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A GENERAL APPROXIMATION METHOD IN THE THEORY OF
PLATES OF SMALL DEFLECTION*

BY

M. ZBIGNIEW KRZYWOBLOCKI (University of Illinois)

Introduction. The methods developed up to now in the theory of plates do not lend
themselves readily to the solution of the problem in the case of an arbitrary shape of
the plate. The papers of Nadai, Navier, Reissner, Southwell, and others, deal only
with plates of special shapes. In the present paper the author develops a new method
which aims at the solution of the problem quite independently of the shape of the plate.
The outstanding feature of this method is that it is entirely independent of the shape
of the plate; its success depends, however, on the type of loading. If there is no lateral
load, i. e., if the forces act in the plane of the plate, the method is successful independ-
ently of'whether the forces are distributed uniformly or not. Thus, the critical stresses
of a plate of arbitrary shape can be found. If there is a lateral load, the method is not
always successful. There are cases in which it is not possible to find a particular solution
or a fundamental integral of a non-homogeneous linear partial differential equation of
the fourth order with the aid of the methods now available in mathematics.

In general, the method involves the following two steps:
(a) to obtain a function which satisfies the linear partial differential equation of the

fourth order for the deflection of the plate, but does not satisfy the boundary
conditions,

(b) to obtain a solution of this partial differential equation which satisfies the bound-
ary conditions precisely or approximately.

In the case of a linear homogeneous partial differential equation of the fourth order
with constant coefficients, there exists the possibility of separating the variables, and
a complete set of functions can generally be found with the aid of conventional methods.
The solution then is a simple series of these functions with coefficients which are de-
termined from the boundary conditions. In the case of a linear homogeneous partial
differential equation of the fourth order with variable coefficients, the problem becomes
much more complicated since, in this case, the variables cannot be separated. A method
given by S. Bergman [1] f 'then leads to a complete set of functions, and in particular
to convergent expansions in terms of these functions. The -complete solution of the
differential equation is given by a double series.

To keep the possibility of applying the present method to the case where the forces
acting in the plane of the plate are not distributed uniformly, the author chose Berg-
man's method. In order not to obscure the whole procedure by long calculations, the
forces have been assumed to be uniformly distributed in the plane of the plate in the
numerical example elaborated in the present paper; i.e., the coefficients in the linear
homogeneous partial differential equation of the fourth order are assumed constant.
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Fellow in the Program of Advanced Instruction and Research in Mechanics at Brown University. The
author wishes to acknowledge his indebtedness to Dr. S. Bergman, Harvard University, for helpful advice
and suggestions and to Professor G. H. Handelman, Brown University, for some corrections during the
preparation of the manuscript.
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However, this example illustrates the general method. In the case where the forces in
the plane of the plate are not distributed uniformly, the general method remains un-
changed. On the other hand, some changes have to be introduced into the numerical
procedure and this has been explained throughly in Ref. 10. Thus, with a certain amount
of additional numerical work, the present method may be extended to the general case
of variable coefficients. The boundary conditions are only satisfied approximately with
the present method.

A brief resume of Bergman's method of solving homogeneous linear partial differ-
ential equations of the fourth order is given in Sec. 1. Since this method represents the
solution in the form of infinite series, which involve in practical problems many thousands
of operations of a simple nature, this technique is particularly suitable for punch-card
machines. Such machines were employed in obtaining the numerical results given in
this paper. The functions appearing in the infinite series are defined and evaluated,
and the various partial differential equations of loaded plates with small deflections are
discussed in Sections 2 and 3. As an illustration of the procedure, the method has been
applied in Sec. 4 to the calculation of critical stresses in a triangular plate loaded uni-
formly in its plane parallel to the x-axis. The example shows that once the scheme for
the calculations has been set up, the computations are quite straightforward and simple
and may be performed by an inexperienced staff. All details of the example are explained
together with the method of avoiding solution of determinants of higher order. Several
final remarks close the paper.

1. Solution of linear partial differential equations of the fourth order. The proof
and complete explanation of this particular method of solving linear partial differential
equations of the fourth order can be found in S. Bergman's paper [1], Only a brief resume
of this method will be given here. The differential equation considered is the following:

+ MU„ + LU„, + NUZ.„ + AUZ + DU+ CU = 0. (1)

The coefficients, M, L, ■ ■ • C are assumed to be entire functions of z and z* where,
in terms of complex notation, x + iy = z, x — iy = z*. The function U is also assumed
to be a function of z and z*. When z and 2* are conjugate complex numbers, x and y
are restricted to real values. If x and y are allowed to take on complex values, then
z and 2* will be independent complex variables. The asterisk denotes the conjugate
complex number and partial derivatives are denoted by subscripts. If one sets U =
u + iv, Eq. (1) is equivalent to a system of two real fourth order partial differential
equations for two real functions u and v. If for real values of x and y the functions L
and C are real and M = N* = Mx + iM2 , and A = D* = + iA2 , then the first
of these, two equations contains u only and has the form:

A Am + auxx + 2buxy + cm„„ + dux + euy + fu = 0, (2)

where

d\ d*u dju
dx4 dx2 dy2 + dy2'

a = 4L + 8Mi , b = 8M2 , c = 4L — 8Mx , (3)

d = 16A, , e = 16A2 , f = 16C.
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In applications, we are mostly interested in real equations of the form (2). However,
it is simpler to work with the general equation (1) without making any special assump-
tions about the coefficients. The derivatives employed are the following:

U = u + iv,

77 = §U _ 1(§U _ ,dU\ _ dU _ 1 (dU . dU\
dz 2 \dx 1 dy /' '* dz* 2 \dx 1 dy /'

v,..., . i[jl m _ ,.|2)+i»m _ ,.|S)]
dz* L2 was dy / J 4 \_dx \dx dy / dy \dx dy J J

l(d2U ,d2U\ ...-iX^ + wb a)
TT 1 (d2U d2U d2U\

" 4 \dx2 dx dy dy2 /'

tt 1 (d*U . d2U d2U\
"" 4 bx2 + dx dy dy2 )'

v . . _ 1 (d'U 12 d*U | d*U)
16 \3a;4 3x2 dy2 dy4 >

S. Bergman [1] has proved the following theorem concerning the solution of Eq. (1)
[see Theorem 2.1. and Remark 9.1. of his paper].

