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1. There are two types of devices for the solution of simultaneous linear equations
which have been developed. Suppose the given system of equations is

n

X) auXj = bt , i = 1, 2, • • • , n. (1)
7=1

In one type the 6,- are fed into the machine in such a way as to drive the unknowns
Xj to their correct values. In the second type, the xf are not driven by power supplied
from the constant inputs but reach an equilibrium situation corresponding to the
solution by a process of adjustment. We are concerned in this article with the operating
conditions for this last type of machine when the adjusting process is determined by
a linear operator with constant coefficients.

We suppose that each a,-,- can run independently through a real range which contains
the origin. Thus, the determinant may be zero and any matrix can be represented by
a suitable choice of scale for the unknowns and the £>,- . Adjusting machines which are
stable even when the determinant is zero may be designed. For instance, a block dia-
gram is given in the author's book1 for such a machine. Another example is the set-up
described by Goldberg and Brown2 which will insure stability when a certain type of
feedback is used.

However, in each case the coefficient network is duplicated. In the present article,
we point out that if an adjusting type of machine is to operate successfully whenever
the determinant A is not zero, then the square of the determinant must enter the indicial
equation of the equations of motion for the machine. This necessary condition for
successful operation rules out any linear feedback which does not involve using the
a,-,- twice. This result generalizes certain aspects of the necessity argument indicated in
Goldberg and Brown.

In Sees. 2 and 3 below, we describe precisely the type of machine we are concerned
with. These machines may function continuously or in discrete steps. In Sees. 4 and
5 we obtain necessary and sufficient conditions that the machine should operate suc-
cessfully in all cases where a solution is uniquely determined. These conditions are
analogous to stability conditions for a linear network. In the case of a continuous ma-
chine, this analogy is readily established; in the case of a discrete step machine, these
operational conditions are obtained by considering certain parts of the theory of linear
difference equations. In Sec. 6 we prove the mathematical theorem upon which our
result is based. It is shown in Sec. 7 that an adjusting machine with a linear feedback
network, which is independent of the coefficients of the equations, will not always
operate successfully. Section 8 contains the mathematical basis for Sec. 5 which is
concerned with discrete step machines.
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2. A mathematical machine can be regarded as a combination of computing com-
ponents, each of which performs a specific mathematical operation. Each component
has various inputs and a specific output. A combination of components can be used to
evaluate a formula or function of the inputs. In a machine for solving a system of linear
equations

dijXj + bi = 0 (1)
J

the coefficients cti, and the constants 6, are inputs whose values do not vary during
the operation of the machine.

In an adjusting type machine for solving linear equations, there are variables to
represent the x( . Each of these is associated with a unit of the following character.
Each unit has an input X, and an output x{ . The output a:,- is suitable for use as an
input in the computing components of the machine and the input X, must correspond
to an output of computing components. The relation between the input X, and the
output Xi is an operational one, L{(xt) — X{ . Various possibilities for L, are discussed
below; L, may depend on i, it will always be linear.

The adjusting type device functions as follows. While the xt units are inactivated,
the a,-, and the b{ are entered into the machine. Presumably at this point the values
of the Xi do not constitute a solution of the given system of equations (1). Now, however,
the Xi units are activated. Various combinations of components compute the errors in
each equation

= jb aux> + b< (2)i-i
and these, in turn, are used to compute the X, as some function /(«i , • • • , e„) of the
errors. The inputs X, of the x, units cause the latter to vary so as to approach the
solution of the system (1). Since as we have pointed out in Sec. 1, for this purpose
certain / values exist which are linear combinations of the e, , we will assume that f is
linear in the e, :

X,- = E (3)t
where the k{j are constants in the sense that they do not change during the process in
which the xt are adjusted to the correct value.

3. We have not specified the nature of the operators Li ,

Li(Xi) = X, , (4)

or the method of functioning for the components. In general, there are two ways or
manners in which a machine of this type may operate: (A) The adjusting process pro-
ceeds continuously. Each component has continuous inputs and output and the L,
are differential operators. We suppose the coefficients in each L, are constants and
that the coefficient of the highest derivative is 1. (B) The adjusting process proceeds
in discrete steps. L, is a linear difference operator with constant coefficients but the
components may have discrete inputs or continuous inputs. Again the coefficient of
the highest order difference in L{ is 1.

