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SOLUTION OF STEADY STATE TEMPERATURE PROBLEMS WITH THE
AID OF A GENERALIZED FOURIER CONVOLUTION*'

BY
A. W. JACOBSON
Wayne University

1. Introduction. The purpose of this paper is to illystrate the use of the finite Fourier
transformation and a generalized convolution in the solution of steady state boundary
value problems. Solutions of some basic problems are given in terms of special functions
introduced, and by means of a modified Duhamel formula other solutions in turn are
expressed as functions of the basic solutions.

The finite sine and cosine transformation are defined by

S{F(x)} = for F(@)sin nxdx = f,n) (=12, --.),

C{F(x)} = /o' F(z) cos nx dz = f.(n) =012 --.),

respectively. These transformations applied to the derivatives of F(z) yield, for example,
the following: S{F'(z)} = —nC{F(x)}, S{F"(z)} = —n*S{F(x)} + n[F0) —
(—1)"F(m)], and C{F'(z)} = nS{F(x)} — F(0) + (—1)"F(x).
If F(z) in (—2w, 27) and G(z) in (—m, 7), are sectionally continuous functions, then
the function
F@*6@ = [ Fl - 964 dy W

is called the convolution of F and @ in the interval (—m, ).

If F(z) is an odd and G(x) is an even sectionally continuous function and if
F(z 4+ 27) = F(x), then the product of the transforms can be written in terms of the
transform of the convolution, for example,”

S{F(x)}C{G(x)} = 7 S{F(x)*G(x)}. 2
2. A generalized Fourier convolution. Let F(z, y) be a sectionally continuous

function of x and ¥ in the square 0 < z < 7, 0 £ y < 7. A generalized convolution
F*(x) of F(x, y) corresponding to the iterated finite sine transformation

S{S{F(z, y)}} = for /: F(z, y) sin nz sin n'y dzx dy

= ?(ni nl) (’IL, n = 1, 27 M ')
is defined by

F¥(x) = — f_ : Fy(z — y, y) dy,
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where F,(z, y) is an odd periodic extension of F with respect to  and an odd extension
with respect to y.
When n’ = n, it can be shown® that
S{8{F(z, y)}} = 3 C{F*(2)}.

In case F(x, y) = F.(z)G:(y), the function F*(z) is the convolution (1) of F, and G, .
3. Special functions. In this section two key functions are introduced as well as their
sine and cosine transforms. In the sequel solutions of some basic boundary value prob-

lems are expressed in terms of these functions. _
If | 7| < 1,thenlog (1 +re’®) = — X oy (—1)%e”’/v. Alsoif R* = (1 + r cos 60)* +
7* sin’0 and tan & = 7 sin 6/(1 + r cos 6), then

log (1 + re’’) = log Re*® = log R + i® (5)
Equating the imaginary parts of (5), we get

rsin @ _ z"; (=1 sin »6

1+rcos0= =t v

When | r| < 1, the series is a Fourier sine series. The sine transforms of the function
are, except for the normalizing factor =/2, the Fourier sine coefficients, i.e.,

rsin z _ = (=7
S{a‘rctan___1+rcosx}_ 2 n Ir| <1,

where 6 has been replaced by z. Since (—1)**'f,(n) = S{F(x — )}, then

rsin r Tr
S{arctan } =on

arctan

1 —rcosz

Setting r = ¢ *, the above formula becomes

—nz

S{arctan e;—i—mc:Tc} = ‘gen , z22>0. (6)

Let bo(n, u) denote the function

©

sinh nu 1

7 smh o = ,z.;,r_z {exp {—[(2v + D7 — uln} — exp {—[(2v + Dx 4+ uln}}. ()

Let the inverse sine transform of the function bo(n, u), S~ {bs(n, u)}, be By, (z, u), then

according to formula (6), when # — u > 0,
= sin

Bu(z, W) = 2 [arcta,n exp {(2v + Dr — u} — cosx

v=0

sin z
— arctan exp {(2» + D7 + u} — cos x] (8)

sin z sinh u
cosh (2v + 1)mr — cos x cosh u’

= Z arctan

y=0

3A, W. Jacobson, A Generalized Convolution for the Finite Fourier Transformations, Thesis,
University of Michigan, 1948, p. 9-12. In the sequel reference to this thesis will be marked [3].
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Equating the real parts of (5), we have

1 _ — (—1)7
10g1+2rcosx+r2_2,z=;——u COS v.

Hence the cosine transformation yields

1 _w(=1"r" _
0{10g1+2r cos  + rz}_ n "= L2

=0 n=20

Since (—1)"f.(n) = C{F(x — z)}, and setting r = ¢, we get when z > 0

z

e me "’
C{log 2[cosh z — cos :c]} =Tp " 1,2 -

=0 n = 0.

