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ON STEADY, LAMINAR TWO-DIMENSIONAL JETS IN COMPRESSIBLE
VISCOUS GASES FAR BEHIND THE SLIT*

BY

M. Z. KRZYWOBLOCKI
University of Illinois

1. Introduction. Schlichting and Bickley1 solved the problem of a laminar, steady,
two-dimensional jet in an incompressible viscous fluid flowing through a narrow slit in
a wall and then mixing with the surrounding medium at rest. In the present paper the
problem of such a jet in a compressible viscous fluid is solved. The following equations
are taken into account: equations of motion, continuity, energy and state. The coeffi-
cients of viscosity and thermal conductivity are assumed to be functions of temperature.
In order not to obscure the problem by many items of a simple algebraic nature this
paper presents only an outline of the method of attack. The method enables one to
find the distribution of the velocity, density etc. far behind the slit.

2. Basic equations. Assuming that the coefficients of viscosity /i and heat conduc-
tivity K are variable functions, f one obtains the following equations (equation of motion,
continuity, state and energy):

p[ V, + grad (i V2) - ( V X o>)] = pF - grad p

— §(grad ju)(div V) + 2(grad n-V) V + (grad /i) X to (1)

+ grad (div V) + mV2 V,

P, + V(pV) = 0, p = RpT, (2)

Jc,p(T, + V-grad T) + p div V
(3)

= /[(grad K) • (grad T) + K div (grad T)] + <t>,

<t> = At{2V[( V-V) V] + w2 - 2 V-grad (div V)
(3a)

- !(div V)2},

where o = curl V.

*Received Aug. 10, 1948. This paper was presented to the American Mathematical Society on
Feb. 28, 1948.

•H. Schlichting, Laminare Strahlausbreitung, Z. angew. Math. Mech., 13, 261-263 (1933). W. G.
Bickley, The plane jet, The London, Edinburgh and Dublin Phil. Mag. (7) 23, 727-731 (1937). Also,
Modern developments in fluid dynamics, ed. by S. Goldstein, Clarendon Press, Oxford, 1938. Bickley
obtained the solution in the form of hyperbolic functions. Schlichting connected a series in ascending
powers with an asymptotic solution, and obtained different numerical results.

fit is quite enough to assume that both ^ and K are functions of the temperature only and not of
the pressure. Both functions may be assumed to be polynomials or power series in T with properly
selected coefficients (convergent series).
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Assume steady two-dimensional flow in rectangular coordinates without external
forces, with the z-axis in the vertical direction and with the equation of state included
in the equation of energy. The equations may be presented in the form:

pUUx — flUyy = —J)X — pUyV "f" /JLylly "f" 1/3 fXVxy
(4)

+ 4/3 Gi«x)x — 2/3 llzVy + flyVr ,

PUVX — 4/3 HVyy = —J)y ~ pVV y + 4/3 flyVy "f- 1/3 fJ-U; y
(5)

+ MlUy — 2/3 llyUx + {HVX)X ,

UpX = — p(Ux + Vy) ~ PyV, (6)

J(c,puTx — KTyJ) = —RpT(ux + Vy) — Jc,p:/r„

+ J[{KTX)X + KyTy] + 4>,
(7)

<t> = m{4/3[Mx — uxVy + vl] + (Uy + vxf), (7a)
where subscripts denote partial differentiation.

A further assumption is that the jet cross sections taken into consideration are
located very far downstream behind the slit. In an application of a series expansion in
negative powers of x this assumption enables one to neglect consistently the higher
powers of 1/x. Consequently the expansion is an asymptotic one for large x*

A brief explanation of the method of solution of the set of differential equations
will be given. The coefficients on the left-hand sides of those equations will be assumed
so as to obtain ordinary linear differential equations of the second order. On the right-
hand sides the results from the preceding approximations will be used. The results will
be represented in series:**

n n n n

u=Zui, v = ^ Vi , p = p<» + X) Pi j t = + ^2 T{ .
11 1 1

3. Initial approximation. Assume that the gas-jet flows through a narrow slit in the
wall of height h. The velocity distribution across the cross section of the slit being
constant, one may write: M = hp0u20, where M denotes the rate at which the momentum
flows across the initial section of the jet. This relation permits one to find the value u0 ■
The calculations given below will present the velocity, density, and temperature pat-
terns across the jet at some distance from the slit. The value u0 will serve as an auxiliary
parameter.