The two examples cited in the introduction operate in the (A) manner. An electronic
digital computer programmed to operate in the sequence indicated by Eqs. (2), (3),
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(4) would operate like (B). A non-essential generalization permits us to include the
manually adjusted type of equation solver such as those described in the author's book
Mathematical machines (2nd edition, pp. Ill 16-20; 1st ed., pp. 87-91). A full cycle of
the adjusting process in these machines corresponds to one step in the sense of (B)
above. However, the adjusting equations (4) are to be replaced by a set of relations in
the form

Li(xi) — Xi ,

L2(^-1 > £2) = X2 >

j ' ' ' ) %Jt) j

(4')

where each L is linear in the x{ . It will be seen that the generalization represented by
(4') does not affect our argument. One may mention that Lx may be taken simply as
the differencing operation A. In general L{ contains only in the form Ax{ so that
the first equation determines Axi , the second Ax2 and so forth.

We are interested then in the type of machine represented by the sequence of
equations (2), (3), (4) or (4')- The obvious problem that appears here is concerned
with the choice of the ku in (3) and the L, in (4) so that the machine will work, i.e. so
that the machine will adjust itself to a solution. As we have pointed out, sufficient
conditions for adequate operation in all circumstances are known, but these require
that the ku depend on the a,-,- . This means that the an must be used in computing

and also again in forming the X, .
Our objective is to establish that this double use of the a,-,- is necessary if the machine

is to function in all cases in which there is a solution. We suppose that the aif are per-
mitted to assume independently all values in an interval which includes zero, say, for
instance, from minus 1 to plus 1. If this is true then, by suitable choice of scale for the
equations and the unknowns, any system of equations can be represented in the machine.

The above statement seems to neglect the case in which the au appear digitally or
as decimal fractions. However, when we are given a device in which the a,-,- vary dis-
cretely in the components, we can regard each component as replaced by a continuous
component of perfect accuracy and apply our argument to it. Now suppose in the
idealized machine, we find a region of non-operation or instability. Then, in general,
the original discrete machine will have permissible values for the an which fall in this
region and, of course, it will also be unstable.

Let us end this section by pointing out certain conclusions concerning the above
mathematical setup which one may reach from the assumption that the machine will
operate successfully as an adjusting device.

1) If the machine operates in the manner (A) and the L,- are differential operators
such that

Li(Xi) = x\l) + luXi' n + • • • + ltiXi ,

then lti = 0.
2) If the machine operates in manner (B) and

L((Xi) = A'xi + luA'^Xi + • • • + ltiXi ,
then In — 0.
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From Eqs. (3) and (4), in either case, we get

L>(Xi) = 12 k<i*i ■ (5)i
Now suppose we are solving a system of equations in which Xi is not zero. Then after
an adequate time interval in a successfully operating machine all the e, will be small,
Xi will be close to its true value, all the differencing operators Ak and differentiating
operators (d/dt)k will yield a small result, and these equations will be inconsistent with
the assumption that lti 5^ 0. The case (4') is readily treated on an inductive basis.

4. Consider the Eqs. (5) in the case (A):

Li(Xi) = xJ" + ••• + li-i.ix)

n

= 5 kiifi (5A)

= 12 k<i\ 12 ai + h).
j = I \ a = 1 /

Equation (5A) can be written in the form

Li(Xi) - 12 ( 12 kiidiajxa = 12 hub,- = (say) Bt .
a \ j / j

The operators L< can be treated as numbers, and we may employ the process by which
Cramer's Rule is usually established to eliminate all but one unknown x. Consequently
each x satisfies a differential equation in the form

Vs.- = C< (6)

where V is a differential operator,

Vzj = *<m) + DlX^v + • • • + DmXi ,

and each C< is a constant which of course depends on the 6,- . The coefficients D do not
depend on i. Clearly Dm is the determinant of the matrix with elements 11 i &•/a,a ■
(This follows from the fact established in the previous section that lti is zero.) Thus

Dm = KA, (7)

where K and A are, respectively, the determinants of the matrices with elements
and an .