Theorem. There exist four functions Ellc'K)(z, z*, t), k = I, II, k = 1, 2, which are
defined for sufficiently small values, say | z [ < pj, | z* \ < p2, and for | 11 < 1, possessing
the following property: If/«(f) and g*(£), k = 1, 2, are any analytic functions of f defined
in the neighborhood of the origin, then

U(z, z*) = t J" \e(I'\z,z*, <)/.[| z(l - <2)]

+ Eu"\z,z*, t)g^z*( 1 - <2)]}(1 - t2yi/2dt,

is a solution of (1). Conversely, if U(z, z*) is a solution of (1) defined in the neighborhood
of the origin z = z* = 0, then U can be represented in the form (5) by means of suitably
chosen functions fK and gK , k = 1,2.

This theorem yields a local result; i.e., this theorem states that representation (5)
for U(z, z*) is valid only in a sufficiently small neighborhood of the origin. By proving
a theorem concerning analytical continuation in the complex domain of solutions of the
differential equation (1) with analytic coefficients, Bergman has shown that representa-
tion (5) is valid in the large i.e. in a finite domain. He also proved the following theorem
[Theorem 11.1],

Theorem. Let U be a solution of (1) represented in the form (5). Let U be regular
for (x, y)tR2, Ea,K\z, z*, t) for [ t \ < 1, (x, y)tR*2 + 5ft*2. Then the functions fx , /2 ,
gi , g2 are regular in %R2. By \R2 we denote the domain obtained from domain R2 by
the transformation zA = \z.

(5)
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Because of the condition | t \ < 1 in (5) this domain cannot be greater than the
unit circle. In order to obtain rapid convergence of the series, the radius of the circle
should not be greater than 0.5 to 0.6 for practical purposes. The functions Eik'"\z, z*, t)
introduced above have the property that

E(I1\z, 0, t) = Ean\0, z*, t) = 1,

Em\z, 0, t) = Ean\0, z*,t) = 0,
(6)

E^\z, 0, t) = E['n\0, z*,D = 0,

Ell2\z, 0, t) = Elin\0, z*, t) = 1.
Each of the functions E(z, z*, t) can be represented in the form

E(z, z*, t) = Pi0)(z, z*) + ± eVPM{z, z*), (7)
v = l

where the functions P{,) are to be determined. They are defined by the following system
of differential equations, which arise from the application of the linear differential operator
Lf(E) and from the solution of the equation Lf(E) = 0:

A[P,0)] = 0,

Di[P(1)] = — 4D1[P<0)] - 2D2[Pm],

+ i + 3/4 + V + WtR""] (8)

+ AtPi"] + (n + i)fl,[/'"*"]

+ NP£l. + DPf + CP(n)], (n = 0, 1, 2 • • •),
where

D1(H) = + MH and D2(H) = LHZ. + AH. (9)

System (8) is a system of differential recurrence formulas for the functions PM.
After P<0), P(1>, ••• P(n*11 have been determined, p(n+2) can be obtained by solving
the ordinary differential equation, where only P<n) and p<n+1) appear. There exist two
sequences of functions Puin\z, z*) and PU2n\z, z*), n = 0, 1, 2 • • • , satisfying the
differential equations (8), n = 0, 1, 2 • • • , and such that

Pmo\z, 0) = 1, P[lm(z, 0) = 0,

Pmn\z, 0) = 0, Piiln\z, 0) = 0, (» = 1, 2 • • •),

and

PU20\z, 0)^= 0, P[?°\z, 0) = 1,

PU2n\z, 0) = 0, Pli2"\z, 0) = 0, (n = 1, 2 ■ • •)•

(10)
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The conditions and the proof of uniform and absolute convergence of these series have
been given by Bergman [1]. Two other series for P'"' are obtained by interchanging
z and z*, by interchanging differentiation with respect to z and z* everywhere and by
replacing M and A by N and D respectively, and conversely.

Let us take into consideration only one function E. Substituting Eq. (7) into (5),
one obtains:

U(z, z*) = /; Pm(z, z*)/[2(1 ~ <2)](1 - «T1/2 dt

+ f* t2zPw(z, z*)f[2(1 ~ <2)](1 - trindt (11)

+ fl tYPi2\z, z*)f[z(1 ~ <2)](1 - <2)"1/a dt+ ■■■

Let us assume that the integral

h = /[*(1 ~ <2)]d - eyin dt,

may be expanded into a simple power series of the form

h = z;1 /[2(12 <2)]d - <ti/2 ^ = z 2-. (Ha)

To this end let us assume that the function /(z, t) under the integral sign can be expanded
into a power series of the form

(llb)

This series (lib) can then be inserted in Eq. (11a), giving:

h = £ - <vi/2 dt = £l i c,[2'(1 ~ f2)']d - ern dt

(12)
= E*'.

