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GENERATION OF SURFACE WAVES BY A MOVING PARTITION*
BY

E. H. KENNARD
David Taylor Model Basin, Washington, D. C.

Artificial waves in water are frequently generated by imparting rhythmic motion to
a boundary of some sort. Two cases of wave production in deep water have been treated,
for harmonic motion only, by Havelock.1 The more interesting of these cases will be
treated here by a different method, and expressions will be obtained for the initial
phases as well as for the permanent regime; in addition, the solution will be extended to
liquids of limited depth.

The harmonic case requires, for the most part, another two-dimensional solution of
the Laplace equation, subject to a special set of boundary conditions. Besides the familiar
condition at the free surface expressing the action of gravity, and perhaps a condition
on a parallel bottom, the horizontal motion is here prescribed over a vertical boundary.
The functions found are interesting in that they constitute an infinite variety of char-
acteristic solutions, all asymptotic at infinity to the same functional form. This asymp-
totic form is the sine function that is familiar in the treatment of gravity waves and
represents the only bounded solution when the free surface is unlimited in extent.

I. Case of Infinite Depth

Consider a semi-infinite body of incompressible, frictionless liquid having a free
surface and of infinite depth. Let it be limited at the left by a boundary that executes
infinitesimal displacements from an initial vertical plane position. Initially at time
t = 0, let the liquid be at rest with a horizontal free surface.

Draw the y-axis downward in the initial plane of the vertical boundary and the
x-axis perpendicular to this plane and in the horizontal plane that is occupied initially
by the free surface. Then the motion excited by the motion of the boundary will be
two-dimensional, occurring in planes parallel to the £2/-plane, so that nothing is a
function of z.

Let the infinitesimal horizontal displacement s of a point of the boundary at time t be

s = SF(y, t), (1)

where S is a constant having the dimensions of length. Thus the function F(y, t) is
dimensionless. Initially, F(y, 0) = 0. It will be assumed that the function F(y, t) is
sufficiently smooth and vanishes sufficiently rapidly as y —><» to justify the operations
that are to be performed.

Since the liquid is assumed frictionless and incompressible, there will be a velocity
potential satisfying Laplace's equation,

_ n
dx2 + dy2

A solution is required for x ^ 0, y ^ 0, subject to two boundary conditions. Over the

*Received June 21, 1948.
'Havelock, Phil. Mag. 8, 569 (1929).
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plane of the moving boundary the vertical component of velocity of the water is un-
restricted, but the horizontal component must be the same as that of the boundary.
Hence for x = 0,

SF«• (2)

At the free surface the boundary condition for infinitesimal motions may be written2 in
terms of the elevation 77 of the surface:

'-;(5SL (3a)- <3b>
where g is the acceleration due to gravity.

A solution of the differential equation satisfying these boundary conditions will be
constructed in two steps. For the moment, imagine gravity to be absent. Then, since
the displacement of the boundary remains small, the motion of the liquid can be re-
garded as due to a suitable distribution of horizontal line sources along the positive
y-axis, continued above the free surface along negative y as negative image sources in
order to keep the pressure constant on the free surface, or in the a;z-plane. The velocity
potential due to a line source located at (0, ±0) can be written —A log r2 = —A log
[x2 — (y =F/3)2], where A is a constant and the flux toward one side is 2ttA; the desired
flux from dy, however, is vjdy = SF,(y, t) dy by (2). It is thus found that the desired
velocity potential <j> 1 and the corresponding horizontal velocity component vzt are

♦■-£/>»■<"ogg + glffg, »)
- - te - * L F,(s' '>[*■ + <*-»)■ " x! + <? + »)■] '/ftVxi

where F,(f3, t) — 8F(fi, t)/dt.
It is readily seen that $ 1 is a solution of Laplace's equation and that dcfrjdt — 0 when
y = 0. Consequently, the pressure remains zero at y — 0, as it must for infinitesimal
motions in the absence of gravity. As x —> 0, the second term in the expression for vxl
vanishes. In the first term, however, the integrand is small except near y — 0, so that
in the limit as x —* 0, F,(/3, t) may be replaced by F,(y, t) and the lower limit of the
integral may be replaced by — °°. Thus

!ir-> - i "■<»• 0 L *■ +%**- „)» -SF'<»' «•
as is required by (2).

