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SOLUTION OF STEADY STATE TEMPERATURE PROBLEMS WITH THE
AID OF A GENERALIZED FOURIER CONVOLUTION*1

BY

A. W. JACOBSON
Wayne University

1. Introduction. The purpose of this paper is to illustrate the use of the finite Fourier
transformation and a generalized convolution in the solution of steady state boundary-
value problems. Solutions of some basic problems are given in terms of special functions
introduced, and by means of a modified Duhamel formula other solutions in turn are
expressed as functions of the basic solutions.

The finite sine and cosine transformation are defined by

S^Oc)} = f F(x) sin nx dx = f.(n) (n = 1,2, • ■ •),

C{F(x)} = [ F(x) cos nx dx = fe(n) (n = 0, 1, 2, •••),
Jo

respectively. These transformations applied to the derivatives of F(x) yield, for example,
the following: £{F'(z)} = -nC{F(x)}, S{F"(x)} = -n2S{F(x)} + n[F(0) -
(-lJ'FGr)], and C{F'(x)} = nS{F(z)} - F(0) + (-l)nF(x).

If F(x) in (—27r, 2x) and G{x) in (—tt, w), are sectionally continuous functions, then
the function

F(x)*G(x) = F(x - y)G(y) dy (1)

is called the convolution of F and G in the interval ( — x, it).
If F(x) is an odd and G{x) is an even sectionally continuous function and if

F{x + 2t) = F{x), then the product of the transforms can be written in terms of the
transform of the convolution, for example,2

S{f(3)}C{<?(z)} = § S[F(x)*G(x)}. (2)
2. A generalized Fourier convolution. Let F(x, y) be a sectionally continuous

function of x and y in the square 0 < .t < x, 0 < ?/ < x. A generalized convolution
F*(x) of F(x, y) corresponding to the iterated finite sine transformation

*S{»S{F(a:, y)}} = / / F(x, y) sin nx sin n'y dx dy
J 0 «^0

= /(n, n') (n, n' = 1, 2, • • •)
is defined by

F*(x) = - J Fl{x - y, y) dy,

'Received August 24, 1948.
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Math. Society, vol. 54. The author expresses his thanks to Professor R. Y. Churchill for many valuable
suggestions.

2R. V. Churchill, Modern Operational Mathematics in Engineering, McGraw-Hill, 1944, p. 274-276.
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where Fx(x, y) is an odd periodic extension of F with respect to x and an odd extension
with respect to y.

When n' = n, it can be shown3 that

S{S{F(s,y)}} = hC{F*(x)}.
In case F(x, y) = Fl(x)G1(y), the function F*(x) is the convolution (1) of /'\ and Gi .
3. Special functions. In this section two key functions are introduced as well as their

sine and cosine transforms. In the sequel solutions of some basic boundary value prob-
lems are expressed in terms of these functions.

If | r | < 1, then log (1 + re'9) = — ̂ T-i ( — r)'e"e/v. Also if jR2 = (1 + r cos 6)2 +
r2 sin20 and tan $ = r sin 0/(1 + r cos 0), then

log (1 + re'9) = log Re"" = log R + (5)

Equating the imaginary parts of (5), we get

x rsin0 (—r)' sin vd
3iTCi3.Il - , . — / ^ •1 + r cos 0 izi v

When | r | < 1, the series is a Fourier sine series. The sine transforms of the function
are, except for the normalizing factor 7t/2, the Fourier sine coefficients, i.e.,

„/ ± r sin x \ x ( — 1)V , , ^ ,SSarctan —  > = — ~  —, \r < 1,( 1 + r cos x) 2 n '

where 0 has been replaced by x. Since ( — l)"+1/„(w) = S{F(x — x)}, then

„/ , r sin x \ ir"arctan ; ? = „ —.I. 1 — r cos xj 2 n

Setting r = e~l, the above formula becomes

/s/arctan SU1 x } = £ —, 2 > 0. (6)
I e* — cos xJ 2 n

Let b0 in, u) denote the function

~^r!r = 2 I {exP I ~[0 + - u1n) - exP f -[(2" + l)w + u]n)). (7)n sinh rnr " n

Let the inverse sine transform of the function b0(n, u), S~l{b0(n, u)}, be B01(x, u), then
according to formula (6), when ir — u > 0,

Bm(x,«) - i [»«t»»exp|(2,+ ivl„| -COSX

~ arctan   * , ] (8)„„„ i/o.. _i — cos a;J

= arctan

exp {(2v + l)ir + u}

 sin x sinh u 
cosh (2v + l)ir — cos x cosh u

8A. W. Jaoobson, A Generalized Convolution for the Finite Fourier Transformations, Thesis,
University of Michigan, 1948, p. 9-12. In the sequel reference to this thesis will be marked [3].
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Equating the real parts of (5), we have

1 „ ^ (-l)'r'
log ::—i   ;—2 = 2 >    — COS vx.1 + 2r cos x + r v

Hence the cosine transformation yields

J, 1 \ t(-1 )V , „
\ 1 + 2r cos z + O — n_1'2'

= 0 n = 0

Since (— l)"/e(n) = Cji'Xx — x)}, and setting r = e"', we get when z > 0

2[cosh z — cos x]j n' n
W/

= 0 n = 0.

