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are a general representation of the consolidation problem after finishing of the sedi-
mentation process. In Fig. 2 the upper curves correspond to the greater values of k/a

Fig. 2

as valid for sand and other permeable materials, whereas the lower curves correspond
to clay and similar earth masses with smaller values of the coefficient of permeability.

NOTE ON THE PROBLEM OF TWISTING OF A CIRCULAR RING SECTOR*
By ERIC REISSNER (Massachusetts Institute of Technology)

The problem of twisting of a circular ring sector is of some interest in connection
with the calculation of stresses and deformations in close-coiled helical springs. To be
considered is a ring-sector under the action of two equal and opposite forces P along
the axis through the center of the ring and perpendicular to the plane of the ring (Fig. 1).
A formulation of the problem and an outline of results by 0. Gohner for sectors of solid
circular and rectangular cross section may be found on pp. 355-361 in Theory of elasticity
by S. Timoshenko.

The purpose of the present note is to obtain explicit results for the twisting of ring
sectors of hollow cross sections, with thin walls. Formulas will be obtained which have
the same meaning for the present problem as R. Bredt's formulas have for the problem
of St. Venant torsion of cylindrical rods.

The problem may be considered as one of the membrane theory of thin shells of

'Received Deo. 23, 1948. Work on this note was supported by the Office of Naval Research under
Contract N5ori-07834.
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Fig. 1

revolution, with multi-valued expressions for displacements. A direct solution, without
recourse to general shell theory may be obtained as follows. The assumptions of the
twisting theory of ring sectors are equivalent to requiring that all stress resultants of
the membrane theory vanish with the exception of the shear stress resultant S acting

Fig 2
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over the cross section of the ring sector. (Fig. 2). As all stresses possess rotational sym-
metry the resultant S satisfies the following equilibrium equation

&2 + s£-0, (1)
as as

where s is the arc length measured along the center line of the tube wall and r is the
distance of the points of this fine from the axis of the ring sector. From (1) it follows that

r2S = C. (2)

Note that the largest value of the shear stress resultant S occurs at the point nearest
the axis. From the relation

P = f S sin <t> ds (3)
the value of the constant C is obtained:

C = P/f § • (4)r

Equation (2) may thus be written in the following form

p
S = r2 £ (1/r2) dz • (5)

Equation (5) is the counterpart of Bredt's formula S = T/2A of torsion theory for
the shear stress resultant S in terms of the twisting couple T.

For the determination of the deformation of the ring sector we use the stress-strain
relation

S = Gty (6)
where G is the modulus of rigidity, t the wall thickness and y the appropriate shearing
strain component. In terms of the components of strain in cylindridal coordinates
ysr and yez we have

y = yer cos <t> + ye, sin <t>. (7)

In view of the fact that S is the only non-vanishing stress resultant, all other com-
ponents of strain for cylindrical coordinates vanish,

er = e„ = e, = yr, = 0. (8)

Components of displacement in the radial, circumferential and axial directions which
are compatible with (8) are*

U = 0, V — V(r, z), W = kO. (9)
From (9) the remaining components of strain are obtained in the form

(F\ ,16U d (V\
\r / r dd T dr\r /'

(10)

d (]
y« = rfr\-,

= §v,idw=dv,k
7e' dz r de dz r '

*These expressions hold without any assumption concerning the form of the cross section of the ring
sector.
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Combination of (10) and (7) gives

dy _ r —dr
(V\dr,dV_dz,kdz , .
\r / ds dz ds r ds

or

7 = A
r ds\r) + ?t (12)

In Eq. (12) one takes 7 in terms of S from Eq. (6) and then integrates (12) over the
closed cross section. In view of the fact that V must be a univalued function this leads
to the following relation:

or, with S from (5),

f§t?'k*7' <13)

where according to (9) the change in length per winding of a spring has a value 2irk.
Equation (14) is the counterpart of the well-known Bredt formula Q/T = [,<f (ds/Gt)]/4A2
for the twist-torque ratio for closed thin-walled sections.