4. First approximation.
(a) Longitudinal velocity component. Put ux ~ ~ yx~*. Since the rate M

must be constant in all the cross sections, one has, in the first approximation,

*The applied method is, strictly speaking, an extension of Goldstein's method in incompressible
flow. See: S. Goldstein, "On the Two-Dimensional Steady Flow of a Viscous Fluid Behind a Solid
Body," Proc. Roy. Soc. of London, A, 142 (1933), p. 545-562.

""Throughout the paper the subscript zero dendtes the values referring to the conditions inside the
container from which the gas flows out. The subscript refers to the conditions in the undisturbed gas
at rest outside the container.
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M = 2p„ f u\ dy ~ [ x 2px"f(ri) dr\.

Hence 2p = q. Another condition is that uulx must be of the same degree in a: as ulyy ,
or p + 1 = p + 2q. These two conditions give the values: p = 1/4, q = 1/2.

The longitudinal velocity component will always be calculated from the first equation
of motion. In the first approximation put:* v = 0,/* = /*„, p = p„ , uux ~ u0uXx and
neglect the variation of the pressure,- i.e., px = 0. In this approximation only the terms
of degree x~B/i will be retained. One easily obtains

P f^OaUlyy 0. (8)

Introduce a non-dimensional coordinate 77:

( u0 V/2 l-i / u0 \1/2
" = ' '- = 7J —2 ® Vv = \^7x) '

Uy = AiUoX'^fiCy).
The boundary conditions are that u, must tend to zero when x —> °°, that Mi must

tend exponentially to zero when y —>00 and from the symmetry conditions that Wi
must be an even function of y, i.e., ulv = Mi, = 0 for y = ?j = 0. After some elementary
transformation one obtains

f" + 2vf'i + fx = 0. (10)
Put

/1 = ki exp (-r)2)
and obtain

k" - 2vh{ - h = 0. (11)

This ordinary linear differential equation of the second order has a solution in the form
of a series (see Appendix). The final form is

Mi = A1u0x~1/*k1 exp (— 77s), (12)

with all the boundary conditions fulfilled.** The value of Ai will be calculated from the
condition that the rate M must be constant in all the cross sections. Retaining from
fc, only one term gives:

M = 4:Alua0/2pyj2(^j with exp ( — 2t?) dr\ = (js) , (13)

A, = ±M1/2Uo1(7r^—)1/i in.1'4 *** • (14)
\Z7TjLlcoPoo/

*See the explanation below for the selection of pa, instead of po.
**Another solution may be obtained by putting

/1 = k12 exp [—172/2], k[2 — y*k12 = 0 (see appendix).
***Taking into account the second term will give the result:

V4
This expression will add 25% to the value of M.

exp (-v2) dv - 77 exp (-j?2)J.
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(b) Transverse velocity component. This component will always be calculated from
the second equation of motion. But in order to find the highest degree in x of v, one
calculates the value of vtl from the continuity equation for the incompressible fluid:
Mii + vny = 0, and obtains

vtl = A2u0x~3/i f [(1 - W)K + 2vk[] exp (-v2) dv + C. (15)

The constant of integration C must be equal to zero to fulfill the boundary conditions.
The component v must satisfy the following conditions: it must tend to zero when
x —> °°, it must tend exponentially to zero when y —> c° t and from the symmetry condi-
tions it must be an odd function of y or r/, i.e., v = 0 for y = rj = 0. The final result is:

vtl = A2uax~3/i\2nkl exp {-if) - gtl],
I 1/2 (16)

g,i = fo fci exp (-v) dv, At = | ^i(^) in.3/\

Although not all the boundary conditions are fulfilled, it is obvious that the value found
for v may be considered as the third approximation to v (~aT3/4). Hence vx = 0.*

(c) Density. The density will always be calculated from the continuity equation.
It must be equal to when x —and ?/—><». Hence let us put p = p„ + 53™ P.- On
the left-hand side of the equation of continuity put the values u ~ u0 , p = pm + pi ,
and on the right-hand side the values ux ,vx , and p = p0. Retaining the terms of degree
x~Wi one obtains: u0plx = —pQuXx, or

Pi = —p0Mo"V + C = — A1p0x~1/ikl exp ( — rj2), C = 0.** (17)