9)

Let b,(n, u) denote the function

COh I _ S 1 foxp (~ 1@ + Dr — uln) + exp (—[@ + D +uln}).  (10)

n sinh nr “~tn

And let By,(r, u) denote the inverse cosine transform C~'{b,(n, u)} of the function
by(n, w). When # — u > 0, according to formula (9), we get

log H exp {2(2v + D7} (1)

Bia(z, w) = ;=0 4[cosh (2vr +  — u) — cos z][cosh (2vr + v + u) — cosz]

4. Problems in two dimensions. Basic problems (A). Let Uy(z, y) be the solution of
the following steady state temperature problem in the region R:0 < z <7, 0 <y < =:

2 2
G- 0 i B
U0(+0; y) = Usr — 0,y) =0, 0<y<m, (A)

Uo(a:,+0)=1r—;—:£, Uz, 7 —0) =0, 0<z<m.

The sine transformation of problem (A) with respect to z yields

dZ
dy

— nup(n, y) = 0,
(A%)
up(m, 0) = %, u(n, ) = 0.

The solution of the transformed problem is

sinh n(r — )

u(n, y) = n sinh nr
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In the previous section, formula (7), this function was designated by the function
bo(n, u), i.e.,
us(n, y) = bo(n, = — y).

According to formula (8), its inverse sine transform is the function By (z, * — ¥), so
that

Uo(z, y) = Bu(z, # — ¥). (12)
Problem (B) .
2 2
‘3 gL+l " U —0 o R
U(+0, 3) = Ulr — 0, 3) = 0, 0<y<m ®)

Uz, +0) = H(z), U@, —0) =0, 0<z<m.

The transformed problem is

U
i’ - nzu(n: Z/) = O)
Y ®)

u(n, 0) = h(n), ufm, w) = 0.

Upon multiplying the equations in problem (A’) by the function nh(n) of the param-
eter, it is evident that the product nh(n)ue(n, y) is also a solution of problem (B’). If
the solution of the latter is unique then

u(n, y) = nh(n)uo(n, y).
Since U,(0, y) = Us(m, y) = 0, then nS{U(z, y)} = C{8/dz Uy(z, y)}. Hence
S{U(z, y)} = S{H()}nS{Us(z, y)}.

becomes
SV, ) = SE@IC{Z Ui, ).

The product of the transforms here can be written, according to formula (2), as the
sine transform of the convolution of the two functions, and making the inverse trans-
formation, there results

Uz, y) = 3H (x)* ~ Us(z, 9)-

Since Uy(z, ¥) = Bu(z, # — ¥), equation (12), the last result becomes in terms of the
convolution integral (1)

1[" 3
U, ) =5 | H@ =35 Bult 7 = 3) dh.

In view of formula (11) 3/0X By;(\, # — y) is an even function of A, hence H is to be
extended to (—, 0) as an odd function.
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Problem (C).

U |, 3°U .
Fy ayz = F(z, y) n 1
U0, 4) = Ur — 0,5) =0, 0<y<m ©
Uz, +0) = Uz, = — 0) = 0, 0<z<m.
The sine transformation of this problem with respect to z yields
d2
d_"é - nzu(n’ y) = f(n; y)
Y )

ufm, 0) = ufn, ») = 0.

The solution of the transformed problem, in terms of the Green’s function g(n, y, u),
is

un, 9) = [ oo, v, S0, 1) dis 3)
where
sinh nu sinh n(r —
g(n: Y, l‘) = Zsmh ,nf: y); 14 < )
_ sinh ny sinh n(r — )
- n sinh nr y B2
or
_coshn(mr —y —u coshnlr —y+ p
g, Y, 1) = 2n sinh nr 2nsinh nr  ’ By
=coshn(w-—y—p)_coshn(w—p+y)’ w> .

2n sinh nr 2n sinh nr
According to formula (10) this can be written

g, y, p) = 3bn, r —y — ) — 30i(n, v —y+w, wu<ly

=bn,r —y—w —bn, s —p+y), w2y

The inverse cosine transform of b;(n, u) is, in view of formula (11), the function B,,(z, u)..
Hence

G, y, ) = 3 Bz, —y —p) — § Bu(z, 7 —y + ). (14)
where
Cg(n, y, W} = G(z, y, u).
Writing solution (13) as

S(UG ) = [ GG, 4, 1)) SIFG, u)) d
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and replacing the product of the transforms by the sine transform of the convolution
and making the inverse transformation, we obtain

1 L
Uz, y) = 3 f Gz, y, W*F(z, p) du,
0
or
1 x L
U(x: y) = § _/; ]:.' G(x -\NY, I-‘)F()‘; /‘) d\ du.
Substituting for @ from (14), there results
1 L L
Ve, ) = [ [ Bule = N7 =y == Bule = N7 — y+ wIFG, ) d\ da.

