypersphere determined
by S' and S". By Green's theorem we have

S' S"= J e'i'jEijdv = J u'i'jEi'jdv

= J" til' T[ dB — J u''Eijjdv,
wnere dB is an element of the bounding surface B. Hence, by (3),

S' S" = J ul'T'idB + J u'i'Xidv. (7)

But S belongs to the class of S' and also to the class of S". Thus we can substitute
S for S' or S" in (7) and so obtain the following equations:

S S" = J u'i'TidB + J" ul'Xidv,

S' S=J UiT'i dB + J UiXtdv, . (8)

S S = J" UiTidB + J" UiXidv.

By addition and subtraction of (7) and (8), we obtain

S S - S S' - S S" + S' S" = J (in - ul'^Ti - T<)dB. (9)

For any pair of vectors, Uj, V,-, we have

f UiVidB = J* UnVndB + J UtVtdB, (10)

where Un, Vn are normal components, and UtVt is the ordinary scalar product of the
tangential vector components. We apply this reduction to the right hand side of (9),
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and then split each integral into four parts corresponding to the four regions (2). It is
easily seen from (4) and (6) that the result is zero, and so (9) reads

S-S - S S'- S S" + S' S" = 0, (11)
or, equivalently,

[S - §(S' + S")]2 = i(S' - S")2. (12)
This formula locates the extremity of S on a hypersphere in function space with
center at

Co = KS' + S") (13)
and with radius R given by

R* = i(S' - S")2. (14)

Since all that is required of S' and S" is that they belong respectively to the
classes of basic stress states and basic displacement states, it follows from a remark
made earlier that we may make the following substitutions in (11):

for S' substitute S' + k'lj,

for S" substitute S" + k"l'q',

where k', k" are arbitrary constants. When we do this, and then subtract (11) from
the result, we get an equation which must be satisfied for all values of k', k". This
yields

(15)
si; = s"i; (# = i,2,.--,«u
S I5"=S' I9" (q = 1, 2, • • • , n),)

and also

Ip' I,," = 0 (p = 1, 2, • • • , m; q = 1, 2, • • • , »); (16)

this last result shows that the set of homogeneous stress vectors is orthogonal to the
set of homogeneous displacement vectors.

Equations (11) and (15) locate the extremity of the natural vector S on a hyper-
circle T. It is easy to prove that the center C of V and its radius R are given by

l r m n n= - S' + S"-EI,M(S'-S") IP'} + EI«"{(S'-S")-I,"} ,
* L 7J=1 Q=1 J

(17)
p=1 Q=1

1 r m n "I
= _ (S/ _ s»)2 _ £ |(S/ _ S") i; }2- E }(s' - s'-') I,"!2 . (is)

4 L j,=i g=i J
Let us use Ir (r = l, 2, • • • , m-\-n) to denote the whole set of homogeneous

vectors I/-, I3'", so that, by (16), Ir form a set of orth'onormal vectors in function
space. The equation of the hypercircle T may be written

S = C + RJ, (19)
where J is arbitrary except for the equations

J2 = 1, Jlr = 0 (r = 1, 2, ••• ,« + «). (20)
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We now seek the points on T at minimum and maximum distances from the
origin 0 of function space. For any point S on T we have, by (19),

S2 = C2+ R*+ 2RC-J, (21)

and so, on account of (20), for stationary values of S2 we have

m+n

C = a] + £ &rIr, (22)
r=l

where a and br are undetermined multipliers. We deduce

br = C • Ir, (23)

and
m+nr~ m+n "12 m+n

a2 = C - E I,(c ir) U C2 - £ (c ir)2.
L r= 1 J r=l

For a stationary value of S2 we must take, by (22) and (23),
[m+n "IC- E i,(c-i,)J.

We find it convenient to define a vector G by
1 I" m+n "1

G = — I^S' + S" — E 1,1(8' + S")I,}J,

so that
1 r m+n n

G2 = — |^(S' + S")2- Z {(S' + S") Ir}2J.

By (17) and (26), we have

(24)

(25)

(26)

(27)

c = g + Ei; (s" ■ i;) + D i9" (s' ■ i9"). (28)
p= 1 9=1

We note that G I, = 0, and so by (28)

C G = G2 ^ 0. (29)

By direct algebra we may prove that

C - Z Ir(C Ir) =G. (30)
r=l

Thus, by (24), a= ± | G], and, by (25), J = ±G/| G|. By (19) the stationary values
of S2, if S ranges over I\ correspond to the vectors

C + RG/ | G |. (31)
Of these two vectors, that with the + sign is the greater, on account of (29). Accord-
ingly, we may say that the point of T farthest from the origin of function space has
the position vector
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V' = C + RG/ | G |, (32)
and the point nearest to the origin has the position vector

V" = C - RG/ | G |. (33)
Thus we have the following inequalities for the magnitude of the vector S correspond-
ing to the natural state of the elastic body:

V"2 ^ S2 ^ V\ (34)
or, by (29),

C2 + R* - 2R | G | g S2 ^ C2 + R2 + 2R | G |, (35)

where C is given by (17), R by (18), and | G| by (27), on taking the square root. We
can show by direct algebra that

1 1 r "
C2 + R* = — (S'2 + S"2) + — E {(S" IP')2 — (S'-Ip)2}

2 2 L P=i

+ i Hs'i,")2- (s"iq")2}].
Q= 1 J

(36)

The inequalities (34) or (35) bound the strain energy of the natural state below and
above. It is interesting to note that the usual minimal principles bound the potential
energy of the natural state, rather than its strain energy.