The boundary conditions for px are identical with those for ux .
(d) Temperature. The temperature will always be calculated from the energy equa-

tion. In the first approximation only the terms of degree aT5/4 will be retained. The
temperature at infinity must be equal to T„ . Hence put T = T„ + Ti. On the left-
hand side of the energy equation put p — p* + px , u = u0 , Ti ~ x~1H, K = K„ .
On the right-hand side put the values u, , Vi , T = T0 , K = K„ , p = p„ + pi . The
boundary conditions for Tx are similar to those for ux . One obtains

J(c,p«,u0Tlx — K„Tlvl/) = — Rp„T0uXx . (18)

Introduce a non-dimensional coordinate rj:
\ 1/2c,n.

Kj«- "(sS)"*" B- B"

= (gfj)'"; (19)
1 -1-= ~2X

Tx = A3T0x~u*hx{v), A3 = (J0^i(~ in-1/4)-

*In order to verify whether the value vx = 0 fulfills the second equation of motion to the first degree
of approximation, put into this equation on the left-hand side the values: p = pm , u = wo , v — vx,
M = , and on the right-hand side the values: pv = 0, v = 0, u — ux. Retain only the terms of degree
x~5l\ One obtains: PcoWi® — (4/3Wfiw = 0. Hence vx = 0 is really a solution.

**It was assumed that pi ~ po.
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After substituting (19) into (18) and performing the necessary transformations one
obtains:

Putting

one gets

hi' + 2Ijhl + h, = 4[(4tj2 - l)/c, - 2r,k[] exp (-r,2). (20)

hi = Pi(v) exp (-v2),

(pi' - 2ripl - pO exp (—y) = 4[(4rJ2 - 1)^! — 2ijfc(] exp (—??2). (21)

One complementary function of this equation is ki ;* hence put pi = and obtain

[2(fc{ — + fcin"] exp (-^2) = , (22)
or

4 [fcft exp (-^)] = Fnk, . (23)
arj

Hence

Jclr[ exp (-^2) = f Fnk, cfij + C = F12 . (24)
Jo

As one may easily notice, after the integration is performed the expression on the right-
hand side will consist of the following functions: the error (probability) integral and

— (2n+1) exp (_c-2) f iie constant of integration must be such as to fulfill the boundary
condition rl = 0 for rj = 0. In the next step one obtains

n = f k;2Fl2 exp (I,2) cfij + Ci . (25)
Jo

The constant of integrationmay be different from zero to fulfill the boundary condition
for rj = 0.** The function K2 may be expanded into a series by ordinary division. The
function rx will consist of the following functions: ^7 rj2n exp (—crj2) and Jj rj" erf
(arj) exp (crj2)drj. This last integral is not tabulated and must be calculated in each
particular case by numerical methods. One term in r, will consist of an ordinary ex-
ponential function, which is not equal to zero for rj = 0.*** Hence all the boundary
conditions are fulfilled and the final result is

?'i = A3T0x~1/47c1rl exp (-ij2), (26)

Ti = AaT0x~~1/ik1r1 exp (~B2V2). (27)

Ci will be determined from the condition that with no heat dissipation from the jet
the total heat content (enthalpy) expressed as mass Xi = mass XcP(T — T«) — 2c„
Jo UiTi(pco + Pi)dy = const., in each cross section.

*AU the functions not included in the text are given in the Appendix.
**In the present case it will be assumed that C\ ^ 0 (see below).
***Hence Ti(0) 9^ 0. But the value 711(0) will include C\ (see below).
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(e). Coefficients of viscosity and heat conductivity. Assuming that p can be expressed
as p = m(1 + aT + bT2 + • • •) and K as K = K0cvp, and substituting the value T =
T„ + Ti , one obtains

n

Mi = + i» E G2iT\ , Kx = K0cvm . (28)
1

5. Second approximation.
(a) Longitudinal velocity component. Put into the first equation of motion on the

left-hand side the values p = pa + p, , u — u0 + u2 , ux = uXx + u2x , — uUy -f-
u2vy , p = jui , and on the right-hand side the values px = R(pT)x , T — T„ + Ti ,
v = 0 and u2 ~ x~W2. In this approximation only the terms of degree x~3/2 will be re-
tained:

UqPcoUqx PvM2vv — pG 2i(T ±Uiy)v x R(piTi)x . (29)

All the functions have to be taken as functions of 17. The solution of this equation will
follow precisely the procedure outlined in the calculation of T1 . The main points are
the following:

u2 = u0x~1/2f2(ri), f3 = k2 exp [—WL (30

WoP»af3/2[/;' + 2(17/2 + f2)] = u2oP„x-3/2[k'2' + (1 - v2)k2] exp [-i„2] = F2 . (31)

One complementary function is/2I = 1 + 27=2,4, •• Hence put k2 = j2lg2 :

ulp„x~*/2(2f'21g2 + f21g'2') exp [-i„2] = F2 , ~ (f21g'2) = £ F2, ,

92 = f~2\ [ £ dv + As],
(32)

Because in the expression on the right-hand side of (31) there will appear terms of the
form exp {--q2), the constant As must be chosen so as to make g2(0) = 0, where

(?2 — J [/.?(/ Z P2i dv + As^ dt] + Ag (33)

Since the function g2 will contain terms of the form exp (— tj2) , which do not vanish
for jj = 0, the constant of integration A9 must be calculated and is not equal to zero.*
The result is

u2 = u0x~1/2f21g2 exp [—Jr?2], (34)

with all the boundary conditions fulfilled.
(b) Transverse velocity component. To verify the statement made above that v2 = 0,

put into the second equation of motion on the left-hand side the values p = pm + pt ,
u ~ u0 + u2 , v = v2 , p = px , and on the right-hand side the values py = R{pT)v
u = «i + u2, v = 0, p = Pi , and keep only the terms of degree x~s/2:

3u0pa>v2x — 4 pmv2yy = 0. (35)

Hence v2 = 0 is a solution.

*The rate M with the previous value of Ai and with p = Pco + pi , u = ui + u2 must be constant
in each cross section. This will give the value of A„ .
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(c) Density. Put into the equation of continuity on the left-hand side the values
u ~ u0 + u2, p = p„ + Pi + p2, and on the right-hand side the values p = p0 + pi ,
u = Ui + u2 , v = 0. Preserving only the terms of degree x~3/2, one obtains

Uoplx — Po^2x P1U1 r , (36)

p2 = -boX-u°{2f21g2 exp [-J,2] - A\k\ exp (-2„2)}, (37)

with the constant of integration equal to zero and with all the boundary conditions
fulfilled.

(d) Temperature. Put into the equation of energy on the left-hand side the values
P = Poo + Pi + P2 , u ~ u0 + u2 , T = Tco + Ti + T2 , K = Ki , and on the right-
hand side the values p = p„ + pi + p2 , T = u = Ui + u2 , v = 0, n = a»i •
Retaining only the terms of degree x~3/2 gives:

J(fi,uoP„T2x — KJT2J = JKG2i(TiTlv)y + p.„u\u
(38)

JCvU0PlTlx R\_pca(UixTi -f- U2xT„) -j- U\XP\Trn\ j

where bars over the letters denote the functions of rj. Again the procedure is identical
with that explained above:

T2 = T0x~1/2h2(jj), h2 = Vi exp [—Iff],
(39)

Aiax 3/2[h'2' + 2(t)h2 + h2)] = A 10x 3/2[p" + (1 - v2)p2] exp [—= G2 .

With a complementary function f2 * the procedure identical to that in Sec. 5(a) gives

~fl?2 = Z BJ2i + B7 . (40)
1 = 1

The constant of integration B7 must be so chosen as to make r2(0) = 0, where

h = [(£ dv + Bs. (41)

The constant Bs is not equal to zero, hence r2(0) ^ 0.** Hence:

T2 = T0x~1/2f2lr2 exp [—5I72],

T2 = T0x~i/2f2lr2 exp [ —

with all the boundary conditions fulfilled.
(e) Coefficients of viscosity and heat conductivity.

M2 = + m[G«(T i + T2) + G3l(T'i + Tl) + G32TJ2 +•••],

K2 = K0 cp p>2 .