The corresponding upward velocity of the surface of the liquid is

= (It) = ~ f F,03't}• (5)\dy Jy-o \ P

The effect of gravity may now be introduced by the following device. During each
element of time dt the motion already assumed adds an increment to the elevation of

*Lamb, Hydrodynamics, Cambridge University Press; 6 ed., Sec. 227.
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the surface represented by vnl dt. In the absence of gravity these increments remain
superposed upon each other without alteration. Under gravity, on the other hand, each
increment undergoes transformation in the manner characteristic of an "initial eleva-
tion" of the same magnitude (the relevant theory is given in Lamb's Hydrodynamics,3
y being there measured upward). The usual Fourier integral may be omitted here, how-
ever, since it may be verified by carrying out the integration in k that (5) can be written

vnl = (&*) = — f cos kx dk [ F, (/?, t) e~kp dp.
\oy / j/=o T? J 0 J 0 (6)

Now a standing wave with a surface elevation r? = cos a t cos kx, where a2 = gk, has
an associated potential (/(sin ot/o)e~k" cos kx (cf. Lamb, Sec. 238). Hence the potential
for an oscillation reducing at time t = t' to a surface elevation vni dt' is, using (6),

d<t> = - g S dt' [ <7-1 sin a(t — t') e~kv cos kx Q(k, t') dk,
ir J o

(7)
Q(k, t) = [ F,(J3, t) e-k" dp.

Jo

The total potential <f> is then found by integrating (7) with respect to t', and adding </>j :

4> = <t>i + -gS[ dt' [ o-"1 sin cr(t — t') e-*" cos kx Q(k, t') dk. (8)
Jo Jo

The corresponding surface elevation is, from (3a), since dfa/dt = 0 at y = 0,

jj = — f dt' f cos <r(t — t') cos kx Q(k, t') dk. (9)
IT Jo J o

It is easily verified that <t> as given by (8) satisfies Laplace's equation and the re-
quired boundary conditions (2) and (3b). At x = 0, d<t>/dx = d<j>v'dx and (2) is satisfied;
in dri/dt, the term obtained from the upper limit equals d<j>1/dy as expressed in (6), and
gk =

These equations represent the motion caused by an arbitrary motion of the vertical
boundary. In the harmonic case the expressions become simpler.

1. The harmonic case. As a special case, let the displacement of the vertical boundary
after t = 0 be

s = SF(y, t) = Sf(y) sin ca, (10)

so that F, (y, t) = wfiy) cos ut. Then, replacing t' by r = t — t' as the variable of inte-
gration, (8), (9) and (7) are replaced by

2 r' r"
4> = <t>i ~\— cogT/S dr (cos a>t cos cot + sin ait sin cut)

TT J O J O (11)

X cr~1 sin <rr e~ky cos kx KQc) dk,

3Lamb, Hydrodynamics, Cambridge University Press, 6 ed., Sec. 238.
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2 r' r
T) — - coS / dr / (cos co< COS cor + sin cat sin cor)

x Jo Jo (12)

X cos <7T cos kx K(k) dk,

K{k) = f e-*» M dfi. (13)

These expressions represent a non-harmonic motion of the water, caused by a har-
monic motion of the boundary after an initial state of complete rest. As t —> <», however,
the integrals representing the coefficients of sin cd and cos u>t will approach fixed limits,
provided fiy) satisfies the usual restrictions. Thus, the entire motion becomes more
and more nearly harmonic.

There must exist, therefore, an ideal solution representing exactly harmonic motion,
in which (10) holds at all times. To obtain the corresponding amplitude functions in <f>,
which may be written

<t> = <t>i + y) cos a)t + yp2(x, y) sin cot,

we carry out the integrations in r and take limits as t —*co. The amplitude functions thus
found are:

+.(*, y) - lim f (' ~ + "" + '-<"»("-»><),; dl + _
T Jo \ a + CO or — CO / COS (lit

fcfe V) - lim Z&r I- ™ + 5in - »")o dk,
/-^oo TT J0 \ G -f- CO (T — CO /

G = a1 e~ky cos kx K(k).

The values of the limits are obtained at once from the formulas:

lim f fix) S'n lx dx — 7r/(0) or 0 (14)
t—* co J a %

according as either a < 0 < b or a and b have the same sign;

lim J f(x) - dx = f f(x) ̂  , (15)
t—*co J —a ^ J—a

where the principal value of the last integral is taken.
These formulas can be reduced to the familiar one, proved in many books:4

lim [ f{x)
t—*oo *> a

sin tx dx = 0.

In (15), for example, the left-hand member can be written, because of the symmetry
of (1 — cos tx)

lim I f ^(1 - cos tx) dx.
2 J-a x

4Whittaker and Watson, Modern Analysis, Cambridge University Press, 3rd ed., Sec. 9.41.
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With mild restrictions upon fix), the first fraction here will be finite at x = 0, and the
cos tx term will give zero in the limit; for the remainder, note that

The integral in formula (14) when a < 0 < b can be reduced in an analogous manner
to the integral,

J sin tx dx/x = t for t > 0.