Let bi(n, u) denote the function

cosh nu
n sinh nir - it, z (exP {— [(2f + l)x — u]n} + exp { —[(2k + l)x + u]n}}. (10)

And let B12{x, u) denote the inverse cosine transform C 1{bl(n, u)} of the function
6i(n, it). When x — u > 0, according to formula (9), we get

R / s 1 i t~t exp |2(2k 4~ 1)x |  
i x °g ,»o 4[cosh (2kit + x — u) — cos a;] [cosh (2kx + x + u) — cosx]'

4. Problems in two dimensions. Basic problems (A). Let U0(x, y) be the solution of
the following steady state temperature problem in the region R: 0 < x < x, 0 < y < x:

d2U0 , d2U0 „
-T~r + = 0 ln R,dx dy

Uo(+0, y) = U0(ir — 0, y) = 0, 0 < y < it, (A)

U0(x, +0) = U0(x, x - 0) = 0, 0 < x < x.
IT

The sine transformation of problem (A) with respect to x yields

- nu0(n, y) = 0,

u0(n, 0) = u0(n, x) = 0.

The solution of the transformed problem is

, . sinh n(x — y)
»> - n sinh hit '

(A')
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In the previous section, formula (7), this function was designated by the function
b0(n, u), i.e.,

Uo(n, y) = b0(n, tt - y).

According to formula (8), its inverse sine transform is the function B0i(x, % — y), so
that

U0(x, y) = Bm(x, ir - y). (12)

Problem (B)

d2U,d*ZJ _ . p
-7-2 + -r-5 = 0 m Rdx dy

u{+0, y) = U(ir - 0, y) = 0, 0 < y < t, ®

ZJ(x, +0) = H(x), U(x, ir — 0) = 0, 0 < x < ir.

The transformed problem is

^ - nu(n, y) = 0,

u(n, 0) = h(ri), u(n, ir) — 0.
(B')

Upon multiplying the equations in problem (A') by the function nh(ri) of the param-
eter, it is evident that the product nh{n)uQ(n, y) is also a solution of problem (B'). If
the solution of the latter is unique then

u(n, y) = nh(ri)u0(n, y).

Since U0(0, y) = U0(ir, y) = 0, then nS{U(x, y) j = C{d/dx Ua(x, y)\. Hence

S{U(x,y)} = S{H(x)}nS{U0(x, y)}.

becomes

S{U(x, y)} = >S{Z/(x)}C<[~ U0(x, y)}.

The product of the transforms here can be written, according to formula (2), as the
sine transform of the convolution of the two functions, and making the inverse trans-
formation, there results

U(X, y) = him* £ Uo(x, y).

Since U0(x, y) — B01(x, ir — y), equation (12), the last result becomes in terms of the
convolution integral (1)

U(x, y) = lfT H(x 501(x, T-y) d\.

In view of formula (11) d/d\ B0,(X, r — y) is an even function of X, hence H is to be
extended to (—t, 0) as an odd function.
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Problem (C).

d*U , d2U m . „2/) m 72

U(+0, y) = U(w - 0, y) = 0, 0 < y < r

U{x, +0) = U(x, ir — 0) = 0, 0 < x < x.

The sine transformation of this problem with respect to x yields

^2 - nu(n, y) = /(n, y)

(C)

(CO
u(n, 0) = u(n, 7r) = 0.

The solution of the transformed problem, in terms of the Green's function g(n, y, n),
is

«(», y) = f ff(n> y> /») (13)
where

or

, . sinh «/i sinh n(ir — y) .
g(n, y, n) =   r-r—- —, n < yy ' a' ' n smh nir

sinh ny sinh n(w — n) .
  —r-;—- —, u. > v,

n smh rnr

, . cosh n(ir — y — u) cosh n(r — y + n) .
><■"' »• "  2nsinh rar 2nsinhw ' " 5 »

cosh n(x — y — y) _ cosh n{ir — n + y)
2n sinh rnr 2n sinh rar ' n> y-

According to formula (10) this can be written

9(n, y, m) = i&i(«, tt — y — m) — §&i(n, x — ?/ + »), n < y

= Ibtin, tt y fx) §&i(ra, x — ̂  + ?/), n > y.

