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ON A PROBLEM IN PLANE STRAIN
BY

H. J. GREENBERG and ROHN TRUELL*
Brown University

1. Introduction. The present paper concerns the application to a particular problem
in plane elasticity of the method recently developed by W. Prager and J. L. Synge1
for obtaining approximate solutions to boundary-value problems in elasticity.

The problem considered is that of an infinite bar of rectangular cross-section in a
state of plane strain caused by compression as shown in Fig. 1. We assume the conditions
of the test to be such that the bar is compressed by a prescribed amount 2a, the points
on the top and bottom faces being permitted vertical (u2) but no horizontal (u,) dis-
placement. Thus, after deformation the cross-section of the bar will appear as in Fig. 2.

This is not a simple compression test. In fact, the exact determination of the stresses
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in the bar requires the solution of a mixed boundary value problem with the displace-
ments prescribed along x2 = ±/j and the stresses prescribed (to vanish) along xy = dob.

We propose in the present paper to determine the relation between the force F per
unit length of the bar, the compression 2a and the Young's modulus E for the material
assuming the value of Poisson's ratio v to be known. (We note that the range of v for
most materials is small as compared with the possible range of E. In any case, by assuming
extreme values of v one may determine the effect of varying v on the relation between
E, F and a.) Knowing this relation, the value of E for a given material can be determined
from test measurements of F and a. This test has the advantage that the usual precau-
tions taken to eliminate friction between specimen and end-blocks become unnecessary.

To solve the problem stated above one needs only to determine the strain energy
of deformation of the bar. This we shall do to a good approximation by finding upper
and lower bounds for this quantity. These bounds can be obtained by means of the
Prager-Synge method. To apply this method we must construct artificial states of stress

*Received Aug. 30, 1947. This paper is based on a report prepared for Watertown Arsenal under a
contract in Applied Mechanics.

'W. Prager and J. L. Synge, Quarterly Appl. Math. 5, 241-271 (1947).
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which approximate to the natural state of stress. These artificial states of stress will
be discussed in the following section.

2. Specification of states of stress. According to the Prager-Synge method a state
of stress, given by a set of six stress components Ewhich are functions of position, is
looked upon as defining a point or vector S in function space. Given two states S and
S', the scalar product of these states is defined to be

S-S' = J Eue'u dv

where e\f are the strains corresponding to the stresses E'i,- of the state S' and are com-
puted from the E'i, by means of Hooke's law; the integral is extended over the volume
of the body. It is easily verified that

S-S' = S'-S

so that the scalar product is commutative.
The sum S + S' of two states is defined as the state with the stresses Eu + E'u

the product cS of a state by a scalar c is defined to be the state with the stresses cEif ..
It follows that the usual laws of vector algebra remain unchanged.

We shall reserve the notation S for the natural state of stress E{j in the bar. Thus,
the stresses Eu are assumed to satisfy the equilibrium and compatibility equations and
in addition all of the boundary conditions of the problem. We note that

S2 = S-S = J Eifiu dv, (2.1)

so that the square of the magnitude of S is equal to twice the strain energy of deformation
of the bar.

According to the method, we must now select various artificial states of stress which
satisfy some but not all of the conditions of the problem. We note first that our boundary
conditions specify the displacements on the top and bottom of the bar and zero stresses
along the sides. This makes our problem one of a type considered by Prager and Synge
and designated by them as Displacement Boundary Condition (DBC). In accordance
with their treatment of problems of the DBC type we shall need the following states:

(a) A state S* called the completely associated state. The stresses E* must satisfy
the compatibility equation. The displacements defined by the E*i are required to satisfy
the prescribed boundary conditions on displacements.

(b) A sequence of states SJ , S£ , • • • , S£ called the homogeneous associated states.
The stresses VE'U of the state S£ must satisfy the compatibility equations. The displace-
ments defined by the VE'U are required to vanish wherever displacements are prescribed
by the boundary conditions.

(c) A sequence of states S", S", • • • , S" called the complementary states. The stresses
aE'i'i of the state S" must satisfy the equilibrium equations and in addition the boundary
conditions on stresses.