We proceed next to obtain the condition mentioned in Sec. 1 for successful operation
in case (A). This condition is concerned with the algebraic equation

M™ + + ... +Dm = 0, (8)

which is usually referred to as the indicial equation of the homogeneous differential
equation Vxt = 0.

We first obtain the general solution of Vij = 0. Suppose Mi , • • • , are the real
roots of (8) and that //,- has multiplicity r; . Also suppose that a, + , at — ipu • • • ,
a„, + aSa — if3Sa are the complex roots of (8) and suppose that a,- + i(i, has multi-
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plicity Uj . Then it is well-known that the general solution x* of Vx% = 0 can be written
in the form

s i tlfc «a nj

= X) 2 exp GM) + Yj 23 t''1 exp (akt){Pjik cos fikt + Q, ,k sin f3kt). (9A)
k=l j=l k=1 j=l

On the other hand if s0 is such that -Dm_So is the D with highest subscript which does
not vanish, then a particular solution of (6) is obtainable in the form Xait"° and the
general solution of (6) can be written in the form

Xi = Xtit" + x?. (10)

Now suppose that the system of equations has a unique solution in which no unknown
F, is zero. For the machine to function correctly under these circumstances, each x<
must approach the correct constant value Y{ as t approaches infinity. Now one can
show that an expression of the type (10) will approach a constant value as t approaches
infinity if, and only if, s0 = 0 and all the tik and ak are negative, i.e. if (8) is stable.

Thus we have shown that:
An adjusting machine of type (A) will operate successfully if, and only if, all the roots

of the indicial equation (8) lie in that half of the complex plane for which the real part of a
number is negative, whenever the system of equations is non-singular.

5. We now wish to go through the analogous discussion for case (B). In this case,
the L, are difference operators

Li(Xi) = A'xi + lltiA'-1^ + • • • + It^.ikXi ,

and we obtain

Lifai) = E k>,e, . (5B)
1-1

As before, we also obtain by elimination

Vx,. = C, , (6B)

where

= AmXi + D1Am~1xi + • • • + Dmx< .

The statements concerning D, and D,„ are the same as before and, in particular, (7)
holds.

The customary method of handling a homogeneous difference equation VXj = 0
with constant coefficients is to look for solutions in the form x,(<) = a'. For these we
have AXi = a'+1 — a' = (a — l)a' = (a — l)x,(0 - nXi(t) for n = a — 1. Thus if
we permit n to have this meaning, we can obtain the indicial equation

+ DlMm~1 + • • • + Dm = 0. (8B)

If we had two machines, one of which operated in manner (A) and the other in manner
(B) with, however, the L{ and X,- being such that the coefficients Lu and ku were the
same in each case, then the Eq. (8) would also be the same for each case.

Corresponding to every distinct solution of (8B) we have a solution a', where a =
n + 1. For multiple roots the same technique as that of ordinary differential equations
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permits one to fmd r linearly independent solutions if the root has multiplicity r. For
instance, if Ho has multiplicity 3 then there is a polynomial 0 such that

nm + Dim™-1 + • • • + Dm = (n — noy<j>(n)

and

V(/x + 1)' = (/x — Mo)306OOi + !)'•
From this we can infer that

V(Mo + 1)' = 0

~ [V(m + = 0,

[V(M + 1)'],-,. = 0.

Since A and d/d/x are commutative operations, we can infer that

v(|; l(m +)= 0\dn
and

V($ [(m + 1),]"-"-) = °-\d/i

Thus (n0 + 1)', o + l)'-1 and tit — l)(/i0 + 1)'~2 are solutions of Vxt- = 0 when
Ho is a triple root of the indicial equation. Since linear combinations of solutions are
also solutions (/i0 + 1)', t(h0 + 1)' and t2(n0 + 1)' are equivalent to the given set if
ju0 + 1 does not equal zero. If ^ + 1 = 0, then x( = 1 is a solution; if fi0 = — 1 is a
root of multiplicity 3 of (8), then, of course, the analogous equation for a has zero as
a triple root and thus x( — l,t and t2 are solutions. If fxa is a complex root and the D(
are real then /Z0 is also a root and solutions are obtained by taking the real and imaginary
parts of the above solutions.