The inverse cosine transform of 6L(n, u) is, in view of formula (11), the function BVi(x, u).
Hence

G(x, y, n) = | Bl2(x, tr - y - - % B12{x, * - y + n). (14).

where

C_1{<7(w, y, n)} = G(a:, y, n).

Writing solution (13) as

£{U(x, y)) = f C{G{x, y, n)}S{F(x, „)} d„,
J o
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and replacing the product of the transforms by the sine transform of the convolution
and making the inverse transformation, we obtain

u(x, v) = \\o G(x> y> m) dy.,
or

U(x, y) = ^ Jo [ G(x - y, n) d\ d^.

Substituting for G from (14), there results

U(x, y) = | J J \B12(x - it — y — fi) - Bl2(x — X, ir — y + n)]F(\, m) d\ dfi.

The function B12(x, u) is an even function of x, hence H(x, y) must be extended to
( — ir, 0) as an odd function of x.

The above solutions can be shown to satisfy the respective boundary value problems
for a wide class of functions involved. See [3] p. 58-75.

5. Resolution of boundary value problems with the aid of a generalized Fourier
convolution. Let U(x, y) be the steady state temperature in the region R: 0 < x < t,
0 < y < it, 0 < z < t, satisfying the following conditions:

d2U , d2U . d2U _+ ^ + = F{x'y'z) m R'

17(0, y, z) = H,{y, z), U(ir, y, z) = 0, ^

U(x, 0, z) = H3(x, y), U(x, t, z) = 0,

U(x, y, 0) = H5(x, y), U{x, y, t) = 0.

Three of the boundary conditions have been written here as homogeneous since this
involves no loss in generality. The sine transform of this problem with respect to x is

-n2u(n, y, z) + nH^y, z) + = f(n, y, z),

u(n, 0, z) = h3(n, z), u(n, r, z) = 0,

u(n, y, 0) = h5(n, y), u(n, y, tt) =0.

Nowjet V(x, x', y, z), depending on the parameter x' independent of x, y, z, be the
solution of the following auxiliary problem:

d2V , d2V , d2V t - x ,

F(0, x', y, z) = - H,{y , z), V(t, x', y, z) = 0,

V(x, x', 0, =     H3(x', z), V(x, z', tt, z) = 0,

V(x, x', y, 0) =     H5(x', y), V(x, x', y, x) = 0.

(E)
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The sine transform of (E) with respect to x is

-n2v(n, x', y,z) +n H1(y, z) + ^ F(x', y, z),

v(n, x', 0, z) = - H3(x', z), v(n, x', ir, z) = 0,
Tl

v(n, x', y, 0) = ^ H5(x', y), v(n, x', y, ir) = 0.

Next let v(n, n', z) be the sine transform of v(n, x', y, z) with respect to x'. When n' = n,
we get

-n2v(n, y, z) + Hfy, z) + ^ + || = ^ f(n, y, z),

v(n, 0, z) = - h3(n, z), v(n, ir, z) = 0, (E')
Tt

v(n, y, 0) = i h5(n, y), v(n, y,v) = 0.
7i

If we now multiply the equations in (E') by the parameter n, we note that problems
(D') and (E') are equivalent, and

u(n, y, z) = nv(n, y, z). (15)

Since v(n, y, z) is the iterated sine transform of V(x, x', y, z), it follows, according
formula (4), that

u(n, y, z) — n c|| V*(x, y, z)

=F"(w)f-
And therefore

U(x, y, z) — - | V*{x, y, z),

which can be written (formula 3)

U{x, y,z) = | ^ /_ v(x ~ x'< x'> V: z) dx'- (16)

Formula (16) is the Duhamel integral extended from time to space coordinates.
Problem (D) can further be resolved into simpler problems. We first note that

problem (E) can be written as

V(x, x', y, z) =     Vi(x', y, z) + V2(x, x', y, z) + V3(x, x', y, z),
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where Vi , V2 and V3 are solutions of the problems:

<fVi tfVi _
.2 + - u>dyz ' dz'

Vi(x', 0, z) = H3(x', z), Vi{x', ir, z) = 0,

V^x', y, 0) = H5(x', y), Vx{x', y, ir) = 0;

d2V2 , d2V2 , d2V2
dx2 + dy2 + dz2

7,(0, x', y, z) = _x H^y, z) - V^x', y, z)

and

dx2 + dy2 + dz2 ~ - t{x >y>z)l

(a)

= Q(x', y, z), (b)

V2(x, x', y, z) = 0,

V2(x, x', 0, z) = V2(x, x', ir, z) = 0,

V2{x, x', y, 0) = V2{x, x't y, x) = 0;

(c)F3(0, x', y, z) = V3(x, x', y, z) = 0,

V3(x, x', 0, z) = V3(x, x', x, z) = 0,

Va(x, x', y, 0) = V3(x, x', y, x) = 0.