Using these formulas, the cosine terms in \pi and the (<r + co) term in \f/2 are zero,
whereas the (<r — co) term in \p2 can be evaluated after changing from dk to d(<r — co);
since a2 = gk, dk = 2<j da/y. Thus (11) becomes, using (4) and (10),

.If" dk ku J vn. „"] (16)+ - / 7 — e cos kx K(k) dk cos ait
T Jq K — /Cq J

+ 2uS exp (—k0y) cos k0x K(kn) sin ut,

where

k0 = */g. (17)

Nearly the same integrals occur in (12), which becomes

rj = ^ cos k0x K(k0) cos wt — ̂  sin wt f ; cos kx K(k) dk . (18)Q L tt J q k> k o J

The boundary conditions (2) and (3b) are again easily verified. In d<f>/dy,
— k/(k — k0) — — 1 — k0/(k — k0) — —I — u2/g(k — fc0); the first term serves to
cancel the contribution from the first integral when y = 0 because of (4) and (6).

Equations (16) and (18) represent exactly harmonic motion, but they may also be
used at a given point as approximate expressions for the motion after a start from rest,
provided sufficient time has elapsed. It is necessary that, as <y varies past the value u
in the integrations in (11) and (12), sin at or cos <rt shall execute many periods while
cos kx varies little from cos k0x. Consequently, a good approximation to the limits as
t —> oo will be obtained. This requires that

wt k0x = ux/g — 2ttx/\

where X = 2rg/ui2 represents the wave length of small traveling waves of frequency
<a/2ir. In other words, the total number of waves emitted from the boundary since the
start, as represented by cot/2x, must greatly exceed x/\ or the number of waves included
between the boundary and the point x.

On the other hand, as x increases beyond the first few wave lengths from the
boundary, the exactly harmonic motion approximates more and more closely simple
traveling waves having the frequency of the boundary. We can show this by trans-
forming the remaining integrals in k.
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Putting f = k + im and integrating around the first quadrant of the f-plane, in-
dented at x = k0 , we find that

I exp (~Tf + iaf) = rexp(-yk + iak)dk
J £ k o J o W &q

— iir exp (—yko + iakQ) — if exP ( am) dm = 0
^ j0 im — k0

for 7 > 0 and a > 0; the principal value of the k integral is intended. The last integral
can also be written

— f ^ \ 2 exp (—iym — am) dm.
J o Wl ~T~ AC0

Hence, taking real parts, we obtain the formula,

f°° dk/ i- i7 e yk cos ak dk ~ ~T exP (—yko) sin ak0
Jo tC /Cq •

. f " m cos ym — k„ sin ym ,+ J0   SF+fcj e dm'

For our present purpose, change m to k, set a = x and y — (3 y m <j> or y = {}
in the factor e~fik is to be found in the integral for K, as given in (13). It is then found
from (16), (18), (13), that

<t> = 2coS K(k0) exp (—k0y) sin (cot — kQx)

+^Scos„«/;/to4|iog$i±^| (19)

r k cos /c(<3 + y) - fcp sin k(0 + V) -**
Jo k2 + k20 6

j^if(fco) cos (cot — k0x)

1 ■ ■ f m r k cos Pk ~ k" sin @k ->" 7/-1~ ~sincof J„ m dp I   e dki-

+

2a? S ~

(20)

The first term in (19) or (20) represents a train of harmonic waves traveling out-
ward from the moving vertical boundary. In terms of the wave length, X = 2r/k0 =
2irg/o}2, the surface amplitude of these waves is, from (20) and (13),

A = ^>r 1, exp (~2x2//x) f(y) dy- (21)

The second term in (19) or (20) represents a local disturbance near the wave-making
boundary, superposed upon the waves in time quadrature with them. The resultant
disturbance near the boundary in the exactly harmonic motion will thus have an
amplitude in general larger than that of the distant waves.
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At the boundary itself, the expression for the surface amplitude in the exactly har-
monic motion becomes simpler. With x = 0, in terms of k' = k — k0 , the integral in
(18) becomes, using (13),

[ f(0) d/3 f -jy exp [~/3(k0 + k')] = - f exp (-/3k0)Ei(/3k0)f(j3) dp,
J o J-ko ™ 0

Ei(x) = J* j dt = - J e— dt.

Hence at x = 0, in terms of X = 2rg/u>2, from (18) and (13),

V = J cos o)t + ^ Ei(k0y) sin cofj exp (-k0y)f(y) dy. (22)

Here, as y —* 0, Ei(k0y) becomes logarithmically infinite; nevertheless, if /(0+) is abso -
lutely bounded and integrable, the integral will converge.