v~0

If we make the change of variable f = p, theD

*" iw* (I3)
and

/" (i - <2r,/2 dt = { a- rv2 =r(y + y1/^)(1/2). (14)

Equation (14) can also be written in terms of a Beta-function; namely,

r(v + l/2)r(l/2) J 1 1\ fH ,W+T) " V + 2' 2/' (14a)
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since B(p, q) = [r(p)r(g)]/[r(p + ?)]. Thus:

~0 2 r(" + 1) -0

From Eq. (14b) we find:

r — 1" T(y + 1)
T(v + l/2)r(l/2)' ^ ;

In the first integral J, of Eq. (11) the simple form of the power series (J1 = T^T-n z")
will be used, whereas the form (lib) together with the values of the coefficient, found
from Eq. (15), will be used in the second, third, etc. terms in the series (11). For the
second term in the series (11), we must consider an expression of the form:

= £' 4* ~ °](1 - ey1'2 dt. (16)

Substitute in Eq. (16) for f(z, t) the series (lib) together with the values of the coeffi-
cients, calculated from Eq. (15):

Z'{1 ~ 1 y (1 - er1'2 dt
2"

/+1 oot2z Ec''
•1 »"=0

_ y r(y + *) 2"+i f1 fa _ t2y~1/2 dt~ r(f + i/2)r(i/2) L H1 l)

Y» r(» + l) ,+1 iy + i/2)r(3/2)
h i> + i/2)r(i/2)z r(,+ 2)

(16a)

f, r(3)' 2V + 1 y, 1 y + '
h 22r(2) (v +1) S2(» + 1)'

The third term can be evaluated in a similar manner. We easily obtain:

f1 /*,»/*(! - Oil _ rf# r(y + 1) +2 i> + l/2)r(5/2)
J-1 -L 2 Ju ' a r(»» + i/2)r(i/2) r(» + 3)

v + 2 o -," + 2
(17)

it £ = -^  etc.
24r(3) (" + 1)(" + 2) 4 (" + 1)(" + 2)'

Of course, the functions P(n) will be functions of z* alone, if expressions (12) to (17)
are functions of z alone and vice versa. Taking all four sequences into account, we find:

U(z, 2*) = Z E Kn„Pm"\z*)zn+'
n=0 f=0

+ ee Knvpa*n\z*)zn+'
„-0 ,-0 (18)

+ EE Kn,Pulin>(z)z*"+'
71 = 0 v = 0

+ EE KnyPlII2n,(z)z*n+',
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where

K = 1 K = I.I K = l-L-*^10 2 2' 20 ^ 1*2' '

V -II K- J±11 2*2' 4 2-3' '

_ I I (19)12 2 3' 22 4 3-4'

if - 1 1 jr - ? 1/Vl» — o / l 1V 2v — <

(20)

2 („ + 1)' ~2' 4 („ + 1)(„ + 2)

Certain constant coefficients have to be introduced in the process of integration; these
should be defined by the boundary conditions. Separation of the real and imaginary
parts leads to the following form of the general solution of the partial differential equa-
tion considered:

U(z, z*) = aflRe\ E E KnyPuln)(z*)z"+'\
L n-0 v-0 J

+ ay2In\ E E KnvPain)(z*)zn+' 1
L n-0 »-0 J

+ .4 e e Kn,pii2n)(z*y+' 1
L n-0 k-0 J

+ • •] + cKl/2e[- • •] + cv2Im[- • •]

+ d,Jte\ E E /■f„,F<"2")(z)z*"+'l
L n-0 >--0 J

+ d,27m[ £ E K„,p("2")(z)z*n+'l
L n-0 r —0 J

In case Eq. (2) is taken as the starting point of these considerations, one does not need
to take into account the conjugate sequences Pai) since both PU) and P"" will give
the same results. Thus only the sequence P"' need be calculated.

2. Functions PU) and P"'\ Of course, there are many functions which satisfy
conditions (8) and consequently represent the solution. From Eq. (9), we find that

AfP'0'] = Pi?1.. + MPm = 0,

from which it follows that
Pm = cos (M1/2 z*) or Pl0) = sin (Ml/2 z*), (21)

under the assumption that M = constant. The general solution is

P"10) = A, cos (Mw2 z*) + A2 sin (Ml/2 z*). (22)

From Eq. (10) one may easily find that At — 1 and A2 = 0. Thus

p"10> = cos (M,/2 z*), (23)
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and similarly,
I

P(/20) = A, cos (M1/2 z*) + A, sin (M1/2 z*) = ~- sin (M1/2 z*)t (24)
M

(25)
DjfP'1'] = p[\\. + MPm = -^[p;0'] - 2D1[PW]

= -4[P^.. + MP(,0)\ - 2[LP[V + 4P<0>]-

For p(J10) = cos (M1/2 2*) = P<0) one obtains

Pi0> = P^i.. = 0, Pi,? = -M1/2sin (M1/2z*), (26)

Pill. + MP(1> = 2L M1/2 sin (M1/2 z*) - 2A cos (M1/2 z*). (27)

The homogeneous equation + MPW = 0 has the solutions

P(1> = ux = cos (M1/2 z*) and P(1> = m2 = sin (Ml/% z*).

Any conventional method might be used to solve the non-homogeneous equation
(27) by finding the particular integral, for example, the method of variation of para-
meters. One may easily show, however, all the conventional methods have proved to
be highly impractical and inconvenient for higher terms of the sequences plIln) and
P</2b>. For this reason, the method given by Ince [2] will be used. This proved to be
shorter beginning with the term p(/12). As an illustration, let us apply this technique
to the solution of Eq. (27). We note that the Wronskian

A(«i , u2) =
Ml u2

u[ u'i
(28)

cos (M1/2 z*)(M1/2yl sin (M1/2 z*)
= 1.

