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where « is the Mach angle for M = 51/2 and a, b are arbitrary functions of a, /3, re-
spectively. The curves (4.11), (4.12) are logarithmic spirals in the liodograph plane.
For the case v0 + q2 = 0, the (x, y) -plane map of the bicharacteristics a = constant
(or j8 = constant), is orthogonal to the (w,y)-plane map of j8 = constant (or a = con-
stant). Hence, the (x,y)-plane map of (4.11), (4.12) consists of logarithmic spirals. Specific
formulas can be obtained easily. Since the bicharacteristics are inclined to the stream
lines at the constant angle w, the stream lines are also logarithmic spirals. Evidently, a
similar method can be used to investigate those degenerate non-steady flows for which
vo = f(q2), f(.q2) < 0.

NOTE ON THE CHARACTERISTICS IN UNSTEADY
ONE-DIMENSIONAL FLOWS WITH HEAT ADDITION*

By C. C. LIN (Massachusetts Institute of Technology)

1. In a very interesting paper, Kahane and Lees1 studied the problem of one-
dimensional wave propagation in a gas when heat is being added. They used the method
of numerical integration, by taking finite differences along the characteristics. However,
since the form of the characteristic equations contained more than two dependent
variables, they were led to use some rather artificial approximations besides those in-
volved in taking finite differences. As the type of work done by Kahane and Lees will
probably be continued by people interested in jet propulsion, it seems desirable that
the most convenient form of the characteristic equations be derived and a simple pro-
cedure of numerical integration be developed. It is the purpose of this note to show
that with a proper choice of the dependent variables, the characteristic equations are
much simpler, and the numerical integration can be carried out in a straightforward
manner.2

2. The fundamental equations for one-dimensional unsteady flow are

u, + uux + - Px = 0, (1)
P

p( -f- wpx pux -f- puA 1AX = 0, (2)

st + MSx = q*, (3)

p = constant X pTes, (4)

where u is the velocity in the direction of the x-axis, A is the cross-sectional area of the
tube, t is the time, and p, p, s, y are the familiar symbols for the pressure, the density,
the entropy (divided by the specific heat at constant volume c,) and the ratio of specific
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heats, q* is the rate of production of entropy, i.e., it is the heat generated per unit mass
divided by the product of absolute temperature T and the specific heat at constant
volume c, .

The Eqs. (l)-(4) form a system of three differential equations in three variables,
provided one of the four variables p, p, s, u is eliminated by the use of (4). One can,
e.g., eliminate the derivatives of p from (2) to get

pt + upx + 7 pux = p(q* — y u,A~lAx). (2A)

The advantage in this choice lies in the fact that (1) and (2A) contain only the de-
rivatives of the two variables p and u.

3. The standard method of finding characteristics can now be applied. If we write

pt dt + px dx = dp,

u, dt + ux dx = du,

st dt + sx dx = ds,

and combine these equations with (1), (2A), and (3), we have six equations for the six
partial derivatives. It can easily be seen that the coefficients and the right-hand sides
of these equations can be arranged into the following matrix:

I u 0 p'1 0 0 0

0 yp 1 u 0 0 p(q* — wyA~lAx)

0 0 0 0 1 u q*

dt dx 0 0 0 0 du

0 0 dt dx 0 0 dp

,0 0 0 0 dt dx ds

The coefficient determinant breaks down into two distinct factors

dx — udt = 0, (dx — udt)2 — a2 dt2 = 0.

As was expected, these are the familiar characteristic base curves. The corresponding
compatibility equations can easily be obtained:

ds * , dx
dt= qal°nSdi = U> (5)

— ± — = (- uA~lA^\ dt along = u ± a. (6)
yp a \ 7 / ° dt

One may note in passing that these specialize immediately into those in the case of
uniform entropy, provided the variables p, u, s are also used in the latter case. In that
case, with Ax = 0, it is possible to integrate the compatibility equations (6).
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4. In the process of numerical integration, to reach a point P3 from a knowledge
of the solution along the curve PiP2 (Fig. 1) one may use the set of equations (6) to
calculate x3, t3, u3, and p3 , since q* and A are supposed to be known functions. The

Fig. 1.

path line P0P3 can then be drawn in accordance with the second equation of (5); the
first equation of (5) will give the value of s3 . One can then calculate p3 from (4) and
obtain all of the dynamic and thermodynamic variables at P3 . Iteration processes can
be carried out in the usual manner.

A NEW SUPERPOSITION PRINCIPLE FOR
STEADY GAS FLOWS*

By R. C. PRIM** (Naval Ordnance Laboratory)

This paper is concerned with steady flows in the absence of extraneous fields of
force of a frictionless, thermally-nonconducting gas having a product equation of state,
i.e., an equation of state connecting density, pressure, and specific entropy in the form
P = P(p)S(s).

H. Poritsky [l]f has discussed the construction of steady, spatial gas flow solutions
from steady plane flow solutions by the superposition of a uniform velocity field normal
to the given plane flow field. In particular, he pointed out that if

Vp = iu(x, y) + )v(x, y) (1)

is a plane velocity field (referred to ordinary rectangular Cartesian coordinates x, y, z
with unit vectors i, j, k) satisfying the equations of steady-state gas dynamics, then
the spatial velocity field

V = V„ + k7„, (2)
where Vn is a constant, also satisfies those equations.
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