It is, of course, characteristic of the theory of linear difference equations that it
parallels the theory of linear differential equations except that constants are replaced
by periodic functions in the solutions. (There is another departure indicated below.)
However, we need only consider the variable t to have discrete values 0, 1, 2, • • • ;
then periodic functions need not enter our discussion. For this situation we give a
sequence of lemmas which yield results analogous to those we have used in the differ-
ential equation case. These are proved in Sec. 8 below.

Lemma A. Let

Vx = 0 (6B')

be a linear difference equation with constant coefficients. Let the variable t take on only the
values 0, 1, 2, • • • so that a solution of (6B') is an infinite sequence

{z(0), x{l), x(2), •••}.

There are m linearly independent real solutions of (6B').
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Corollary. For the solutions obtained in Lemma A, we can suppose that the first de-
terminant is not zero.

Lemma B. Under the hypothesis of Lemma A, every solution of (6B') is a linear combi-
nation of the m linearly independent solutions obtained in Lemma A.

Lemma B specifies the solution of the homogeneous equation = 0; we can
readily show that this is in a form analogous to (9A). For to each solution n of (8) we
can find a principal value of the logarithm such that

1 + M = exp (a' + i/3')

or if 1 + m is real and positive, we can write simply

1 + n = exp (n').

If s0 is again such that is the D with highest subscript which is not zero, then a
particular solution of (6B) is readily obtained in the form

v tlXi = X,
• S0\(t - So)! •

The argument used in the previous section now shows that if the machine is to
function satisfactorily, then when the solution is unique one must have all n' and a'
negative. However, we are now one step removed from Eq. (8) and the condition for
satisfactory operation of the machine is now that all the roots of (8) should be in the
unit circle with center at n = —1. Thus we have proved:

An adjusting machine which operates in the manner (B) will operate successfully if,
and only if, all the roots p of the indicial equation (8) lie in the unit circle with center at
fi = — 1, whenever the determinant of a system (A) is not zero.

6. We have established two facts which hold for adjusting machines quite irre-
spective of whether they operate in manner (A) or (B).

a) The last coefficient Dm of the indicial equation is in the form KA where A is the
determinant of the given system of equations.

b) If any root n of Eq. (8) has a positive real part when the given system of equations
is non-singular, then the machine will not operate successfully for this system.

We now wish to establish the following theorem upon which our conclusions are
based.

Theorem. Let Eq. (8) be the indicial equation of the Eq. (6) obtained by eliminating
all but one x,- from the Eqs. (4). Furthermore, let us suppose that if the system of equations
(1) is non-singular, then none of the roots fx of the indicial equation (8) has positive real
parts. Then D is divisible by A2, where A is the determinant of the system of equations (1).

Proof. Let us suppose that our system of equations has been chosen in the following
way. Let A (A) be the characteristic determinant of the matrix and suppose we choose
a set of a,-,- so that all the latent roots, i.e. the roots of A(X) = 0, are real and distinct.
A symmetric real matrix of this type is readily found. Furthermore, for real a,-,- one can
show that for small changes in the an the roots remain real and distinct. This is readily
seen from the graph of A (A) which will have n — 1 maxima and minima whose ordinates
alternate in sign if, and only if, A(X) = 0 has n distinct roots. Thus we have an open
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region in the n2 dimensional au space in which the characteristic roots are real and
distinct.

Let us, however, for the moment regard all the a,-,- as fixed but consider all systems
of equations in the form

(an — X)xi + • • • + alnx„ + ?>! = 0,

(l.X)

a» 1X1 + • • • + (ann - X)x„ + b„ = 0.

Equation (8) can now be written in the form

jum + Di(X);u'" 1 + • • • + Dm(\) = 0,

where now the Dk(X) are polynomials in an and X. We know that Dm(\) = KA(\).
(K is constant, but only in the sense that it does not change during the operation of
the machine, i.e. in the sense a„ and X are constants.)

Now suppose X' is a root of A (X) = 0. Then since Dm(\) = KA (X), n — 0 is a root
of the indicial equation for the system of equations (l.X). Let p be the last integer such
that D„_p(X') does not equal zero. Since D„_k is a polynomial in X, Dm-k(\) =
(X — \')Dm-4(X) for k < p where -Dm_t(X) is also a polynomial in X.