-MU2 sin (MU2 z*) cos (M1/2 z*)

The functions \\ and V2 are given by

Vl= ~f A r(Z*} dZ*' Vi = I A r(z*} dz*' (28a)

where the expression r(z*) represents the right side of the non-homogeneous equation,

r(z*) = 2LM1/2 sin (M,/2 z*) - 2A cos (M1/2 z*). (29)

After the necessary substitution and calculations are performed one obtains

7, = jj. sin2 (M1/2 z*) - Lz* + cos (Mu2 z*) sin (MW2 z*) + C\ , (30)

V2 = L sin2 (M1/2 z*) - Az* - cos (Mu2 z*) sin (Mu2 z*) + Ct . (31)
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Finally the general solution is given by

y = VlUl + V2u2 = Pm = P(m>. (32)

Condition (10) implies that Ci = C2 = 0; and, finally,

p<m> = -k- gin (M1/2 z*) - Lz* cos (Ml/2 z*)   z* sin (Mz*)- (33)
MU2 M

One can easily show by direct substitution into Eq. (27), that Eq. (33) gives the re-
quired result. In a similar way, the function p'I21) and all the others can be found.
The table, given below, shows the results. In order to obtain the function P{11) one
has to replace z* by z, M by AT, D by A and vice versa.

P</10) : cos (MU2 z*),

pmi) ■ ~~T7l (Ml/2 2*) - Lz* cos (Mu2 z*) - V- z* sin (M1/2 z*),Ml/ M

p""' :""8in <M"'**> + K " m}"cos (M'"2*>

, r L" , 2Ar Ml/2 2c 1. • ,,,1/2 ^
lm MU2 6 M1/2 3 3 m1/2J SU1 Z

+ [m - f}'cos <M"" + 3^ain (M"' 2*>-

pi"0) '■ —773 sin (M1/2 z*),
M

P(/21> : 4 2* cos (M1/2 z*) sin (.Ml/2 z*) - ~-2 z* sin (M1/2 z*),
M M M M

p{'W ■ [ sin (^1/2 **> ~ ££f z*2 cos (M'/2 **)
L6 M 6M M J 3M

+ T ALW2 ^77i V sin (Mu2 z*)
L3M M 3 M S

, r -V A2 2N , 2C~L ,mU2 ^
Hw " 2M1" T + 3M.T 003 <M 2)

+ [ — + —  +  1 sin (M"' 2*),L6M M,/2 2M2 MU2 3 M1/2 3M M1/2J
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P<mo) : cos (Arl/2 z),

P<m,) : sin (AT,/2 z) - Lz cos (AT1/2 a) - -^-z sin (AT,/2 z),

. _DL_ 2, gin (^I/2 2) + I ^ - i 2 cog {Nm z)
3 N

\L2 D21L 6 wj
A f D2 L2 , 2M N1/2 2c 1 - ,.M/3 ,

l-6ArAr1/2 6iV1/2 3 3 ATl/2JZ

f DL 2A~\
L3iV 3 J

+ I ̂ 7 - ^ V cos (Ar'/2 z) + sin (iV'/2 *)-

P(7720) :^sin (N^z),

PUI2V : %z cos (N1/2 z) sin (N1/2 z) - -±-z sin (Nu3 2),
N N n 3 N

ptm2> T__^L lz2 sin (jV,/2 z)-J£z2 cos (AT,/2 z)L6iV1/2 6iViV1/2J 3Ar

. r 2A "] . / jyrl/2 \
L3N iV1/2 ~ 3 A^1/2j Sm

, f-L2 Z>2 2M . 2Cl .+ [_ 6N 2A'2 3 + 3ArX C0S z)

, T ^ 2C 1 . ,.rl/2 ,
L6A^A^1/2 2N2 N1/2 3N1/2 3iV A^2-!Sm 1

Direct substitution into Eq. (18) of the expressions for the sequences P "n), p"2n\
P<mn>, P'"2"1, taken with a limited number of terms, and subsequent substitution of
Eq. (18) into (1) show quite easily that all terms with the power z' or less than z , i.e.
z'-1, z""2 etc. cancel. The terms with the power z"+I cancel only partly; i.e. some terms
do not drop out. The higher the power of z"+p, the greater the number of terms which
do not drop out. A preliminary test of convergence of the functions P'"' should be
made at the beginning for values of M, L, C, D, N and A close to those which may be
used in the given problem. In the case considered one obtains for M = L = C = D =
N = 1, A =3 after the necessary calculations are performed:

0.1 0.2 0.3 0.6

per io) 0.995000 0.980100 0.955300 0.825300

pen) -0.029640 -0.116540 -0.257000 -0.946860

P<.112) 0.100698 0.239742 0.367548 0.987782

As one can see, the convergence is fairly good for small values of z*.
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3. Partial differential equations of loaded plates with small deflections. The partial
differential equation solved by Bergman [1] is homogeneeus, i.e., all forms contain the
function U. On the other hand the partial differential equations of loaded plates with
small deflections are mostly non-homogeneous, i.e., they contain a term without the
function U. In these cases one has to perform the transformation of a non-homogeneous
equation into a homogeneous one, a task which is not always possible with the use of
mathematical methods available today. Let us consider several cases [3]:
(a) laterally loaded isotropic plate:

—, + *^ + —,-1, (34)
dx4 dx dy dy D

where
q, intensity of a continuously distributed load,
w, deflection,

2)= Eh°
12(1 - x2)'

E, Young's modulus,
h, thickness of the plate,
v, Poisson's ratio.