The function B,,(x, u) is an even function of z, hence H(x, y) must be extended to
(—m, 0) as an odd function of x.

The above solutions can be shown to satisfy the respective boundary value problems
for a wide class of functions involved. See [3] p. 58-75.

5. Resolution of boundary value problems with the aid of a generalized Fourier
convolution. Let U(x, y) be the steady state temperature in the region R: 0 < z < m,
0 <y <m0 <z < 7 satisfying the following conditions:

U , 3U
ax"f" ay’
U(O, Y, Z) = Hl(y7 Z), U(1I', Y, Z) =0, (D)
U(x, 0, Z) = Ha(x) y)r U(xy e Z) =0,
U(x’ Y, O) = Hs(x) y)) U(x) Y, 7’) = 0.

Three of the boundary conditions have been written here as homogeneous since this
involves no loss in generality. The sine transform of this problem with respect to x is

*U )
+ azz—l"'(ac, y,2) In R,

u , 9
—nzu(nr Y, z) + nHl(yy Z) + (-,_;: + a_:: = f(n; Y, z)y

u(n’ 0, z) = hS(n; Z), u(”y w2 =0,
u(n: Y, 0) = hs(n) y)r u(n) Y, 7") = 0.

Now:let V(z, 2/, y, 2), depending on the parameter z’ independent of z, y, z, be the
solution of the following auxiliary problem:

a?*v 'V 9V - .
Fy + ayz + 92 = 1_1'_—“: F(x',y, 2) n R,

T —2x

V(O; x’) Y, z) Hl(y ’ Z), V(’Il', .’B', Y, Z) = O;

(E)

V(x’ x,’ 07 Z) == ; * H3(x,y z)) V(x) x,r ™ Z) = 0»

V(xy 7', y, 0) z ; £ H5(:L", Z/), V(x) x’r y, ™ = 0.
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The sine transform of (E) with respect to x is

2 H, 9 + o+ 0 =

S (=

_nZv(n’ x’7 Y, z) + n F(x’) Y, 2),

o(n, 2’, 0,2) = %H;;(x’, 2), ' v(n, 2’, 7, 2) =0,

v(n, x’} Y, 0) = %Hs(x': y); v(n, x,) Y, 1l') = 0.

Next let #(n, n’, 2) be the sine transform of v(n, z’, y, 2) with respect to 2’. When n’ = n,
we get '

-n v(n) Y, 2) + Hl(y) Z) + _2 + a2 = f(n: Y, Z),
o, 0,9 = 2ha(n, ), 3w, x,2) =0, ®)

_ 1 _
o(n, y, 0) = ; hs(n, y), o(n, y, x) = 0.

If we now multiply the equations in (E’) by the parameter n, we note that problems
(D’) and (E’) are equivalent, and
u(n’ Y, z) = m—)(n; Y, 2). (15)
Since #(n, y, 2) is the iterated sine transform of V(z, z’, y, 2), it follows, according
formula (4), that

um, 1,9 = n cfl v,y ).

19
= - {55 V¥(z, v, z)}-

And therefore
U, 4,9 = — 30 V*@ 3,9,
which can be written (formula 3)
Uz, y,2) = %565 f_: V(i — 2, 2, y, 2) dx’. (16)

Formula (16) is the Duhamel integral extended from time to space coordinates.
Problem (D) can further be resolved into simpler problems. We first note that
problem (E) can be written as

V(z; x’; Y, 2) = 1_’;'_1? Vl(x,) Y, Z) + V2(x’ x" Y, z) + Va(x’ x’, Y, z);
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where V, , V, and V; are solutions of the problems:

VvV, , 3V, _
ayz + 92> 0,
Vl(x” 07 z) = H3($C', z): Vl(x/) P Z) = 07 (a)
Vl(x Y, O) H5(x )y Y), Vl(x,’ Y, 7") = 0;
9 2

e+ s,

T —a
V.0, 2’, y,2) = T x H\(y,2) — Vi(', 9, 2)
= Q@@ v, 2), (b)
Vg(ﬂ', x” Y, z) = 0’
Vailz, 2',0,2) = Vy(z, z',7,2) =0,
VZ(x: z', y, O) = V2(x9 x’: Y, 7") = 0;
and
2 2
a —_—
e+ E T T Ay, g,
V3(07 x’) Y, Z) = V3(7r7 17', Y, z) = O: (C)

Va(x; 7',0,2) = Va(x: 2,72 =0,

Vi(z, 2', 4, 0) = Vi(x, 2’, y, ) = 0.