Now suppose Dm(\') ^ 0. Let us make the usual construction of the Newton polygon
in order to obtain a series expansion3 of the roots n of the indicial equation in powers
of X - X':

M = Ci(X — x')e + c2(X — X')2" + • • • .

We readily find that (0, 1) and (p, 0) are vertices of the polygon. Let 0X , • ■ ■ , 6„ denote
the p roots of the equation

Dm(\') + d'Dm^(\') = 0.

We have for each k = 1, • • • , p a solution in the form

M4 = Sk(\ — X')1/p + • • • .

Now if p = 1, 0! is real and 0,(X — X') changes sign as X varies through X'. This would
yield a n with a positive real part when A (X) is not zero. But this violates our hypoth-
esis. For p = 2, we can choose X so that both 0j(X — X')1/2 and 02(X — X')1/2 are real
and one will be positive. This will again destroy the stability. For p = 3, 4, • • • we
can take X — X' positive and since at least one dk has a positive real part, the real part
of n will be positive, and again we have contradicted the hypothesis.

Thus the assumption that Dm(\') ^ 0 contradicts the hypothesis that the roots
have negative real parts when A is not zero. Hence Dm(\') = 0 and Dm has a factor
(X - X')2.

Now let us divide D„(X) by A2(X), considering them as polynomials in X and the
a,, . Since the coefficient of X2" in .42(X) is one, we find that there are two polynomials
Q and R such that

3Cf., for instance, K. W. S. Hensel and G. Landsberg, Theorie der Algebraischen Funktionen Einer
Variabeln, Teubner, Leipzig, 1902, pp. 39-52.
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Dm(\) - Q(X)A2(X) = R(\),

where R(\) has degree less than 2n in X.
This holds for all matrices {aa} in the {ai;} region we decided upon, within which

all the roots X' are real and distinct. However, in this region for each choice of {a,-,},
R (X) is divisible by (X — X')2 for every root X' of A(X) = 0, and since the degree of
R(\) is less than 2n, R(\) must be identically zero in X for {a,, } fixed. Since this holds
for every matrix {a,-, } of the region, R must be zero as a polynomial in «„■ and X. This
establishes the theorem.

7. The above necessary criterion for successful operation permits us to show that
a simple adjusting machine, with a linear feedback in which the a,-,- are not used, cannot
function successfully for all systems for which the determinant is not zero. For here
Dm = KA where K does not depend on the a,-,- and thus Dm is not divisible by A2.

8. Lemma A. Let

Vz = 0 (6B')

be a linear difference equation with constant coefficients. Let the variable t take on only the
values 0, 1, 2, ■■■ so that a solution of (6B') is an infinite sequence

MO), z(l), x(2), • • •}.

There are m linearly independent real solutions of (6B').

Let us first ignore the restriction that the solutions be real. The above argument
indicates how m solutions can be obtained by means of the indicial equation. We must
establish then the linear independence of the m solutions obtained:

{*(1)(0), *"'(1),

*<2,(1), •••},

{z<m>(0), *<m,(l),

Regarding these solutions as an infinite matrix, we must show that the rank is m. If
we do this, a finite submatrix must have rank m and have linearly independent rows.
Consequently, the full matrix has linearly independent rows.

If the roots of (8) are all distinct then, of course, the determinant of the first m
columns is the well-known Vandermonde determinant

1 Mi + 1 • ■ • (mi + l)m

1 Hi + 1 ■ • • 0*2 + 1)™

1 Mm + f • • • (Mm + 1)"' 1

which is not zero.

= n (m< — M/),
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The case of multiple roots is treated by induction. We suppose that mo is a triple
root and that the first three solutions correspond to Ho ■ In addition, for the moment
we suppose that all other roots are distinct. Then the first three rows of the matrix are

1 no + 1 (mo + I)2 (mo + l)3 (mo + I)4

0 1 2(m„ + 1) 3(Mo + l)2 4(Mo + l)3

0 0 2-1 3-2(^o + 1) 4-3(mo+1)2
In the distinct root case, we have

1 Ho + 1 • • • (mo + l)m 1

i mi +1 • • • (mi + ir_1

1 M2 + 1 • • • (M2 + l)™"1

= (mo — a*i)(mo — M2XM1 — ̂2) n (m 0 — Mi) n (m 1 - m.) n — m.) n o*< — m,)
where i, j do not equal 0, 1, 2. If we let Mi = Mo + h, the elements in the second row of
the determinant become