(b) laterally loaded anisotropic plate:

^ d4w , d4w , ^ d4w , /n^\Dx — + 2H „ 2 + Dv — = q, where (35)
dx °x dy dy

n E*h* n _ EK n _ E!)L n =
12 ' " 12 ' 12 ' " 12'

H = Di + 2 D„ .
(c) isotropic plate bent by moments distributed along the edges:

d4w , „ dlw , d4w n /0/rt
—t + 2 2 -a H r = 0 (3b)dx dy dy

(d) isotropic plate on an elastic foundation:

^ + 2^ + ^ = !^=, -here (37)
dx" dx dy dy4 D

k = modulus of the foundation (pound per square inch per inch of deflection).
(e) isotropic plate bent under the combined action of lateral loads and forces in the

middle plane of the plate:

d4w „ d4w djw 1_
dx4 dx ' dy4 D

~2 2 *\2d w , ,, d w . d w
, + N.^ + N. w + (38)=]•'

where
Nx , Ny , normal forces per unit length of sections of the plate perpendicular to x- and

^-directions, respectively,
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Nxv , shearing force in the direction of y-axis per unit length of section of the plate
perpendicular to z-axis.

Setting q = 0 in Eq. (38), we obtain the equation for the deflection of a plate under
the action of forces in the middle plane only.
(f) isotropic plate with small initial curvature:

d\h , 0 dV , djuh _ J_ , AT d\w0 + wQ
a "l ^ 2 »» 2 ~l a Ti I j? ^ x 2dx dx dV dy D L dx

(39)
d\w0 + Wi) , OA; d2(w0 + Wj)

+ N"~~dyi +2N" dx dy

where w0 , initial deflection,
v>i , additional deflection.

In general we may write

A Aw -f awxz + 2 bwxy + cwvv + fw = X, (40)

where X, which is equal in most cases to q/D, may be a constant, or a function of x
and y, or sometimes is equal to zero. The general procedure is the following: one finds
any particular solution of equation (40). Let it be denoted by wx . After substituting it
into (40) and subtracting this new equation from (40) one obtains the homogeneous
equation,

AA(w — Wi) + a(wxx — wlxx) + 2 b(wxv — wlxv)

+ c{wvy - wluu) + f(w - = 0. (41)

Let us consider some special cases:
(a) assume / - const, and X = const. Put Wi = const. = E;fE = X, wx = X/f,
(b) assume / = 0, and X, a, b, c are constant. Put Wi = § const, x2, wlxx — const.,

a-const. = X, or wx = \(X/a) x,
(c) assume a = b = c= f = 0, X = const.; put w i = (1/24) const, x4,

d4Wi v X 4—- = const. = X, or wx = — x .
dx- ■ 24

(d) assume L(w) = X where X is a certain polynomial in x and y with constant co-
efficients; assume also a, b, c, constant. Thus X = ^ a^x'y" or X = ^ avll cos
(vx) cos (py). Let Wi be a polynomial in x and y of the same degree as X. Thus
Wi = 2 A„„x'y* or w1 = ^2 A cos (vx) cos (py). Substitution of and subsequent
comparison of the coefficients on both sides yield the values of A,„ in terms of a,„ .

In case no such combinations like those given above can be applied, or when the
coefficients a, b, c, f, X, are not all constant, one must refer to the general theory of
partial differential equations in order to find any particular solution or any fundamental
integral. The application of Green's method may be successful in some cases. The
particular case AAw = f as well as the method of finding the fundamental integral in
the case of an arbitrary linear partial differential equation with constant coefficients
are treated in Reference 4. When the equation is homogeneous, the method of linear
differential operators explained above can be applied and the deflection of the plate
presented in the form (20).
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4. Illustration of the method. Calculation of the Critical Stresses, (a) Formulation
of the problem and explanation of the procedure. As an illustration, this method will be
applied to the problem of calculating the critical stresses in an isotropic triangular plate
subject to a pure uniform compression parallel to the horizontal axis. The triangle is
assumed to have a right angle and both legs are equal to I. One of the legs coincides
with the Zj-axis and the other with the f/r-axis. In this case, Eq. (38) will reduce to
the form

d*w , „ d*w , d4w , d2w „ , Nx
^! + 25if« + ^; + 'a2 = 0' where T" d <42>

Let us transfer the figure into an x, ^-system of coordinates such that the length of
a leg equals 0.6. Keeping in mind that

0.6xi dwx =  I _ dw dx_ _ 0J3 dw d2w _ 10.6\2 d2w
i dx dXi I dx' dXi \ I / dx2' 6 C"'I ' dx

one obtains in the x, ^-system the following equation:

d*w , „ d*w , d*w , I2 d2w n
4 "t" 2 a 2 a 2 H 7 + A oc r 2 ' 0. (43)dx dx dy dy 0-^6 dx

In case the two sides are not equal, one has to express the length of one side in terms
of the length of the other, and Eq. (43) will remain the same. To each value of N, =
const., there corresponds a set of solutions w satisfying Eq. (43); but the boundary
conditions need, not be satisfied. However, the boundary conditions can be written in
terms of a minimal problem, and the solution w so determined as to satisfy this minimal
problem. This method is explained in detail below.