Since the bar under compression is assumed to be in plane strain, the displacements
ux and u2 are functions of Xi and x2 alone and there is no displacement perpendicular to
the z^-plane. The boundary conditions to be satisfied by the state S* are therefore
simply
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m1(Xi , ±h) = 0

f (2-2)u%(xi , +h) = — a, u*2(xi , — ft) = a, J

where wf and w* are the displacements which give rise to the stresses E*- of the state
S*. Accordingly, the boundary conditions to be satisfied by the displacements pu[ and
„u2 associated with the stresses vE'{i of the state S, are

vu[(xi , ±h) = 0
(2.3)

vu2{Xi , ±h) = 0.

It is simplest to obtain the associated states by beginning with displacement functions
satisfying the boundary conditions, computing from these the strains and finally from
the strains computing the stresses by means of Hooke's law. The stresses so obtained
are of course automatically compatible.

In plane strain the stress components E13 and E23 are identically zero and

E33 = v(E11 -f- E22) (2.4)

where v is Poisson's ratio. Since all quantities are independent of the variable x3 , the
equilibrium equations take the form

dE 11 dE12 _ q
tiXi dx2

(2.5)
dE2\ | dE22 _ q
dXi dx2

Since there are no loads applied to the sides of the bar we have the following boundary
conditions on the stresses

En(±b, x2) = E12(±b, x2) = 0. (2.6)

The stresses of the state S" are chosen to satisfy (2.5) and (2.6). Only the three
functions aE[[ , QE[2 and aE22 need be chosen for each q, since „E2[ = aE['2 and we may
take aE"3 = aE23 = 0 and .E'A = v{aE[[ + aE22) by virtue of the preceding remarks.

3. Upper and lower bounds for Young's modulus. Prager and Synge gave the fol-
lowing formula for upper and lower bounds on the quantity S2 which is twice the strain
energy of deformation of the natural state:

E (S* • ISO2 < S2 < S*2 - E (S*. (3.1)
<7=1 P=>1

the states Ip are obtained from the states S£ by orthonormalizing these latter states
according to the requirement that

1, if p = r
T'.I' =Ap Ar

0, if p 7* r

and the states I" are similarly obtained from the states S". Since the strain energy
of deformation is equal to the work done by the external forces we have

S2 = 2 Fa (3.2)
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or in terms of the average normal stress a = F/2b exerted on the bar by the end blocks,

S2 = 4aba. ■ (3.3)

Furthermore, from the definition of the scalar products involved, the conditions on the
various states S*, S'rJ , S" and the manner of orthonormalization of the states S£ and
S" it follows that the upper and lower bounds in (3.1) are proportional to Young's
modulus E and to a2. We can therefore write for (3.1), taking into account (3.2),

where

LnEa2 < 2Fa < UmEa2 (3.4)

S* •!">*,

(3.5)

v---k'[s"~ S<S* I;)*]'
From (3.4) we at once obtain

^TT<E <^f (3.6)aUm aLn

or in terms of the average stress a and the "average strain" e = a/h

T7T-<® <§--■ (3.7)hUm e hL„ t

Thus, we obtain upper and lower bounds for Young's modulus in terms of F and a.
Alternatively if we are given E and F we can find upper and lower bounds for a or given
E and a we can find upper and lower bounds for F. Since L„ increases and Um decreases
as more terms are added in (3.5) (i.e., as n and m are increased) the bounds can be
made to differ by a negligible amount so that in effect we determine the numerical co-
efficient X in the formula

FE = X-.a

We note that the quantities Ln and Um depend on Poisson's ratio v which we must
therefore assume to be known. The exact form of the dependence however can be easily
obtained for n = m = 1.

4. Selecting the functions and computing the bounds.2 For convenience we shall
take b = h = 1 and v = in the following. The completely associated state S* and
the five homogeneous associated states S( , S'2 , S'3 , S£ , S's which we use are given in
Table 1. Tabulated are the displacement components, strains and stresses corresponding
to each of these states. For convenience we have also set E = 1 and a = 1; these quanti-
ties are easily reintroduced into the final answers by proper proportionality factors.

The complementary states S", 'p = 1,2, • • ■ , are most conveniently defined by means
of the Airy stress function \p. The stresses are then computed from the function ip by
taking

2In this work we were ably assisted by Mr. F. Edelman who performed the bulk of the computations.
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d2iTTIff  

dxl

F" - ?+
t22 ~ dxl

E" = - d''*
dXi dx2

(4.1)

When defined in this way, the stresses automatically satisfy the equilibrium equations
(2.5) for any choice of the function 4'<■ We note that not any function may be used,
however, since the stresses must satisfy the boundary conditions (2.6) where 6=1.
The five complementary states we use are given in Table 2.