(42)

(43)

*The function /21 is the function /2i with 77 changed to tj.
**Bs will be determined from the condition that

mass i = 2c„ / (pm + Pi + p2)(wi + u2)(T1 + T2) dy =
<>0

const.

in each cross section.
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6. Third approximation.
(a) Longitudinal velocity component. Putting on the left-hand side of Eq. (4) the

values p = p„ -f- pi -f- p2 , u ~ u0 + u2 + u3 , ux = ulx + u2x + u3x, n = p.2, uvv —
Uivy + u2vv + u3vv , and on the right-hand side the values px = R(pT)x , v = 0, etc.,
and letting u3 ~ x~3/i gives the result:

Pa>UoU3x HnU3yy = ^3 • (44)

The procedure remains unchanged:

u3 = u0x~3/if3 , (45)

ulp„x-7/V'3' + 2r,K + 3/a) = K3 ,

f3 = h exp [-■b2], ulp„x-v\k'3' + (2 - v2)k3] exp [~W] = K3

One complementary function is f31 . Put k3 = f31g3 :

ulp„x~7/i ̂ (JlgO exp [-irf] = UK3 ,

fhgi = I/Si + C,, g3 = f ( ± l3i + di, + C7.

(46)

(47)

C# must be chosen so as to give g3(0) = 0. C7 must be calculated and is not equal to
zero. The result is:

u3 = u0x~3/if31g3 exp [-§ tj2]. (48)

(b) Transverse velocity component. Put on the left-hand side of Eq. (5) the values
P = p« + Pi + P2, u ~ u0 + ux + u2, v = v3 ~ x~3/i, p. = n2 , and on the right-hand
side the values pv = R(pT)v , u — Mi + u2 + u3 , v = 0. Retaining only the terms of
degree x~7/* gives the result:

3P;;;?/(}?•'3x 4jj.yy P-caUlxy . (49)

One may easily show that v3 = vn , given by (16), is a solution of (49). In this case
Uix = ~v3* or ulxy = —v3yv , hence Eq. (49) changes to pau0vax — n«,v3yV = 0. But
v3 — — f ulx dy,** or v3x = — f ulxx dy and v3vu = — f ulxvv dy. Hence after substituting
into the simplified equation (49), i.e. p„ u0 f ulxx dy — p.„ f ulxyv dy, differentiating with
respect to y and integrating with respect to x, one obtains exactly Eq. (8). But v3 =
vtl does not fulfill the boundary conditions when y —viz., gn ^ 0 for y ~ rj —
One has to find a solution of the homogeneous equation (49). To this end put

v3 = u0x~3/ip3 , (50)

and obtain p3 + (3/2)rjp3 + (9/4) p3 = 0. One distinct solution of (50) is the series
p31 ; another2 is

p.32 = p3i [ p3i exp t-fi?2] dy + Cg . (51)
Jo

*See Sec. 4(b).
"The constant of integration equals 0.
!See: E. L. Ince, Ordinary differential equations, Longmans, Green and Co., New York, 1927, p. 122.
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An integration term by term may be applied. C8 must be chosen so as to make
fan + Pad = 0 as 7? —>oo.

7. Final remarks. The approximations of higher degree are only a matter of routine
work. In the theory of incompressible fluids equations of motion and continuity are
used. The velocity components may be derived from the stream function. But it is
almost impossible always to satisfy all the boundary conditions for all the velocity
components. Usually the v — component satisfies only one condition (for ij = 0 but
not for r] ->oo). It was shown above that in the theory of compressible flow one may
always satisfy all the boundary conditions by use of the distinct solutions of homo-
geneous equations. This last remark refers equally to all the dependent variables.*

APPENDIX

4(a). ki = 1 + a2 y~ + 04 y* + • • • + <^2nVn + • • • > a2 — 1/2, at = 5/24,

a6 = 1/16, a8 = 13/896, a]0 = 221/80640, etc.;

kn = 1 + a4>j4 + <x&y8 + • ■ • , «4 = 1/12, a8 = 1/672, etc.