In order to find the first critical stress one has to find the least value from this set
of w. To this end, we must vary Nx and look for that value of Nx for which the deflection
w reaches its minimum value. Suppose no\y that t is multiplied by a number m. In order
not to change the character of Eq. (43), we shall introduce a new system of coordinates

i/2 i/2 dw dw 1/2 d2w d2W d4w d*W 2

Eq. (43) will be transformed into

d*w d*w dlw I2 d2w
TP + + + 036 TJf2 = °- (44)

Thus multiplication of r by m is equivalent to the multiplication of the coordinates
x and y by m1/2 or to the introduction of new coordinates f and ??. Assuming clamped
edges all along the circumference leads to two conditions:

(i) deflection along the circumference equal to zero,

j>wdo = 0 or j> w2 da = 0, da = (d? + dv2)1/2, (45)
e e

(ii) the first derivative of the deflection with respect to the normal along the cir-
cumference is equal to zero,
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°r <46>
e '

If the solution is not very far from the state where (i) and (ii) are equal to zero, both
conditions can be combined into

L — (j) w2 da + A (j) (^~j da = min. (47)
c e

Concerning the value of A, some authors (References 5, 6, 7) assume that it is con-
nected with the question of what ratio each of the two conditions w = 0 and dw/dn =
0 should be taken into account. If the function w satisfies the boundary precisely, both
w and dw/dn would vanish on the boundary. The particular solution chosen, however,
does not satisfy the boundary conditions completely. That part of the work which
arises due to the deviation from w = 0 may be expressed as

ki = Ci w2 da (48)
c

and that part of the work which arises due to the deviation from dw/dn = 0 may be
expressed as

h = (s)° <•' <49)

where Ci and C2 depend on the properties of boundary supports. The next condition
imposed is the requirement that

ft, ^ k2 , i.e., Cl <f-w2 da = C2j> da. (50)
c e

Therefore, the coefficient A is

A = Cj/C, . (51)

This requirement implies that the work of the boundary forces which arises from
the chosen particular solution divides uniformly into both parts (References 5, 6). For
the boundary conditions w = 0, d2w/dn2 — 0, Bergman cites that on the basis of ap-
proximate calculations the requirement (50) is fulfilled best if one chooses A = 0.002,
0.5, or 200. In the case considered in this paper, the value A = 1 was chosen after some
approximate calculations.

Equation (47) can also be written in terms of the (x, y) -coordinates in the following
manner,

da = (d? + dvy/2 = (to dx2 + m dyY2 = mW2 ds, (52)

L = tri j) w2 ds + A m1/2 j) ds = min.
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One more condition must be superimposed on the whole system, namely, that the
energy of the deflected plate should be positive. In the case considered, it is sufficient
to assume that the energy

Ex — | JJ dri > 0 or = const., (53)
a

Since Nx = const, this condition may be expressed as

E = // (ff) dv = m If (^dx) dxdy>0 or = const- (54)
8 a

It is obvious that in Eqs. (44) to (50), (53) and (54), w is expressed in f, 77 system
of coordinates. In the case considered m = 1,4, 9, 16, 25 and 36 was chosen.

The deflection w will be expressed by U{z, z*) in Eq. (20). Since Eq. (42) was chosen
as the starting point, only the sequences P n) and P{,2) will be taken into account.
After all necessary calculations are completed, the imaginary part of U(z, z*) will be
assumed to be real, since one may easily see from Bergman's method [1] that for real
partial differential equations the function u in U = u + iv will be real. The circumference
of the triangle and its surface will be divided into several parts. In the case of a curvi-
linearly shaped plate, the circumference has to be transformed to a polygon and the
precision of the calculation will depend on the number of sides. The coordinates x and
y are measured for the center of each part or side and the sequences PUI) and P<12> are
calculated for a finite number of terms by substitution of these measured values of x
and y. The unknown coefficients avl , av2 , bul , b,2 , are determined from the minimal
problem with constraints discussed previously. This leads to a set of n linear equations
with n unknowns of the form

+ X = 0, (55)da, 1 da, j

where X is the Lagrangian multiplier. These equations will possess- solutions arl and
btl different from zero if and only if the determinant of the coefficients vanishes; that is,
provided

6u + Xf/n , eln + X<7i„

+ X<7ni , enn + \gnn

= F(\) = 0. (56)

In order to find the first value of w one does not need to calculate the deflection
from Eq. (20). It is quite enough to take F(\) into account (Reference 8)*, for consider
the pair of quadratic forms

$(^1 , Xn) = X) O-iiXiXi ,

(57)
n

, Xn) = X) bijXiXj .

"Chapter 13, p. 169, Theorem 3.
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Then the function

$ - X^ = 2 (flu ~ MiJXfXj , (58)
1

has as its discriminant, the determinant

On X&n ,   • a,in \bln

Q>nl ^nl J   ®nn ^nn

= F(\). (59)

If Xx , X2 , X3 • • • X„ denote the roots of the X-equation of the pair of forms $ and \p,
F(\) = 0, then it can be proved that $ and ip may be reduced by means of a non-singular
linear transformation to the normal forms

XiXj + X2£2 + + \nxl ,
(60)

X\ + x\ + + xl .
Thus we obtain a pair of quadratic forms, one with coefficients Xx , X2 , X3 • • • X„ , and
the other with all coefficients equal to 1. Hence we may consider the pair of quadratic
forms (60) instead of (57). Since one looks for the first value, only Xj has to be taken
into account for various values of m. The minimum of the function Xj = /(m), which
may be plotted as a diagram, gives the value of m for the critical stress.