In orthonormalizing the sequence of states S{ , • • • , S5 to obtain the orthonormal
sequence IJ , • ■ • , I£ the scalar products • S' are required. These are listed in Table 3.
To illustrate, we have S'2-S2 = 4.!?, S3 S5 = Si • S, = 0.925714, etc. Also given in
Table 3 are the values of the scalar products S* • S' , j — 1, • • • ,5 and S*S* which
are needed in the evaluation of the quantities in (3.5).

Table 1: The associated states.

State u[ u'2 e' -
611 ~ dx1 12 2 \3x2 dx$

e' - ^
622 " to2

S( Xt(l - xl) 0 1 - xl — XiX2 0
0 x2(l x2) 0 3a:, - 1

x\g - xi) 0 33a(l - xl) -XIX2 0
Si 0 — S2(l — xl)Xi 0 — XjX2{l — xl) xlQixl - 1)

3 2/i 2\XiX2(l — x2) 0 3afog(l - xl) XiX2(i. 2x2) 0 •
s* wf = 0 w* = — x2 eti = 0 e*2 = 0 ef2 = -1

State Eh — ^ (2e'n + e22) E[2 = | e[2 E'22 = | (2e22 + e'n)

Si | (1 - x2)

I $4 ~ 1)

3-7 XiX2
? (i - *»4

| (3x2 - 1) .

| x\{\ - xl) 3 3
-4 X,x2 f *!(i - xl)

| x2(3xl - 1) -- XiX2{l - xl) | xl(3xl - 1)

I xlxl (1 - xl) I xlx2(l - 2x1) 7 x\xli\ — xl)

S* o* 3E* = -4 E% = 0 E*2 — ~ o
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Table 2: The complementary states.

State F" = ^
11 dxl

c\1/E['2 = -Ti4L-
dXi ax2

d*\l/

sr — - T*
2 1

1 4"IS*

-1

— x\

I x2(l - x2J2\2 (i - x\r 4x^(1 — x\) -2x22(1 - 3x1)

7 xt(l - x?)2 3x1(1 - xl)2 — x\) —^(l — 3x1)

I x\x\(l - x\f xi(i - xiy — 2x2(3xi — 4xj + Xt) x22(15xt - 12x1 + 1)

State e[[ = | [2E[[ - E'2'2] e'1'2 = | E[ e22 = | [2E22 - J?;;]

sr 4
9

4 2
n

-9*1

I [(1 - X?)2 + *2(1 - 3x0] y X!X2(1 - X?) -§[4x*(l - 3x1) + (1 - X?)2]

Si'
I [6xi(l - X?)2 + xi(l

- 3xi)l
y XiXl(l - x\)

[2X2(1 - 3Xi) + 3X2(1

- *?)2]

| [2x?(l - x?)2 - x2(15xt

— 12xi + 1)]

-| x2(3x\

—4xi + xQ

| [2x^(15xJ - 12x? + 1)

Xi(l - x2)2]

Table 3: Values of S ■ • S • and S* • S'

Sf S*
s;

s*

3.866667 -0.8

-0.8 4.8

3.6 -0.8

1.6

0.537143
-2

0.114286

3.6 0.537143
-0.8 1.6 0.114286

6.045714 -.365714 0.925714
- .365714 1.112381 0.045714

0.925714
-2

0.045714 .364080
-0.4

-2

-2.

-0.4

6.
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Table 4: Values of r'ip = aip/apl> and of app .

V = 1
1. 0.206897 -0.928571 -0.190946

1. 0.011905 -0.343706
0.007212 0.258621

-0.035183 0.215774

0.128711 -0.164771 0.371287
1. -0.044662 1.940316

1. 4.776450

Table 5: Values of and

sr Si' s*
3.555556
1.185185

1.185185

0.711111

0.948148 0.948148 0.135450 4.
-0.496649 -0.054180 -0.045150 1.333333

0.948148 -0.496649 8.777141 5.616633 0.456424

0.948148 -0.054180 5.616633 5.238667 0.247434

0.135450 -0.045150 0.456424 0.247434 1.465237

4. 1.333333 0

Table 6: Values of r'<P = bip/bpp and of b2p

V = 1
0.333333 -1.123812 0.113388 -0.098739 0.281250

1. 2.571430

1.