The pressure on the boundary is also obtainable in closed form, for the case of
exactly harmonic motion. It is p = p{d<j>/dt)x^0 . For the evaluation of the integral in
(19), the following formula is easily inferred from formulas given in Bierens de Haan's
table of integrals:

/" W-W* a _ - «- Eifpq),

where p and q are constants. For the present case, take q = k0, p = 13 + y. The pressure
at depth y is thus found to be, using (13),

p = 2u2pS cos ut exp (— k0y) / exp ( —fc0/3)/(/3) dp
Jo

pS . , r „J 1, 03 + y)2
-—am »t]o

(23)
- exp [—fc0(/3 + y)]Ei[k0(p + ?/)]| d(3.

The second term in p is a quadrature component that, on the whole, does no work on
the boundary; the first term provides the energy carried away by the waves.

Any motion consistent with the assumed harmonic boundary conditions can be
resolved into the motion already described and a complementary component satisfying
the condition of zero horizontal velocity over the vertical plane x = 0.

2. The pure-wave case. If f(y) = exp (—k0y), the boundary moves as does a vertical
layer of fluid particles during the passage of harmonic waves; the entire motion must
then reduce to that of the wave train.

Now, if f(y) = exp {— 2x?//Xj, (21) gives at once the amplitude A = S, which
is correct, since in deep waves the vertical and horizontal amplitudes are equal. That
the local disturbance vanishes completely in this case is most easily seen if the corre-
sponding term in 4> is put into Havelock's form.



310 E. H. KENNARD [Vol. VII, No. 3

The first of the following equations is easily obtained, and integration of it with
respect to a yields the second:

FJo

FJo

e ax (cos px — cos qx) dx = •Z \ -2. 2 ■ 2 ya + p a + q

cosvx — cos qx _ai 7 1 , a + q
   — e dx.= -z log 2 %x 2 a + p

The constant of integration in the latter formula must be zero since both members of
the equation vanish asa-^®.

Using this last formula with x = k, a = x, p = ft — y and q = ft + y to transform
the logarithm in (19), we obtain as the coefficient of f(ft)dft in (19),

nicos (ft — y)k - cos (ft + y)k , k cos k(ft + y) - k0 sin k(ft + y)\ _kx „
~k + dk>

and, after consolidating, the integral in /3 in (19) becomes

[ f(/3) d/3 [ (k cos fik — k0 sin fik) ^ C0S ̂^2 . ^ e'kz dk.
Jo Jo r fco)

The entire expression for <f> in (19) then agrees with Havelock's expression except for
a change of notation. Furthermore, it is easily verified, by carrying out the 0 integration,
that iif(y) = exp ( — k0y), the expression just written vanishes. The right-hand member
of (19) thus reduces in this case to the first term, representing the waves. In the same
way the sin cat term in (20) disappears.

II. Case of Finite Depth

Let it now be assumed that the liquid has only a finite depth h. Nothing essentially
new is intro'duced by this limitation. The principal formulas will accordingly be written
down with a minimum of explanation.

In using the source method, infinite trains of line images are now required in order
to preserve the boundary condition both on the bottom and on the free surface. The
sources associated with an element dy of the boundary at a depth y = ft fall into two
series, beginning respectively at y = ±/3; in each series the spacing is 2h and the signs
alternate, since reflection in the free surface reverses the sign whereas reflection in the
bottom does not. This alternation of sign suggests use of the complex potential C log
tan az, whose real part, if C and a are real, is (C/2) [log (cosh lay — cos 2ax) — log
(cosh lay + cos 2ax)]. The proper periodicity is obtained if a = ir/4h; and for small
x this expression reduces, except for an added constant, to (C/2) log (x2 + y2) or to
the potential of a line source at the origin. For one train of sources, y is replaced by
CV ~ /3), for the other, by (y + ji). It is thus found that, for the motion in the absence
of gravity, (2) and (3) representing the potential and the corresponding upward surface
velocity are replaced by

*-!/." '■<*»*« « »

(^L "f ™xhbx I sWte^+^69®' (25)
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with

k — JL
2 h *

The expression for v'nl is then replaced by a Fourier integral:

2 Z*00 C00
v'„i(x, t) — - cos kx dk / v'nl(a, t) cos ka da. (26)

7T J o J o

The formula needed to reduce this integral can be obtained by integrating ekz cosh
6z(sinh2 bz + sin2 6/3)~1 dz around the upper half plane for z = x + iy. Poles occur on
the imaginary axis where sin by = ± sin 6/3, or y = /3 + nir/b, y = —/3 + (n + 1)tt/6,
where n = 0, 1, 2, • • • . The sum of the residues thus leads to a series, namely, 1 —
exp {— kir/b} + exp {—2kir/b} = (1 — exp {—kir/b})'1. The real part of the
integral is thus found to yield the formula

f° cos kx cosh bx , tt |~ 2 sinh fc/3~I ,
J0 sinh2 + sin2 b/3 X 2 b sin bp |_e eTk/b + 1-1*

By means of this formula, (26) with v'nl(a, t) inserted from (25) reduces to

V'nl = — r cos kx Q'{k, t) dk, Q'(k, t) = (" F,(fi, t)(e+ 2^h kf) d/S.
IT *0 \ e "T" 1 '

This equation for v'nl replaces (6). With the usual modifications to fit the finite depth,
the former procedure then gives for the total velocity potential <f>' and surface elevation
v' in place of (8) and (9),

<*>'=<*>; + —/' dt' [ a'1 sin <7(t - t') C°Sh ,T V) cos kx Q'{k, t') dk, (28)
7T Jo Jo COSII rC/i

i?' = —/* dt' [ cos cr(t — t') cos kx Q'(k, t') dk, (29)
7T Jq J o

where now

a2 = gk tanh kh.

The boundary conditions are easily verified, including the new one that d<f>/dy = 0
when y = h.

3. The harmonic case. The treatment of this case then proceeds as before. It is
found that, in the exactly harmonic case where the displacement of the boundary is at
all times s = Sf(y) cos ut, instead of (16) and (18),

,/ , r. aicosh kAh — y) K'fki) . , ,
1 W \ cosh kxh tanh k^ + kxh sech2 kih8111" C0S lX

(30)
cos oit r cosh k(h — y) ,  K'{k) dk ]

ir J0 cosh kh C°S X k tanh kh — k, tanh kjij

where ki is the positive real root of the equation

<o2 = gki tanh kih (31)
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and

K'(k) = f m\e~k" + dfi, (32)
Jo L e + 1 J

/_2slS/ , , K'jkd
11 ^ ^ cos co cos i# ^ _|_ ̂  Sech2 kxh

_ sin aA f°° ,  K'(lc) dk "l
% J0 C0S x k tanh kh — ki tanh kji)

(33)

In deducing (30) from (28), an equation is first obtained that is identical with (11)
except that $ and are replaced by <j>' and 4>[ , K(k) by K'(k) as given in (32) above,
and e~h" by cosh k(h — y)/cosh kh. With the same changes, the expressions given
under Eq. (11) for ipi{x, y) and ip2(x, y) become the amplitude functions \f/[ and \p'2 for
4>', such that 4>' = 4>[ -\- (x, y) cos cd + ip'2(x, y) sin cot. In the further reduction, how-
ever, fci replaces k0 , and the relation o-2 — «2 = g(k — k0) is replaced by <r2 — w2 =
g(k tanh kh — kx tanh kxh), so that the latter expression in parentheses replaces
(k — k0); furthermore, the relation dk = 2a dc/g is replaced by dk = 2<r du/g{tanh
kh + kh sech2 kh), so that at k = kx an additional factor (tanh kji + kxh sech2 kji) is
introduced. The differences between (30) and (16) are thus explained. The expression
for r)' is then easily obtained from (3a).

The waves at large x can be discovered as before by transforming the remaining
integrals by contour integration. Here, the expression k tanh kh — kx tanh kji appears in
(30) and (33) where (k — k0) appears in (16) and (18); hence at the pole, which occurs
here at k = ki , the following additional factor is obtained in the denominator:

\jL ^ ^ ~ ^ ] = ^an^1 ̂ ^ sec^2

The terms in sin ut thus combine again with the cos ut terms to represent traveling
waves at large x. The remaining expressions are complicated, but they involve x only
in a factor of the form exp (— k'x) where k' is real and positive, and so represent again
a local disturbance near the boundary.

The surface amplitude A of the waves can be inferred from (33) with (31) and (32):

A = (1 + kji sech kji csch kji)-1
Al

(34)

X I /(y)[exp (-hy) + exp J dV
where ki = 2ir/\x in terms of the wave length .As h—><*>, this expression reverts to
that for deep water as given in (21).

If, on the other hand, h/Ai is small, so is kxy throughout the range of integration,
and kxh sech kji csch kth = 1, nearly; thus, approximately,

A = ^ / f(y) dy. (35)Ai J o

This is easily seen to be the correct expression for canal waves.