4(d). kt = 1 + E a,t, F„ = 4[(4B~2v2 - 1)1, - 2vk[] exp
• -2,4, •••

4(e). n a, = /x(l + aTa + bTl, + cTs„ + • • •), G21 = a + 2bT„ + 3 cT2„ + • • • ,

G22 = b -f- *$cTco ~t~ • ■ ■ , etc.; K„ — KoC^a •

5(a). F2 = ^[R(plTi)z UqPiUiz p.G2i(u\vTi)„], b2 = 1/2, b4 = 1/8,

be = -1/48, b8 = 1/384, b10 = -7/34560, etc.;

F21 = £ Fn(fu exp [-(B2 + 1/2)1,*], F2n = {2(A. + At) - 4[A.(1 + B)
1

4" A7]?7> F212 = 4(A5 -(- A7)kik[r, F213 = (2A5fc17'Jj; A7k['ri)ki ,

F214 = -AtK&a), - 2B2rik1r1](k'1 - 2ijkj, F22 = A6[2t]k[ + (1 - 4t/2)/c1]/c1/21

• exp [(—3/2)i?2], A5 = A1A3Ruo2To(p0/p^)(mch1/!!),

A6 = Ai(p0/p„)(inch1/2), A7 = ^AsMoM/^mch1'2).

5(d). K = KoCpS, A10 = Jc,u0Pa,T0 , G2 = 4{i2[p„(Mlx!7,1 + w2i2V) +

+ /[c.MoPiTix - KGuiTiT^y ]— tiJuly}; Bl = A^jfl^c.J'Hinch172),

B2 = /^^(/^^"'(dimensionless), Z?3 = A2172por„(Jrc,p„7To)_1(inch1/2),

This fact has been shown by the author in several papers.
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B< = A.A.pop-Jiinch1'2), B5 = A23G21KToPo(K^y\mch1/2)-,

hi = f [(4B~2v2 - 1% - 2k[lj\kir~f2l exp [—(B~2 + l/2)^2] dij,
Jo

122 = 2 f [(B-v - 1)7.1 0* - exp [(-l/2)(iT2 - l)^2] dij,
JO

723 = f [2fc^ + (1 - 4Z?-2^)fc1]/21fci exp [-(25-2 - l/2)ij2] dij,
Jo

24 = f [v&iri), - (4t?2 - l)fc1r1]/21fc1 exp [-(5~2 + l/2)ij2] dij,
Jo

/28 = — [ {(fci?i)H - 4^0, + (4»j2 - l)fcin + [(fein), - 2ijfc1r1]2}/21
•'O

• exp t—3 ?72/2] dij,

he = - I" (ki - 2B~2rjk1)2J21 exp [-(27T2 - l/2)ij2] dij;
Jo

G31 = b + 3cT„ + • • • , (?32 = 26 + 6cr„ + • • •

6(a). F3 = m[^2i(mi„7'2 + u2yTi) + — u0(uixp2 + u2xpi) — p<mJxu2

R(piT2 + p2Ti)x , K3 = 4F3 ; /3i = 1 + ^2 diT)',
t = 2 , 4, • • •

d2 = -1, d4 = 1/4, d6 = -1/20, d8 = 1/160, d10 = -1/1440,

etc.;

/3i = ~2Ci [ [(t;2 - l)/2ifif2 - ■n{}21g2)v\f3Xk1 exp (-t?2) drj,
J0

h* = (-l/2)Cx [' [{W - l)fci - 2,fc1']{2/2lff2 - ^2fc2 exp [-3,72] }/31
Jo

• exp (-T72) dij,

133 = At f [(4i72 — 1)^! — 2j?fc1']/21/3ifif2 exp (— tj2) di),
Jo

134 = 2C2 f {A1kif2ir2 exp [—(1 + B2/2)rj2] + (1/2) A3(2/2i^2 ~~ A\k\
Jo
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• exp [-3i72/2])fcin exp [-(B2 + l/2)n2]}J3l exp [j'/2]i} d-q,

I3S = ~ f {C-Mi - 2vk1)f21r2 exp [-(1 + B2/2)rf]

+ C4K/2102), - vfaigzlkiTi exp [-(B2 + 1/2)tj2]},/3i exp [r?/2] di],

he = -C, f W ~ 2vkOklrt exp [ —(252 + 1)V2]}J31 exp [v2/2] dv]
Jo

C1 = Ai(p0/p»)(inch1/4), C2 = R p0 T0 (i4 p ®) ~1 ((1 im ens ion 1 ess),

C, = AxG21ToW» (inch1/4), C4 = A3(?21ToMM^(inch1/4),

C5 = A1AiG31r^»I(inch3/4).

6(b). p3l = Ca(l+ £ e,iA e2 = -9/8, e4 = 63/128,
\ t =2,4,••• /

es = -693/5120, = 6237/229376, e10 = -39501/9175040, etc.