(Ml + 1)' = (mo + 1)' + h[jb0 + 1)J_1] + 1/2h2[j(j - 1)(mo + l)'"2] +--- + h\ (11)

Now we can subtract the first row of the determinant from this second row, divide both
sides by h and take the limit as h approaches zero. Then we obtain

1 Mo + 1 (mo + l)2 • • • (m 0 + l)m 1

0 1 2(mo +1) • ■ • (TO - l)(Mo + l)m"

1 M2 + 1 (M2 + l)2 • • • (M2 + l)"1 1

= (mo — M2)2 n (mo — Mi)2 n (m 2 — M.)2 n (m.- — m,).
We next let M2 = Mo + h and the third row is in the form (11). Then we subtract

the first row and h times the second row from this third row, divide both sides by h2,
and take the limit as h approaches zero. Thus we get

1 Mo + 1 (mo + l)2 • • • (mo + 1)"* 1

0 1 2(mo + 1) • • • (to - l)(Mo + l)*"-2

0 0 2-1 (m - l)(m - 2)(mo + l)m"3

= n (mo — M.)3 n (Mi — M,)-
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Since the determinant has been expressed as a product of differences of distinct numbers,
it is not zero. It should be clear how the cases of higher multiplicity are treated and also
how one could successively deal with the case of two multiple roots, three multiple
roots and so forth.

Thus, in every case we have that the solutions previously obtained are linearly
independent. If we have complex roots, we write the determinant in the form

1 n + 1 • • • (M + l)m_I

i a + i • • • or + i)-1

i.e. every line containing a complex number is followed by the corresponding line for
the complex conjugate. Now a determinant in the form

Ai A2 A 3 A4

Ai A2 A3 A 4

Si B2 B3 B4

B1 B2 B3 B,

can be converted into one whose first row consists of the real parts of the A( and the
second row the imaginary parts, and whose third and fourth rows depend in the corre-
sponding manner on the B( , by multiplying on the left by the determinant

1 1
2 2

—i i_
2 2

0 0

1 1
2 2

0 =11.2 2

= -1/4.

Similarly, the determinant

1 n + 1 • • • (M + l)-1

m— 1H + 1 • • • (m + 1)

can be converted into the determinant of the real solutions we wish to use by multiplying
by a non-zero determinant. Thus the lemma is established.



274 F. J. MURRAY [Vol. VII, No. 3

Corollary. For the solutions obtained in Lemma A, we can suppose that the first
determinant is not zero.

Lemma B. Under the hypothesis of Lemma A, every solution

{x(0), z(l), •••}

of (6B') is a linear combination of the m linearly independent solutions obtained in Lemma
A.

Proof. From (6B') we can infer that there are constants c,- such that for p greater
than or equal to m

m

x(p) - J2 CiX{p - j)
1-1

since the coefficient of Amx is 1. We consider the matrix,

^(O) a^l)

Xm(0) z„(l)

x(0) x(l)

The above result shows that the (to + l)-th column of this matrix is a linear combination
of the first m columns. The (to + 2)-th column is a linear combination of 2, 3, • • • ,
to + 1 columns, but since the (to + )-th column is a linear combination of the columns
1 to to it follows that the (to + 2)-th column is also. The above result can be used to
show inductively that every column is a linear combination of the first to columns and
this implies that the rank of the matrix is less than or equal to to. However, the pre-
ceding corollary now permits us to infer that the rank is to.

For p greater than to, let us consider the finite matrix obtained by ignoring the col-
umns for which t is greater than p. This finite matrix is of rank to. From the fact that
the determinant of order to in the upper left-hand column is not zero, we can infer that
the last row is a linear combination of the first m rows with coefficients which are de-
termined solely by the first to columns, i.e. we have

x(t) = Z) cixM (12)
J-l

for t = 0, 1, • ■ • , p. But since the first m of these equations are adequate to determine
Cj the latter do not depend on p. Since p can be arbitrarily large, (12) holds for every p.