(b) Calculations of the sequences KnvPain) (z*)zn+' and KnyP(I2n) (z*)zn+y. Let us take
the first three terms of the first sequence (18):

u{z, z*\ = pmo\z*y + ip(mV)
zv+1

2 v'(v+1)

(61)
+ -APm2\z*) Z4 v ' (>> + l)(y + 2)'

If we substitute (23), (33) etc. into (61), comparison of (2) and (43) gives:

12 Na = Qgg -jj, b = c = d = e- f = 0, M2 = A^ = A2 = C = 0,

T _ a _ f Nt m = — = l* N*
on oa on» 1 1c

N =

8 0.36 SD' 1 16 0.36 16D' (62)

a 12 Nx l2Nx
16 0.36 16D 5.76 D'

A = D = C = 0.
Let us assume in (1) that M = 1, L = 2, N = 1 and substitute these values into (23),
(33) etc. and into (61). After necessary calculations have been made we obtain

z"+1
U(z, z*)! = (cos z*)z't (sin z* — z* cos z*) (v + 1)

(63)
+ lz**<coss*>frTWTT)'
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Let us assume v = 0, 1, 2, 3, and decompose (63) into the real and the imaginary parts,
calling the real part \pvl , and the imaginary \pv2 ■ Then

ypox — x sin x cosh y + y cos x sinh y

(64)x4 + y" , xY 2 2 , , ,  —'— + —z x — y +1 cos x cosh y,+

^02 = — ix cos x sinh y + iy sin x cosh y

+ ~4 V + ^2 x2 — y2 + 1 sin x sinh y.
(65)

It can be easily seen that yp,2 can be obtained from \f/vlL changing (sin x) into (—t cos x),
(cos x) into (i sin x), (sinh y) into cosh y) and (cosh y) into (sinh y). Consequently, it
is enough to give the results for iptl and 4>vl only.

fx5 xy2 yix xs xy2 1 ,= |_12 ~~6 T2 ~~ ~2 ~ XJC0S X C08h y

fx"y xyx 1/' y3 xy 1 . . ,~ |_12~ 6 12 2 2 2/Jsm xsinh y (66)

+  —Jsin x cosh y + xy cos x sinh y,

[x° + xy ~ xy - y* , x4 - y* , 2 21f2i = I  3" + x - y Icos x cosh y

rxy + xy5 , xy3 , 2xy + 2xy3 , „ 1 . . u
~ 12 + 6 ^ 3  + V fm X S V ^ '

, xa — 3xy2 . , , 3x2y — y3 • u
+   —— sm x cosh y H s-r—— cos x smh y,

O u

fx7 - xV - 5xV - 3xy6 x5 - 2®Y - 3x?/4 ,302!^31 =    2 - 11- + x - 3x2/ Jcos x cosh y

_ pxV +

3x"y + 2x2y3 — 2/5 , o 2 al • • u ——^ — + 3x y — y Ism x smh y

40
(68)

  6x2w2 + y*+   —— — sin x cosh y + (x y — xy )cos x sinh y.
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In the same way the function U(z, z*)2 for Pl/2) can be calculated; namely,
1 y + 1 o

U(z, z*)2 = PU20)(z*y + ^P(/21)(z*) , , + ^Pul2\z*)2 v y (v + 1) 1 4 v ' («/ + l)(x + 2)

z*+1
= (sin z*)z' — z*(sin z*) ^ ^ (69)

+ ^sin z* — z* cos z* + | z*2 sin z*^ -r~
«" + 2z

(v + 1)(p + 2)

Let us call the real part , and the imaginary $„2 • Then

[x* + 2xY + y* x2 + 3y2 , , 1 .$01 =   ^   2^- + 1 |sm x cosh y

(70)
x^ 4- xy2 x^y -f~+ x?/ cos a: sinh y cos a: cosh y H 2 S*n X S*n^

(V + 2s3?/2 + xy4 x3 + 3x?/2 , 1 .= —   g—— + xlsm x cosh y

, fxy + 2xY + y 2y , 1 . ,L  12  3~ ^J008 x Sm y ^ )

4 4 3 1 3x — y , , xy + xy .—   g-2- cos x cosh y H —-—— sm x smh y,

[x* + x4y2 - x2y* - y6 by* - 3x4 , 2 21 .$21 = I   ———     + x - y Is in x cosh y

+ [**" + fI* + ^ + 2ii/]cos x sinh „ (72)

• _ - 2*¥ ~ 3xy' ^ ^ ^ „ + My + W - V> ̂ j s.nh ^

4i_ _ ^ - »V - W ~ W + ~ 10A' + _ 3x[(,Jsin , 00sh v

+ 3xy + 5 x4y3 + x2yb — y'

40
(73)

2yb - 10x2y3
+ y 3Q y + 3rcV - y3 |cos x sinh y

r[ 1'~5j;V 20 53:V+JJ'!OS 1 COsh » + ^ 5 ™ 1 »■
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(c) Graphical representation of the particular solutions. A graphical representation
for the particular solutions can be obtained in the following manner:

Let z = re'*, z" = r" (cos v<f> + i sin v<f>),

z* = re~'*, z*" = r' (cos v4> — i sin v<p).

The values of \pyn and <£„„ can be calculated for some number of points, say for r = 0.2,
0.4, 0.6, 0.8, 1.0 and <t> = 15°, 30°, 45° • • • 90°. These points are plotted on a polar dia-
gram r, <f> separately for \pvl and $„2 • Points of the equal value of \prn and can be
obtained by interpolation and the lines connecting these points will give the graphical
representation of the particular solutions \p,n and <3?„n . Some of the results obtained
in this way are shown in Fig. 1. Similar graphs can be obtained for pUIn\ The real part
of P"'" will be the same as that of pUIn) and the imaginary part of p"In) will have the
same magnitude but the opposite sign to that of PUn).

