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RIGOROUS SOLUTION OF A DIFFERENTIAL EQUATION IN
SOIL MECHANICS*

By R. GRAN OLSSON (Norwegian Institute of Technology, Trondheim)

In one of his earlier books K. Terzaghi' published a differential equation describing
approximately the progress of consolidation in a sediment which is being deposited at
a constant rate ¢ per unit of time. In connection with his solution of this equation
Terzaghi pointed out that it does not satisfy the boundary conditions for time ¢ = 0.
In the following paragraphs the writer presents a solution which satisfies the boundary
conditions for any time, { = 0 included.

Let a,[gm '¢m®] be the coefficient of compressibility, C' a constant of integration,
¢ [sec] a time constant, k[cm sec™'] the coefficient of permeability (Darcy’s coefficient),
glgm em™® sec™] the quantity of sedimentation per unit of area and time, ¢ [sec] the time,
v:lgm em™®] the unit weight, v,[gm c¢m™®] the unit weight of water = 1 [gm em™],
v [gm e¢m™®] the submerged unit weight (=v, — v.,), ¢ the time function, z = (c/)'* a
dimensionless independent variable, and ¢(z) the error integral.

Using these symbols, which are identical with those used by Terzaghi, except that
v. represents the unit weight of water, the differential equation® assumes the form

dt 3 (L s) _c
where ¢ = 3v°k/v., aq® is a constant with the dimension time.
With
z = (c/)"*
then t=cz’
— 9.3 ¢ _ 2 dg
and dt = —2¢27° dz, &= %

substituting these values into Eq. (1), we obtain the equation

ﬂ_(§ ) —

This equation is solved in the usual way by first finding the complementary function
from the homogenous equation
%=G+@@

Integrating we obtain
¢(z) = C2 exp ()
where C is an arbitrary constant.

*Received Oct. 27, 1948.

1K, Terzaghi, Erdbaumechanik auf bodenphysikalischer Grundlage, Franz Deuticke, Leipzig and
Vienna, 1924, p. 175. -

2K. Terzaghi, op. cit., p. 175, Eq. (119).
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The general solution is given as
¢(@) = C()2° exp (27),
where C(z) is an arbitrary function to be determined by (1a). Differentiating we get

dg- = [C"(2)2° + (32" + 22")C(2)] exp (2°),

which inserted into (1a) yields,
C'(z) = —2z% exp (—2%).
By integration we finally get
Ck) = —2 f exp (—2°)27* d.
To find the integral we integrate by parts:

2
f exp (=22 " dz = — %z_z) -2 f exp (—72°) dz,
and thus
2 2 .
Cle) = S exXp (—2% + 4] exp (=2 dz + C, ,

where C, is again an arbitrary constant, which is determined by the boundary condition
fort = 0.
It is convenient to introduce the error integral as a known (and tabulated) function®,

f exp (—2°) dz = %w‘”«ﬁ(z).
Thus we get for C(z) the expression
€O = 2exp (=2) + 267(2) + €,
and for the complete solution of the Eq. (1),
¢(2) = 22° exp (z“’)l}fl exp (—2°) + '%¢(2) + % C,:I.

The constant C, is determined from the boundary condition that for¢t = 0,¢ = ¢, = 1
When t — 0, z — o, we resort to the asymptotic development of ¢(2) in a semiconvergent

series
_ exp(=2)(, _ 1 _ 1385, .
¢(z) -_ 1 - 2 (1 222 + ( ) (2z2)3 + )

and get for {(z),

@) = 22° exp (2 )[ exp (—=2°) + »'/* — l exp (— z)( — 21
1-3
+ @ + C:]

3E. Jahnke and F. Emde, Tables of functions, Dover Publications, New York, 1945, p. 24.
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By putting C; = —27'* we get { = 1 when z — o, since both constant terms and z7*
exp (2%) and —z™' exp (2°) cancel. We finally obtain
exp (—2°) 1-3 3
() = 2 e (T — Fow (- + - =1 -k -

This satisfies exactly the boundary condition { = 1 for t = 0. The diagram shown in
Fig. 1 gives ¢ as a function of the non-dimensional “time” t/c. It is to be observed that

10
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for small values of ¢/c we must use very accurately tabulated values of ¢(2) because
the function ¢ appears as the difference between two nearly equal quantities.® In
general, the solution of the differential equation satisfying exactly the boundary con-
dition ¢ = 1 for £ = 0 will have the form

¢(2) = 22° exp (D)  exp (—2°) + ©'%p(2) — =7

t
4J. Burgess, On the definite integral (2/x") f exp (— 1) dt with extended tables., Trans. Roy.
)
Soc. Edingurgh 39 (Part II), (1898)
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This solution may be given a different form by introducing the derivative of the error
function

2 o
$O = Tmep (=) o e (@) = 2m W@

Thus we get
£ = 4¢' ) 'Flp(2) + 279/ (2) — 1]

as the most elegant form in which the solution may be written.
Besides {(z) the derivative d/dt is also of interest. From the Eq. (1a) we get

L - PRI + 27960 — 16 +2) - 2.
Further we have

and finally

X - 2 el e + 276 — 16 +20) + L

The diagram in Fig. 1 gives d{/df as a function of the independent variable ¢/c.

APPENDIX. When the sedimentation process is finished, the time factor increases
according to the equation [1, p. 176, Eq. (122)]

(1 = §) exp (2kt/ay.h}) = (1 — &) exp (2kts/ay.hi) ¢
or by introducing the ‘“‘time constant”
_ 3’k
c = 'Y.,aqz 2

into the Eq. (1) we get
(1 = §) exp (2c¢/38) = (1 — ¢) exp (2¢/3t,). (1b)

The time is so determined, that ¢ is equal to zero at the beginning of the sedimentation
process and ¢ = £, at its end. We obtain the value of ¢, from the earlier solution of the
differential equation, i.e.,

G = 4¢'(zl)—‘23|:¢(21) + 2sz¢,(zl) - 1]7 3)

by introducing z, = (¢'/t,)/* into the solution (3).

Equation (1b) determines a system of curves starting from a point (¢/t, , {;) on
the curve ¢ and having the horizontal line { = 1 as an asymptote. Thus we get the
system of curves represented in Fig. 2. It can easily be proved that there exists only
one set of such curves according to the Eqgs. (1) and (1b), so that the curves in Fig. 2
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are a general representation of the consolidation problem after finishing of the sedi-
mentation process. In Fig. 2 the upper curves correspond to the greater values of k/a
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as valid for sand and other permeable materials, whereas the lower curves correspond
to clay and similar earth masses with smaller values of the coefficient of permeability.

NOTE ON THE PROBLEM OF TWISTING OF A CIRCULAR RING SECTOR*
By ERIC REISSNER (Massachusetts Institute of Technology)

The problem of twisting of a circular ring sector is of some interest in connection
with the calculation of stresses and deformations in close-coiled helical springs. To be
considered is a ring-sector under the action of two equal and opposite forces P along
the axis through the center of the ring and perpendicular to the plane of the ring (Fig. 1).
A formulation of the problem and an outline of results by O. Géhner for sectors of solid
circular and rectangular cross section may be found on pp. 355-361 in Theory of elasticity
by S. Timoshenko.

The purpose of the present note is to obtain explicit results for the twisting of ring
sectors of hollow cross sections, with thin walls. Formulas will be obtained which have
the same meaning for the present problem as R. Bredt’s formulas have for the problem
of St. Venant torsion of cylindrical rods.

The problem may be considered as one of the membrane theory of thin shells of

*Received Dec. 23, 1948. Work on this note was supported by the Office of Naval Research under
Contract N5ori-07834.