It can be 'readily shown, see [3] p. 19-23, that the solution U(zx, y, 2) of problem (D)
then takes the following form:

U(x’ Y, 2") = Vl(x’ Y, z) > A V2 (:L‘, Y, z) § -a_x' Vi (x: Y, Z).

The solution V, of the two dimensional problem (a) is the sum of solutions of the
type of problem (B), Sec. 4, that is,

Vi@, y,2) = 5 H3(x z)* Box(?/; —2)

+ 3 H5(:l: y)* Box(y; T— 2

We shall next proceed to obtain the solution V, of problem (b). Let v,(z, z', m, 2)
be the sine transform of V,(z, 2/, y, 2) with respect to y and also let 7,(z, =/, m, p) be
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the iterated transform of V(z, 2/, y, z) with respect to ¥ and z. Then applying this
iterated transformation to problem (b) we get

3252 2 2\ = ’
32— (M + P, &, m,p) =0,
(b")
52(07 z', m,p) = ﬁ(x', m, p), va(m, z', m, p =0,

where g(z', m, p) = S{q(a’, m, 2)}. .

We shall now formulate the following basic problem (d) in three dimensions, and
then express the solution V', in terms of its solution:

U, , 8°U, " 3’U,

oz’ ’ 82

=0,

Uo(Oy Y, z) T—¥.r= z; Uo(ﬂ', y,2 =0, (d)

™ ™
UO(xy 0; z) = UO(x: ™, z) = 0,

Uo(x: Y, O) = Uo(x) Y, 1l') = 0.
Let uo(z, m, 2z) and uy(x, m, p), respectively, be the sine transform of U,(z, y, 2)
with respect to y and its iterated transform with respect to y and 2. Then
9%,
ax’

- (m2 + pz)ao(x) m, p) = 01
(d")
_ 1 _
uO(O: m, P) = m—py uO(""; m, P) = 0.
If we multiply the equations in problem (d’) by the function of the parameters
mpq(z’, m, p), it is evident in view of problem (b’) that

52(377 ZC', m, p) = 6(13,) m, p)mp ﬁo(x} m, p)
That is
S{v2(xy x,’ m, z)} = S{Q(x,’ m, Z)}mps{uo(x: m, Z)}.

Since uo(z, m, 0) = uo(z, m, ) = 0, then pS{uy(z, m, 2)} = C{du,/9z (x, m, z)}. Hence
the product of the transforms can be replaced by the sine transform of the convolution
of the two functions. Upon applying the inverse transformation, we get

1 (i)
v2(x7 Z,, m, z) = § Q(x,’ m, z)*m & uo(x; m, z)

1 (" i)
=3 f_' qx’, m,z — )x)mauo(x, m, N) dX,
which in turn can be written formally as follows:

SV 2, 3,9) = 2 [ 510, 3,2~ Vim 5 Ve, v, )
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Since again 8/d\ U,y(x, 0, \) = 8/0x Uo(z, m, \) = 0, then, repeating the steps above,
we obtain

1 L L
Viw, o, 0,9 =5 [ [ @y =z =N 575 Uite, w0 dhdu.

The solution U,(x, y, 2) can be obtained with the aid of the Fourier sine series.
The solution of problem (d’) is
sinh (x — 2)(m® 4 p°)'”

2\1/2

mp sinh = (m* + p°)

Uo(x, m, p) =

These functions are, except for the constant factor x/2, the Fourier sine coefficients for
the function u,(x, m, 2), which in turn are in like manner the sine coefficients for the
function U,(z, y, 2). Hence

4 S h (r — 2\1/2
Uiz, y,2) = r2 E ’Zl SI?np :(s‘:nh :()f;n ++p1;1)/2 sin pz sin my.

Solution of problem (c). The iterated sine transform of (¢) with respect to z and y is

62
% _  + mulm, o', m, D) = 2 5!, m, 2,

(e
7(n, 2’, m, 0) = v(n, 2', m, 7) = 0.

In terms of the Green’s function g(n, m, 2, u) the solution of (¢’) has the form

" ’
53(7&, x/’ m, Z) = j; g(nx m, z, ”).:L(x »ym, ”') dﬁ" (17)‘
where

sinh u(m® + n*)"”* sinh (z — =)(m® + n*)"”* <
n msinh x(m®* + 7n°)'/? ’ k3%

g(n; m,z, p) =

and with x and z interchanged when u > 2.
Performing the iterated inverse sine transformation with the aid of Fourier sine
series, we get

4 _ . .
Vi, 2', y,2) = 7 > > #i(n, 2, m, 2) sin nx sin my,

n=l m=1

where ;(n, 2, m, 2) is defined by (17).