It can be'readily shown, see [3] p. 19-23, that the solution U(x, y, z) of problem (D)
then takes the following form:

U(x, y, z) = Vy{x, y, z) - | ~ F2* (x, y, z) - | ^ V% (x, y, z).

The solution Vx of the two dimensional problem (a) is the sum of solutions of the
type of problem (B), Sec. 4, that is,

W, y,z) = \ H3(x', z)*~B01(y, x - z)

+ | H5(x', y)* ^ B01(y, x - z)

We shall next proceed to obtain the solution V2 of problem (b). Let v2(x, x', m, z)
be the sine transform of V2(x, x', y, z) with respect to y and also let v2(x, x', m, p) be
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the iterated transform of V2(x, x', y, z) with respect to y and z. Then applying this
iterated transformation to problem (b) we get

- (m2 + p2)v2(x, m, p) = 0,
(bO

v2(0, x', m, p) = q(x', m, p), v2(w, x', m, p) = 0,

where q(x', m, p) = S{q(x', m, z)}.
We shall now formulate the following basic problem (d) in three dimensions, and

then express the solution V2 in terms of its solution:

d2U0 d2U0 d2U0
dx2 + dy2 + dz2

U0(0, y, z) = • 2^-5, Uoiir, y, z) = 0, (

U0(x, 0, z) = U0(x, w, z) = 0,

U0(x, y, 0) = U0(x, y, t) = 0.

Let u0(x, m, z) and u0(x, m, p), respectively, be the sine transform of U0(x, y, z)
with respect to y and its iterated transform with respect to y and z. Then

- (m2 + p2)u0(x, m, p) = 0,

w0(0, m, p) = u0(ir, m, p) = 0.

(d')

If we multiply the equations in problem (d') by the function of the parameters
mpq(x', m, p), it is evident in view of problem (b') that

v2(x, x', m, p) = q(x', m, p)mpu0(x, m, p).
That is

(S{w2(aj, x', m, z)} = S\q(x', m, z)}mpS{u0(x, m, z)}.

Since u0(x, m, 0) = u0(x, m, t) = 0, then pS{u0(x, m, z)} = C{dua/dz (x, m, z)}. Hence
the product of the transforms can be replaced by the sine transform of the convolution
of the two functions. Upon applying the inverse transformation, we get

v2(x, x', m,z) = | q(.x', m, z)*m u0{x, m, z)

1 (*x d
= 2 J Q(x'> m, z — \)m — u0(x, m, X) d\,

which in turn can be written formally as follows:

S{F2(ar, x', y, z)} = | jf ^ S{Q(z, y,z - X)}m U0(x, y, X)| d\.
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Since again d/d\ U0(x, 0, X) = d/d\ Ua (x, ir, X) = 0, then, repeating the steps above,
we obtain

1 /* * /* t $2
V»(x, x', y,z)=-J J Q(x, y - n,z - X) C/0(z, M, X) dX <k-

The solution C/0(x, y, z) can be obtained with the aid of the Fourier sine series.
The solution of problem (d') is

u (x m v) ~ Shlh (x ~ g)(wi' + p2)1/2
u0(x, m, p) - ginh ^ + p2)1/2

These functions are, except for the constant factor ir/2, the Fourier sine coefficients for
the function u0(x, m, z), which in turn are in like manner the sine coefficients for the
function U0(x, y, z). Hence

TT . x 4 -A sinh (ir — x){m2 + p2)1/2 .
U0(x, y,z) = -5 2-»  • , / 2 .—iri72- sin pz sm my.x " ^ mpsinh 7r(m + p)

Solution of problem (c). The iterated sine transform of (c) with respect to x and y is

~f - (n + ni )v3{n, x', m,z)=- f(x', m, z),ox n ,
(C>

v3(n, x', m, 0) = v3(n, x', m, ir) = 0.

In terms of the Green's function gin, m, z, n) the solution of (c') has the form

m, z) - f ?(", Mli&Li VhAjk, (17),
J o fl

where

, N sinh n(m2 + n2)1/2 sinh (z — ir)(m2 + n2)1/2 ^
g(n, m, z, n) —  =-r—. 2 ,—2072 , n < z,n m smh ir (m +n)

and with n and z interchanged when n > z.
Performing the iterated inverse sine transformation with the aid of Fourier sine

series, we get

4 " " _V3(x, x', J, z) = 1 L L w3(n, x', m, z) sin nx sin my,
* n-l m-1

where v3(n, x', m, z) is defined by (17).


