
1948] H. I. ANSOFF AND J. A. KRUMHANSL 337

potential equation and corresponds to the supersonic flow past a cone in the range of
Mach numbers for which the shock wave at the nose is attached to the cone. The only
lost solutions of the axially symmetric potential flow equation are thus seen to be a recti-
linear flow along the axis, a .two dimensional line source on the axis, and the Taylor
Maccoll flow past a cone. The first two flows may be superimposed, but the result is of
little interest. Only the third conical flow is an essentially three dimensional flow pattern.

In conclusion it can be stated that all the lost solutions of axially symmetric irrota-
tional compressible flow are already well known solutions. This result was apparently
known to Bateman; however, it does not appear in any of his writings. A discussion of
another class of three dimensional lost solutions, conical flows, has been given by
Busemann.4

A GENERAL STABILITY CRITERION FOR LINEAR OSCILLATING
SYSTEMS WITH CONSTANT TIME LAG*

By H. I. ANSOFF and J. A. KRUMHANSL (Brown University)

Several formulations1 have recently been given for the stability criterion of a lumped-
parameter linear oscillating system with constant time lag given by the equation

Iy"{t) + Ry'{t) + Ky(t) = -Sy'(t - r), (1)

where I, R, K, S and r are real positive constants and Sy'it — r) is the feedback term.
By applying Cauchy's index theorem to the operational form of (1) it is possible to

generalize the discussion to feedback proportional to any derivative of the dependent
variable taken at time t — r; this will be called a retarded derivative. It is found that
the resulting stability criterion can be written in an easily computed form and that
the permissible range in the time lag r can be stated explicitly.

Equation (1) is generalized to

Iy"{t) + Ry'(t) + Ky{t) = -SyM(t - r), (2)

where n is allowed any integer positive value. Letting F(p) be the Laplace transform
of y(t), one obtains2

p(v) =    _ M&L 1  (3)
Y(p) + Spne~VT Y(p) i + Spne-VT/Y(p)'

where
L(p) = Ipy{ 0) + ly'(0) + Ry( 0),

(4)
Y(p) = Ip2 + Rp + K.

4A. Busemann, Aerodynamischer Auftrieb bei Uberschattgeschwindigkeit, Luftfahrtforschung, 12, 210
(1935).

* Received Feb. 27, 1948.
'See references [1] and [2]. In the following, numbers in square brackets refer to the Bibliography at

the end of this paper.
2The Laplace transform is defined here as in [3]. For other examples of this procedure see reference [4].
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By Mellin's inversion theorem

y{t) =   ——  for t > 0, (5)
2n Jr Y(p) i + Spne~*T/Y(p)

where T is a contour enclosing all of the poles of the integrand in the p-plane.
Evaluation of this integral by the method of residues yields an expression of the

form
n

y(t) = 2Z -4n/?xp (pj), (6)
0

where pn are the poles of the integrand of (5). It is easily shown [5] that in general there
is an infinity of these poles. Among these poles, however, only pn with positive real parts
will cause (6) to be unstable. The subsequent investigation is therefore devoted to a
formulation of conditions under which the system has no pn with positive real parts.

The functions L(p) and evt in (5) have no poles in the finite p plane, and Y(p) has
no roots in the right half of the p plane, as shown by (4). Thus a necessary and sufficient
condition for the stability of (6) is that

r>np~"T
1 + - 0 (7)

have no roots in the right half of the p plane.
In order to determine the roots of (7), we introduce the Cauchy index theorem [6]

which may be simplified as follows:
Hypothesis. 1) w = f(p') is an analytic function in a simply connected domain D

bounded by a contour /?, and
2) f(p) ^ 0 for p on j3.

Conclusion. If p traverses /3 in a counter-clockwise direction, then w will traverse a
closed curve in the w-plane. Further, the number of zeros of f(p) in D is equal to
the net number of times the contour in the w-plane encircles the origin.

For /3 we choose a Bromwich contour in the p plane consisting of the imaginary
axis3 and an infinite semi-circle in the right half of the plane with center at the origin.

Applying the theorem to (7), we note that the number of roots of (7) with positive
real parts is equal to the number of times the graph of the function

= Ip2 + nRp + K ®

encloses the point (—1, 0) as p traverses /3. It can be shown [5] that f(p) —> 0 for all
values of n, as the radius R of the semi-circular part of (3 tends to °°. It remains to
examine f{p) on the imaginary axis.