-0.591654

-0.685644
0.201460

-0.039757
3.164056
0.155412

1. 0.015344 0.654785
1. 0.700065

Writing

i; = Z aip ss , V = 1, • • • , 5 (4.2)

where the constants air are to be determined according to the usual orthogonalization
scheme, we have for Um in (3.5)

Um = ^?[S*2 ~ ^?(S*' S°"S{)2]' (4 3)

In expanding, only products aipaip (i, j = 1 • ■ ■ , p where p = 1, • • • , 5) of the co-
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efficients enter. Defining r',„ = aip/aTV , (i = 1, • • • , p for a fixed p = 1, • • ■ , 5) we
have

where the r'iv are obtained for each p as solutions of the (p — 1) linear equations

£ (s<-s<m„ = -s;-s;, j = i, • • • , p — it-i
whose coefficients are the products S' • S • of Table 3. The values of the r'i7> are given in
Table 4 as well as the values of the quantities ah , a22 , • ■ ■ , al5 . From these values
and the values of the S*- S- in Table 3 we may compute Ui , ■ • • , Us from (4.3).

Similarly, Table 5 gives the values of the scalar products of the complementary
states with one another and with S*. Writing

K' = E biQS','i-i

we get for (3.5)

= (s*- E biQS'/J, n = 1, • • • , 5. (4.4)

The products of the coefficients are given by

bigbjg — TiQTjQbq<1 , ij J 1, ' " ' j Q Q — lj ' * " J 5 (4.5)

where the values of the rJJ and the b2QQ are to be found in Table 6.
Evaluating (4.3) and (4.4) we find (reentering the factors E and a so that the quantity

Ea2 cancels out) the values of Lj , • • • , L5 and , • • • , Us given in Table 7 below.

Table 7

~1 L* i v7~
m = n = 1 4.500000

4.500000

4.676823

4.750435

4.761603

4.965516 (5 places accurate, 6'th estimated)

4.928572

4.920992

4.890932
4.856468 (4 places accurate)

Entering these values in (3.6). we get successively improved inequalities for E as follows
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Table 8

Iteration
No.

1 .402778 - < E < .444444 -
a a

.405797 - < E < .444444 -
a a

.406422 - < E < .427641 -
a a

.408920 - < E < .421014 -
a a

.411822 - < E < .420027 -
a ~ a

At the first iteration the gap between upper and lower bound is 10.3%. In four further
iterations this is reduced to 1.99%. Averaging the upper and lower bounds yielded at
the fifth iteration and retaining only 4 places gives the approximate formula

E = .4159 - (4.6)a v

where we have established that the coefficient is in error by less than 1%. The corre-
sponding expression in terms of average stress and strain is

E = .8318 (4.7)

It is interesting to compare these formulas with those for a test in which motion of
the bar in the £1-direction is not hindered, i.e. with the case of pure compression in plane
strain. Labeling the uniform stress and strain by a and i respectively, we at once obtain
from Hooke's laws, written for plane strain, the relation

E = (1 - v2) r- (4.8)

In the case v = § which we have taken, this gives

or

E = .888889 (4.9)
e

E = .444444 3 (4.10)

where F is the load required to produce the compression 2a in the simple compression
test. Comparing these formulas with (4.6) and (4.7) we verify the-fact that preventing
slippage in the Zi-direction has the effect of stiffening the bar.
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Given these formulas we can correct the value of E determined from a test in which
it is assumed that the bar is in simple compression whereas actually due to frictional
end effects the bar is in a state of compression akin to that of Fig. 2. Using (4.10) one
arrives at a value E for E which is larger than the true value as given by (4.6). Division
of these equations gives as the relation between E and E

E = .9359 E, (4.11)
so that .9359 is the correction factor to be used.

It is to be remarked that in practice one can not achieve even an approximate state
of plane strain in compression unless a very long (in the x3 direction) specimen is used.
However, analogous results to those given here can be obtained for a specimen with
rotational symmetry. The formulas deduced for this case would be of more immediate
practical value in compression testing of materials.