(d) Calculation of derivatives. The derivative dw/dn has to be calculated for Eq. (52) :

dw
dn

dim _ d\pvn dx d\pvn dy _ rd\p,n dj,^\ .
dn dx dn dy dn 2t/2 L dx dy J'

since dx/dn = cos a = l'/21/2, dy/dn = sin a = 1/21/2, a = 45°.
For the horizontal and the vertical sides Eq. (74) changes to d\p,„/dn — (dip,n/dy)v.0 and

d\p,„/dn = (drpyn/dx)x.0 respectively. For Eq. (54) d\p,Jdx, (d\p,„/dx)x.a and (dip,n/dx)v.0
must be calculated. The results are given below:

d^oi
dx

d^oi
dy

— [a:3 + xy2 — a:] cos x cosh y — X \ ^  x1 — y2 sin x cosh yL J (75)

— y sin x sinh y,

_|_ u* x2y2 ~|
   +   a;2 — y2 + 2 cos x sinh y

(76)
+ x sin x sinh y,

d^pi _ i r
?'2 L

(77)

M ' (a;3 + xy2 — x + x2y + y3 — y) cos x cosh y

_ {x + y _|_ xjl % — i/2^sin x cosh y

+ V +   x2 - y2 + 2^cos x sinh y

+ (x — y)sin x sinh yJ,

To obtain the derivatives of \p02 the same changes as explained above have to be in-
troduced. In a similar way, all the necessary derivatives dipu/dx, d\pn/dy, etc., d<f>0i/dx,
d<j>oi/dy, etc. were calculated.
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' 0. 0/ 0.3

0.5 _0.5^
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/
<f> I> = 0

\X\ V 
_ V V-A. SLOA- o.j_ __ "\_V \ _ _0£Q2

'.A  , V / \\0J , \o.5 0

Fig. 1. The functions of >p and <f> in polar coordinates (r, <p).
 Real part Imaginary part



1948] PLATES OF SMALL DEFLECTION 51

(e) Procedure for calculation—It is easily seen that the number of operations involved
in the evaluation the above equations may reach a hundred thousand or more. For
this reason punch-card-machines were used. The circumference and the surface of the
triangle were divided into some number of parts; for each part, the coordinates of the
center point were defined and substituted into the above equations for \p,„ , $„n and
for all necessary derivatives.

The calculations were performed simultaneously for six values of m, which is equiv-
alent to the multiplication of all terms in x and y of the first degree by m1/2 of the second
degree by m, of the fourth degree by m2, etc. Of course, the values of the trigonometric
and hyperbolic functions also have to be changed with change in m. In the next step,
the squares in (52) and (53) were calculated. This is equivalent to the squaring of 16
term polynomials, since 4 groups , $„i , with 4 terms in each group were
taken into account. The integrations in Eq. (52) and (53) were replaced by multipli-
cation of each \pyn by the corresponding partial length or surface and summation on
the punch-card-machines. Next, the smallest roots of (56) were found in several cases.
In order to obtain a good picture of the influence of the order of the determinant on
the value of X, the value of the smallest root, X, was calculated for determinants of
various orders. Determinants were calculated for all six values of m. The results of
these calculations are given in Table I for three values of m in the neighborhood of
the minimum. All determinants were calculated by the use of punch-card-machines.

Table 1. x = /(*»)

No.
Coefficients

Used
Order of
determ.

Value of

m = 32 m = 42 m = 52

Ooi -54.5 -5.601058 -8.660602

ctoij froi -2.5 -0.15674675 -0.962

101, «02 -8.77342465 -0.163899924 -1.203058734

aoi, do2,
boi, 602

-0.0394278 -0.000211601 -0.603463788

To obtain more precise value of Xcr , the values of the two functions \[/tl , \p02 were
calculated for all integers between 17 and 24. Table 1 shows that it is sufficient to take
into account only the first function \//01 for the location of Xcr. The results of calculations
for i/<oi are given below.

Table 2. \ = }(m)

m 17 18 19 20
x -5.344245 -5.288552 -5.225255 -5.178953
m 21 22 23 24
x -5.306672 -5.329772 -5.639540 -6.576221

Thus \er is at m = 20. To obtain still more precise value of Xc, one may repeat the
calculations for several decimal values between 19 and 21.
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The value of the critical stress is given by Eq. (62):

ml2N
mN = (mNx) = Nxcr , N = 1,

Nxcr = 20 X 5.76 j = 115.2 j.
(78)

This may be considered as the first approximation* of Nxcr .
This method may also be applied to the case where the coefficients in Eq. (40) are

analytic functions in x and y. Since the procedure in this case remains the same as in
the case of a partial differential equation of elliptic type and second order one may refer
to Reference 10.

The whole procedure may be performed by a graphical method. Diagrams for the
particular solutions, for the first and second derivatives, can be plotted as explained
above, and the corresponding values read off for each plate shape considered. There
is a possibility of preparing a set of such diagrams for various values of forces Nx , Nv ,
Nxv, taken in certain intervals, similar to charts used in practice for buckling of columns.
This technique has been used in order to check the results obtained on the punch-card-
machines; the agreement was bound to be astonishingly good.

Similarly, in the case where the coefficients M, L, N • ■ • in (1) are analytic functions
of z and z*, one must refer to the general method of solution of such equations by use
of punch-card-machines [10].
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