If we let p — ia, where a is real, Eq. (8) can be written

I(ta) ~ [(K - la2)2 + (Raff (9a)

where

3It is shown in [5] that roots on the imaginary axis occur only for a very critical combination of the
parameters of the system.
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|8 = —ar + 4> + ntr/2, (9b)

tan <f> = K (9c)

and n corresponds to the order of the feedback term
The graph of (9) for any fixed n is a sensed spiral with a variable amplitude given

by | f(ia) |. Figure 1 shows typical graphs for n = 0, 1, 2, respectively, in the range
w-plane w-plane w-plane

(«) n » 0 (b) n * 1 (c) n ■ 2

Fig. 1. f(ia) vs. a.

— oo g a g 0. As a increases from 0 to m, each graph traces the second branch of the
spiral which is symmetrical to the first branch with respect to the real axis. Figure 2
.shows typical graphs of | f(ia) \ versus a for n = 0, 1, 2 and n > 2.

(a) n * 0 (b) n ■ 1

IttloOl

Fig. 2. | f(ia) | vs. a.
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Now if p —» ± i °°, then

/(?) j P"~2 and | f(p) |

except for n — 0, 1, 2. Thus, for n > 2, as p traces the imaginary axis, the graph of
Eq. (9) will always enclose the point ( — 1, 0). This means that (7) will always have
roots in the right half-plane. The general stability criterion for Eq. (2) can now be
formulated.

If the feedback term is proportional to the retarded derivative y(n) {t — t), the system will
be unconditionally unstable whenever n > 2.

For n = 0, 1, 2 separate stability criteria have to be formulated in each case. The
general procedure is to set

I/(»«) 1 = 1 (10)
and solve for a. In general, one obtains four real roots, two for each branch of the spiral,,
symmetric with respect to the real axis. It can be shown [5] that the angle /3 of the spiral

< '2 ris monotone in a and that each branch of the spiral will have a sector, say /3i ^
within which j f(ia) | S: 1. This is illustrated in Fig. 3. The stability criterion is now
reduced to the condition that this sector does not enclose the negative real axis.

w-plane

C-i,"o5t

Fig. 3.

A Stable Configuration for n = 1.

In degenerate cases Eq. (10) may have only one real root for each branch of the
spiral and the criterion is accordingly simplified. If (10) has no real roots, the system
is unconditionally stable.

(Because of the symmetry of each spiral with respect to the real axis, it is sufficient
to formulate criteria for one branch only).

A detailed application for the above procedure to each case of feedback will be
found in reference [5]. Summarized below are the allowable ranges in r for which the
system will be stable. The expressions are written for the branch of the spiral on which
a > 0. We let a, and a2 designate the two roots of (10) on this branch and 0, and <j>2
be the corresponding phase angles computed from (9c).

Feedback proportional to y{t — r); n = 0.
(a) ai , a2 ^ 0, real, ar > a2 . In this case S < K and 2IK > R2. The range in

t is
a21[02 + (2n — l)7r] < t < a?1 [0i + (2n + 1)tt], (11)
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where n is allowed integer positive values. Examination of (11) shows that for any-
given system (fixed aj , a2 , 4>i and <f>2) r is allowed a band spectrum of values for in-
creasing n with the band width given by (11).

(b) <*1 = a2 5^ 0, real. Then S :S K and the allowable values of r are given by

r a_1(n7r + <j>), (12)

where n is any odd integer. In this case the "instability" sector has degenerated into a
straight line.

(c) oti > 0, real, a2 imaginary. Then S > K and the range is

0 < r < aij(t + $!). (13)

Here the sectors from the two branches have degenerated into one which is symmetrical
with respect to the positive real axis.

(d) ax and a2 both imaginary. This occurs if and only if

S < K and R2 > 2IK.

The system is stable for all values of r.
Feedback proportional to y'(t — r); n = 1.
(a) ax , a2 0, real, ax> a2 . In this case R < S. Equation (11) applies.
(b) = a2 5* 0, real. A sufficient condition for this to happen is ft = S. Equation

(12) applies.
(c) at , a2 both imaginary. This occurs if and only if R > S. The system is stable

for all values of r.
Feedback proportional to y"(t — r); n = 2.
As seen from Fig. 1(c) and Fig. 2(c) the system is unconditionally unstable if S > I.
(a) ai , a2 9* 0, real, ax > a2 . Then S < I and R2 < 2IK. Equation (11) applies.
(b) «! = a2 9^ 0, real. A sufficient condition is S = I and R2 — 27K. Equation (12)

applies.
(c) ai , a2 both imaginary. This occurs if and only if

S < I and R2 > 2IK

The system is stable for all values of r.
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