Examples. We take for a first example the case of a tube with circular cross section
and with uniform wall thickness. The equations of the center line of the tube wall are
taken in the form

r = R + a cos \p, z = a sin \p. (15)

The integrals occurring in Eqs. (5) and (14) become

cos 4* d\[/jf dz a f
? r2 ~ R2 I [1 + (a/R) cos \f\

(16)
_ 2t (a/R)2

R [1 — (a/R)2]3
and

I ds a f2
J r3 ~ R3 i

d\J/
[1 + (a/R) cos 1p]

= 7Ta 2 + (a/R)2

~ R3 11 - (a/R)T2 '
The ratio (5) between stress resultant S and applied force P is then

S _ R [1 - (a/R)2]3/2
P 2tta2 [1 + a/R cos if ' K J

(17)

As the ratio a/R tends to zero the tube stress resultant S approaches the value S =
PR/2Ta2 = PR/2A which coincides, as it should, with the value predicted by pure
torsion theory for an applied couple of magnitude PR.
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The maximum stress occurs when cos ^ = — 1 and is of the following magnitude

(19)

<Sm„ R [1 - (a/R)T/2
P 2tta2 [1 - (a/R)]2

[1+21 + I(l) + •••]•
The deflection-force ratio k/P as given by Eq. (14) becomes

R
2ira2

k 1 R3
P Gt 2tci' [-dm- Kin

Lilfj J(«Y_if«Y_ ...1It 2ira3 L 8 XRj 8 \Rj J'

(20)

The absence of a term of the form (a/R)2 inside the bracket indicates that the influence
of the factor in brackets is quite small in all but extreme cases.

As a second example we consider a tube with rectangular cross section and uniform
thickness. We designate by R the distance of the center of the cross section from the
axis, by 2a the width of the tube and by 2b the height of the tube. We find that

~dz_ 8ab   1  ' ,9n
* r2 ~ R3 [1 - (a/R)2]2 0'

and

. ds _ 4(a + b) 1 + (3 b- a)(a/R)2/(b + a) . .
* r3 ~ R3 [1 - (a/R)2]3 [ )

From (21) and (5) the maximum value of the stress resultant S follows in the form

R [1 - (a/R)2]2
P 8ab [1 - (a/R)]2

(23)

jg-h+af + l-l +
It is noteworthy that the factor in brackets in (23) is independent of the height 2b of
the tube cross section, and that this factor is somewhat smaller than the corresponding
factor of Eq. (19) for the circular tube.

Combination of (14), (21) and (22) gives for the deflection-force ratio of the rec-
tangular tube the following result

k _
P~ Gt

1 (a + b)R3 f (a\*~|[\ , 3b - a (a\
It 16a262 L W JL + b + a W

J_ (a + b)R3 f , b - a (aY _ 3b - a (aY'
Gt 16a2b2 L 6 + a W b + a W .

(24)

A comparison with the corresponding formula (20) shows that the square tube shares
with the circular tube the property that no terms with (a/R)2 occur within the last
bracket. In contrast to this, terms with (a/R)2 do occur whenever one of the sides of
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the rectangle is longer than the other. It may be of interest to list the following special
cases. Denoting the factor in brackets by 1 + 8, we find that when

a « b, 1 + 8 ~ 1 + 2(a/R)2 - 3(a/R)\ (25a)

and when

b « a, 1 + 5 — 1 — 2(a/R)2 + (a/R)\ (25b)

It may be noted when a <K b then 8 assumes a maximum value of 5/27 for (a/R)2 =
1/3, whereas when b <<C a then 8 is always negative.

CORRECTIONS TO THE PAPER

ON A CLASS OF SINGULAR INTEGRAL EQUATIONS OCCURRING IN PHYSICS

Quarterly of Applied Mathematics 6, 443-448 (1949)
By H. P. THIELMAN (Iowa State College)

The limits on the integral in Eq. (B), p. 445 have been omitted. They should have
been indicated as 0 and co.

Equation (a) of Theorem I, p. 445 should read kf(0) — /'(0) = 0 and not kf (0) —
/"(0) = 0 as stated. It should have been stated that f"(x) in Theorem I, and fir(x) in
Theorem II are assumed to be of order o(ekx) as x goes to infinity.

*Received June 6, 1949.
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Proceedings of a symposium on large-scale digital calculating machinery. Jointly sponsored
by the Navy Department Bureau of Ordnance and Harvard University at the
Computation Laboratory. Harvard University Press, Cambridge, Massachusetts,
1948. xxix + 302 pp. $10.00.
This is a collection of papers and discussions of papers presented at a symposium on large-scale digital

computing machinery held at Harvard University on January 7-10, 1947. The meeting was sponsored
jointly by the Navy Department Bureau of Ordnance and Harvard University. The book contains
numerous photographs and drawings. The technical addresses covered eight sessions dealing with the
general topics of "Existing Calculating Machines", "The Logic of Large Scale Calculating Machinery",
"Storage Devices", "Numerical Methods and Suggested Problems for Solution", "Sequencing, Coding
and Problem Preparation", "Input and Output Devices", "Conclusions and Open Discussion". The state
of,the art seems to have been well surveyed.

Rohn Truell


